## SCIENTIFIC COUNCIL MEETING - JUNE 2017

## Cod 3M Projections: risk estimation and inputs

by<br>Carmen Fernández ${ }^{1}$, Diana González Troncoso ${ }^{2}$, Fernando González-Costas ${ }^{2}$, Carsten Hvingel ${ }^{3}$, Ricardo Alpoim ${ }^{4}$, Santiago Cerviño ${ }^{1}$, Mónica Mandado ${ }^{5}$ and Alfonso Pérez ${ }^{6}$<br>${ }^{1}$ Spain<br>${ }^{2}$ Instituto Español de Oceanografía, Vigo, Spain<br>${ }^{3}$ Institute of Marine Research, Bergen, Norway<br>${ }^{4}$ Instituto Nacional de Recursos Biológicos, INRB/IPIMAR, Lisbon, Portugal<br>${ }^{5}$ Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain<br>${ }^{6}$ Wageningen Marine Research. Ankerpark 27, 1781 AG Den Helder, Netherlands.


#### Abstract

The last full assessment for the 3M Cod in the NAFO Scientific Council was carried out in June 2015, giving an advice for two years. Some problems concerning the NAFO 3M cod projections were identified during the 2015 Annual Meeting. Trying to solve these issues, a Workshop was organized by the EU in March 2017.

An issue raised by the Fisheries Commission in 2015 is that the risk of exceeding $\mathrm{F}_{\text {lim }}$ for some of the projection scenarios presented in the assessment was difficult to interpret in light of the overlap in credible intervals of the yields of the various options. To solve this issue, the authors developed a new projection method to perform the 3 M cod projections and compute risk, projecting a single catch value instead of a distribution of catches.

One of the problems raised by the Scientific Council is how to estimate the inputs to be used in the projections due to the rapid changes in the biology of this stock, especially from 2007. Normally the last three years mean is used as input for these parameters. The changes in the biological parameters cause problems in the projections results as the inputs used for the projected years usually are overestimated, leading to an overestimation of the SSB and the associated TAC for a given F. To solve this issue, the authors suggest using just the last year inputs in the projections. An attempt to add uncertainty in the last year inputs was made, examining the interannual changes observed in past years in the inputs and taking into consideration the correlation between them. The uncertainty and the risk in the results increases considerably and it was suggested to study deeply this method before its implementation.


The authors conclude that caution should be exercised concerning the results of the projections for this stock. If uncertainty in the projection inputs is implemented, advice for more than one year will not be accurate due to the issues identified.

## Introduction

In 2008 a Bayesian XSA model was introduced for the assessment of this stock. Several updates and improvements in model code (both for the assessment model and the projections algorithms) have been made since then. A benchmark of this assessment is planned for 2018. Scientific Council (SC) has listed issues to be investigated (NAFO, 2015a).

One of the main issues raised by the Scientific Council is that the inputs (mean weight in catch, mean weight in stock and maturity ogive) used in the projections (generally the mean of the last three years) are overestimated for the projection years due to the rapid changes in the biology of this stock, especially from 2007. This leads to an overestimation of biomass, SSB and Yield in the projection years.

Another problem raised by the Fisheries Commission in 2015 (NAFO, 2015c) is that the risk of exceeding Flim for some of the projection scenarios presented in the assessment was difficult to interpret in light of the overlap in credible intervals of the yields of the various options. This leads to an extensive discussion within STACFIS on the methods used to calculate risk (NAFO, 2015b). Although the SC concluded that there was no computation error, the SC acknowledged that the risk proposed did not correspond to the expected one.

A Workshop organized by the European Commission under the Specific Contract No. 03 (SC03) under Framework Contract EASME/EMFF/2016/008 Provision of Scientific Advice for Fisheries beyond EU Waters was held in Vigo in March 2017, to try to address, among others, the above mentioned issues of the 3M Cod current assessment. This document presents a new method to estimate the risk in the projections and a way to implement uncertainty in the projections input parameters.

## Material and Methods

## Assessment data

The last full assessment for the 3M Cod in the NAFO Scientific Council was carried out in June 2015 (González Troncoso, 2015), with data until the end of 2014. In this paper, the last approved assessment was updated to include the 2015 data.
-Total Commercial catch, 1972-2015: Table 1, Figure 1
-Catch-at-age in catch, 1972-2015: Table 2
-Weight-at-age in catch, 1972-2015: Table 3 and Figure 2
-Canadian bottom trawl survey abundance at age, 1978-1985: Table 4
-EU bottom trawl survey abundance at age, 1988-2015: Table 5
-Weight-at-age in stock, 1972-2015: Table 6 and Figure 3
-Maturity at age and age of first maturation , 1972-2015: Table 7 and Figure 4

The maturity ogive used in the 3M cod assessment is estimated each year separately, using a logistic model with a Bayesian fit as following:

$$
M O_{y, a}=\frac{1}{1+e^{-\beta_{2, y}\left(a-\beta_{1, y}\right)}}
$$

We have 5000 different values $\beta_{1}$ and $\beta_{2}$ for each year, from which a maturity ogive by age is calculated as presented in Table 7.

There are some gaps in the series of mean weights in catch and in stock due to the lack of individuals to calculate a mean weight. This affects directly the calculation of the biomass. Those gaps were filled using the mean of the previous year and the following year.

Assessment model
The last approved assessment (González-Troncoso, 2015) has been updated with the 2015 data.

## Projections

## Projections method and risk

The methodology to perform projections and calculate risk used for this stock until now and the new one proposed by the authors are explained next.

Assume that we have a stock assessment containing data until year Y (e.g. 2015). The stock assessment is conducted with a Bayesian model and 5000 samples from the posterior distribution, calculated by MCMC, are used to summarize stock assessment results and to provide starting points for the projections. The projections are done iteration by iteration, independently for each of the 5000 iterations, in the following way for each iteration:

For each iteration, the survivors at age from the last year in the assessment, $Y$ (2015), become the numbers at age +1 at the start of year $\mathrm{Y}+1$ (2016). With these population numbers, the known TAC for $\mathrm{Y}+1$, and the assumed partial recruitment and weights-at-age for the projection, the corresponding F-at-age in $\mathrm{Y}+1$ and the survivors at the end of the year are estimated. The survivors become the population numbers (incrementing age by 1) at the start of $\mathrm{Y}+2$. Fisheries Commission scenarios based on F options start at this point $(\mathrm{Y}+2)$ and continue in the incoming projected years.

Projections for $\mathrm{Y}+2$ are performed with a given F (usually $\mathrm{F}_{\text {lim, }} 3 / 4 \mathrm{~F}_{\text {lim }}, \mathrm{F}_{\text {statusquo }}$ and $3 / 4 \mathrm{~F}_{\text {statusquo }}$ ) estimated iteration by iteration, resulting in a catch for $\mathrm{Y}+2$ for each iteration, i.e. 5000 catch values. The NAFO SC catch advice for the stock corresponds to the median of the 5000 catch values. The main problem issue described below would also occur if $\mathrm{F}_{\text {lim }}$ and $\mathrm{F}_{\text {statusquo }}$ were defined as single values.

From here onwards the projection and risk computation methodology proposed by the workshop differs from the one used until now. The differences are in:
(a) the risk associated with the advised catch for $\mathrm{Y}+2$ is calculated differently;
(b) the population numbers at the end of year $\mathrm{Y}+2$ are calculated differently; therefore, the starting population numbers for projections for years after $\mathrm{Y}+2$ are different.

Concerning point (a):
The risk of F exceeding $\mathrm{F}_{\text {lim }}$ in year $\mathrm{Y}+2$ was calculated up to now by comparing F in $\mathrm{Y}+2$ with $\mathrm{F}_{\text {lim }}$ iteration by iteration, based directly on the F in $\mathrm{Y}+2$ used in the projection described above. This meant that, for example, for the catch option corresponding to $\mathrm{F}=3 / 4 \mathrm{~F}_{\lim }$, the $\mathrm{P}\left(\mathrm{F}\right.$ in $\left.\mathrm{Y}+2>\mathrm{F}_{\mathrm{lim}}\right)=0$; even though the distribution of catches in $\mathrm{Y}+2$ corresponding to $\mathrm{F}=3 / 4 \mathrm{~F}_{\text {lim }}$ overlaps with the distribution of catches corresponding to $\mathrm{F}_{\text {lim. }}$. The projection has been conducted in such a way that F in $\mathrm{Y}+2$ was always exactly equal to $3 / 4 \mathrm{~F}_{\text {lim }}$ and, therefore, the probability that F in $\mathrm{Y}+2$ exceeds $\mathrm{F}_{\text {lim }}$ is zero.

Taking into account that the way the risk was calculated is mathematically correct, we do not consider this measure of risk appropriate in this case because this calculation does not correspond to a particular catch value in $\mathrm{Y}+2$, but to an entire distribution (arising from the 5000 iterations) catch values. However, the eventual TAC that will be set for $\mathrm{Y}+2$ will be a single value, so it makes more sense to calculate the risk that F exceeds Flim for that single catch value in $\mathrm{Y}+2$ instead for a catch distribution, especially taking into account the wide distribution of the catches for a given F (Figure 5). The new proposal is, therefore, to measure the risk associated with a single catch value instead of the risk associated with an entire distribution of catch values. In other words, the proposal is to calculate the distribution of Fs in $\mathrm{Y}+2$ that arise from a single catch value in $\mathrm{Y}+2$, where this single catch value is the median of the 5000 catch values obtained for $\mathrm{Y}+2$ from the procedure above. The risk of F exceeding $\mathrm{F}_{\text {lim }}$ in year $\mathrm{Y}+2$ is then calculated, just as before, by comparing F in $\mathrm{Y}+2$ with $\mathrm{F}_{\text {lim }}$ iteration by iteration.

Continuing with the example of the catch option corresponding to $\mathrm{F}=3 / 4 \mathrm{~F}_{\mathrm{lim}}$, the Fs calculated in the new proposed way for $\mathrm{Y}+2$ will no longer all be identical to $3 / 4 \mathrm{~F}_{\text {lim }} ; 50 \%$ of them will be above and the rest below $3 / 4 \mathrm{~F}_{\text {lim, }}$, and the risk of F exceeding $\mathrm{F}_{\text {lim }}$ will in almost all cases be greater than zero.

Concerning point (b):
With the new way of computing risk, based on projecting though $\mathrm{Y}+2$ with a fixed catch value in $\mathrm{Y}+2$, population abundances at the end of $\mathrm{Y}+2$ can also be calculated and will differ from those obtained from the previous projections method. Any projections for years after Y+2 will start from these population abundances, instead of the ones calculated from the previous projections method.

The following two schemes show the steps in the projection methodology used until now and in the new methodology we propose, being $\mathrm{F}_{\text {proj }}$ the projected F in each projection Scenario.

Projection methodology used until now:


Projection methodology proposed by the authors:

N2016
N2016
TAC2016

median(TAC2017)


N2018


## Inputs to the stock projections

The mean weights (both in stock and in catch) and the maturity at age have a decreasing trend since 2007 (Figures 2, 3 and 4), so the mean of the last three years, traditionally used to estimate the values of the inputs
of the starting year of the projection, has consistently been overestimating the reality of that year. This decreasing trend is more marked in the case of the mean weights, for which the 2015 data for ages younger than 7 years are around $50 \%$ of their values in the 2010 data, whereas for older ages this is around $60 \%-80 \%$.

These decreasing trends could be explained in part by density-dependent effects. There is a clear negative correlation between the abundance and the mean weights and some maturities at age, mostly at ages 3-5 (Figure 7).

These trends in the biological parameters cause problems in the projections results as the inputs used for the projected years usually are overestimated, leading to an overestimation of the SSB and the associated TAC for a given F .

One way to reduce the impact of this overestimate in the projections results could be to use as inputs the weights and ogives of the last year instead of the current last three years mean.

In the case of this stock, the inputs of the projections have no uncertainty incorporated except in the case of the maturity ogive. Uncertainty in the projections' inputs to account for possible changes in biological parameters from one year to the next was also analyzed by examining the interannual changes observed in past years. As the mean weights in catch, the mean weights in stock and the maturity ogive are biologically correlated, it seems reasonable to take this correlation into account when modelling the uncertainty. Doing so, strange values in the projections' inputs can be avoided (e.g. the combination of a very high mean weight in stock together with a very low mean weight in catch). Analyzing the distribution of the interannual changes in these parameters during the assessment period (1972-2015) it can be observed that their distributions do not look too different from a normal distribution (Figure 8) with a mean of 0 , both with and without taking logarithms of the parameters. Therefore, it was decided to use a multivariate normal distribution to generate the uncertainty for the three input parameters (mean weights at age in catch and stock, and maturity at age) as follows:

$$
\varepsilon=\operatorname{MultiNormal}\left(n=5000, \mu=0, \sigma=\operatorname{cov}\left(\Delta \ln (M W C), \Delta \ln (M W S), \Delta \beta_{1}, \Delta \beta_{2}\right)\right)
$$

where cov is the empirical covariance matrix (calculated based on the values of these parameters in past years) of $\Delta \ln (M W C), \Delta \ln (M W S), \Delta \beta_{1}$, and $\Delta \beta_{2}$, which represent the following interannual changes:

$$
\begin{gathered}
\Delta \ln \left(M W C_{y, a}\right)=\ln \left(M W C_{y, a}\right)-\ln \left(M W C_{y-1, a}\right) \quad \text { for } y=1973-2015, \quad a=1-8+ \\
\Delta \ln \left(M W S_{y, a}\right)=\ln \left(M W C_{y, a}\right)-\ln \left(M W C_{y-1, a}\right) \quad \text { for } y=1973-2015, a=1-8+ \\
\Delta \beta_{1, y}=\beta_{1, y}-\beta_{1, y-1} \quad \text { for } y=1973-2015 \\
\Delta \beta_{2, y}=\beta_{2, y}-\beta_{2, y-1} \quad \text { for } y=1973-2015
\end{gathered}
$$

where $M W C$ is the mean weight in catch, $M W S$ the mean weight in stock, and $\beta_{1}$ and $\beta_{2}$ are the parameters of the Bayesian logistic model used to calculate the maturity ogive by age.

We have 5000 different values $\beta_{1}$ and $\beta_{2}$ for each past year, from which the medians of $\beta_{1}$ and $\beta_{2}$ in each of those years were calculated and then used as the basis to generate projection uncertainty due to interannual variability as described above.

We took the logarithm for the mean weights both in catch and stock in order to avoid possible negative values of the weights used as inputs in the projections.

In summary, we have an 18 dimensional covariance matrix that reflects the correlation by age between the interannual differences of the mean weight in catch, mean weight in stock and the maturity ogive logistic parameters. Therefore, 18 correlated errors (interannual deviations) from the multivariate normal are
www.nafo.int
generated in each iteration ( 8 for the mean weight in catch, one for each age $-\varepsilon_{M W C Y, a^{-}}, 8$ for the mean weight in stock, one for each age $-\varepsilon_{M W S Y, a^{-}}$, and 2 for the maturity ogive $-\varepsilon_{\beta 1, Y}$ and $\varepsilon_{\beta 2, Y}$ ). The mean weights in catch and stock and maturities at age for each iteration in the projected years will be generated from the values observed in the last year ( Y ) and these interannual deviations as:

$$
\begin{aligned}
M W C_{Y+1, a} & =C M W_{Y, a} * e^{\varepsilon_{M W C Y, a}} \quad \text { for } a=1-8 \\
M W S_{Y+1, a} & =S M W_{Y, a} * e^{\varepsilon_{M W S Y, a}} \quad \text { for } a=1-8 \\
M O_{Y+1, a} & =\frac{1}{1+e^{-\left(\beta_{2, Y}+\varepsilon_{\beta 2, Y}\right)\left[a-\left(\beta_{1, Y+}+\varepsilon_{\beta 1, Y}\right)\right.}}
\end{aligned}
$$

Figure 9 shows pairwise scatterplots of the interannual changes observed in the historic data in $\ln$ (mean weights) in catch and stock and the two maturity parameters (numbers in the figure are the empirical correlations), and Figure 10 shows similar scatterplots of the values generated from the multivariate normal described above. In other words, the values in Figure 10 are the $\varepsilon_{M W C Y, a}, \varepsilon_{M W S Y, a}$ and $\varepsilon_{\beta 1, Y}$ and $\varepsilon_{\beta 2, Y}$ generated interannual deviations, which will be used to include uncertainty in the weights and maturity for the projections. The interannual changes in maturity parameters display very little correlation among themselves or with the interannual changes in weights. However, some considerable positive correlations can be observed between the interannual changes of the weights.

Figure 11 presents a comparison between the weights and maturity in the last year (2015) and the values generated by the method above including uncertainty (median and $90 \%$ confidence interval) due to interannual variation. For weights in catch and in stock, the medians of the generated values with uncertainty are the same as the 2015 values, with the uncertainty increasing with age. In the case of the maturity ogives, the 2015 values have themselves uncertainty (a logistic maturity ogive was estimated by a Bayesian model, as explained above), so the median and the confidence interval are presented for both the 2015 values and the values generated by the method above. In this case the medians are not exactly the same but are very close; the confidence interval is larger in the case of the inputs generated by the method above (capturing interannual variability) than for the 2015 values, as might be expected. Figure 12 shows pairwise scatterplots of the mean weights in catch and stock and the maturity ogives in the projected years (numbers in the figure are the empirical correlations). There are some considerable correlations between the mean weights in stock and catch at the same age, mainly for the older ages. The maturity ogives do not seem to be highly correlated with the weights of the same age.

## Results

## Assessment

The main results of the assessment, using data until 2015, are shown in Table 8 and Figure 13 (Biomass, SSB, R and $\mathrm{F}_{\mathrm{bar}}$ ). The values at the beginning of 2016 are reflected in some graphs, although the recruitment is estimated. The Natural Mortality, M , is estimated inside the model (assumed to have the same value for all ages and years). The values of $M$ estimated by different assessments since the reopening of the fishery are given in Table 9.

## Projections

Stochastic projections have been performed from 2016 to 2019. Four different projection scenarios were applied: one scenario is as in the last approved assessment (Proj1), and the other three scenarios use the projections and risk methodology proposed by the workshop but with different inputs: one case (Proj2) uses the mean of the last three years, another one (Proj3) uses the values of the last year (Proj3), and the last one
(Proj4) uses the values of the last year adding uncertainty in weights and maturity as described earlier in this document. The inputs of the projections are:

## Proj1: Method as in the last approved assessment

Population numbers aged 2 to 8+ in 2016: estimates from the assessment
Recruitments for 2016-2019: Recruits per spawner were estimated for each year and were drawn randomly from 2012-2014. The 2015 value was omitted due to uncertainty in estimating the recruitment in the final assessment year.

Maturity ogive for 2016-2019: Mean of the last three years (2013-2015) maturity ogive.
Natural mortality for 2016-2019: 2015 natural mortality from the assessment results.
Weight-at-age in stock and weight-at-age in catch for 2016-2019: Mean of the last three years (2013-2015) weights.

PR at age for 2016-2019: Mean of the last three years (2013-2015) PRs.
$F_{\text {bar }}$ (ages 3-5): One option is considered, $\mathrm{F}_{\mathrm{bar}}=3 / 4 \mathrm{~F}_{\text {lim }}$ (median value $=0.100$ ), assuming that the 2016 catch is the TAC (13 931 tons).
$\mathrm{F}_{\text {statusquo }}$ was established as the mean fishing mortality over 2013-2015.

## Proj2: Method proposed in this SCR

The inputs are the same as in Proj 1, just change the method to compute risk and perform projections to the one proposed in this document an described above.

## Proj3: Method proposed in this SCR

Same method and inputs as Proj2, with the following difference in the inputs:
Maturity ogive for 2016-2019: Last year (2015) ogive
Weight-at-age in stock and weight-at-age in catch for 2016-2019: Last year (2015) weights.

## Proj4: Method proposed in this SCR

Same method and inputs as Proj2, with the following difference in the inputs:
Maturity ogive for 2016-2019: Last year (2015) ogive + interannual variability via a Multivariate Normal distribution for weights and maturity.

Weight-at-age in stock and weight-at-age in catch for 2016-2019: Last year (2015) weights + interannual variability via a Multivariate Normal distribution for weights and maturity.

In Proj4, it should be noted that although the Multivariate Normal distribution is introduced to account for interannual changes, the same weights and maturity at age have been assumed for all projected years (20162019).

Although the projections for this stock are generally conducted for four options for F ( $\mathrm{F}_{\text {lim, }} 3 / 4 \mathrm{~F}_{\text {lim }}, \mathrm{F}_{\text {sq }}$ and $\left.3 / 4 \mathrm{~F}_{\mathrm{sq}}\right)$, here we have chosen just one of them $\left(3 / 4 \mathrm{~F}_{\text {lim }}\right)$ as an example to illustrate the differences between both types of projection and risk computation methods. The results are in Tables 10 and 11 and Figure 14.

When examining the results, it should be remembered that there is no uncertainty on the projected yield in cases Proj2, Proj3 and Proj4, because the projections in those cases are done with a single yield value in each year (namely the median of the yields).

Comparing Proj1 and Proj2 (different methods, same inputs), which both use the mean of the last three years for the inputs, it can be seen from the results in the tables and figure that the medians of B, SSB and Yield are
similar for Proj1 and Proj2, but the confidence intervals in Proj2 are wider. The uncertainty grows as one projects further into the future, and it is very high for the SSB in 2019. As already said, we consider the projection and risk computation methodology implemented in Proj2 to be more appropriate than the one used previously (in Proj1).

Comparing Proj2 and Proj3 (same method, different inputs) shows, as expected, lower B, SSB and Yield in Proj3, as Proj3 uses the last year's weights and maturity ogive instead of the mean of the last three years, and there is a decreasing trend in these variables. Although the value of these variables in the next year is always unknown, given the marked trend observed, the next year's values are expected to be more similar to the last year than to the mean of the last three years.

Comparing Proj3 and Proj4 (same method, inputs without and with uncertainty due to interannual changes), the median of the results are almost the same, but the confidence intervals are wider for Proj4. This is a direct result of the uncertainty introduced in the inputs and it is the expected result. Given the type of uncertainty that we introduce in the mean weights and the maturity ogive, the confidence intervals of B and SSB are very wide, resulting in the $5^{\text {th }}$ percentile of the $S S B$ being very low and a $95^{\text {th }}$ percentile very high. Due to the implications of the measure of the risk in the advice, how to introduce uncertainty in the inputs and the way the risk is measured need further investigation.

To summarize the results, the difference in the median of the results comes not from the method used but from the inputs used. There are big differences between taking the mean of the last three years or just the values of the last year (see Proj2 and Proj3) which is not surprising given the observed trends in the inputs. With regards to the confidence intervals of B and SSB, the difference comes from the method used, being larger in the new method proposed and especially if we use uncertainty in the inputs.

For the risks, the biggest difference comes from the method used. In the case of the methodology used until now (Proj1), the risk is calculated in a way that does not reflect the fact that the stock is managed with a (single) TAC value. We do not find this method appropriate. We believe that the method proposed here (Proj2, 3 and 4) solves this problem by calculating the risk of F exceeding $\mathrm{F}_{\text {lim }}$ associated with a particular catch (the median, i.e. the advised catch). This way of calculating risk is an improvement because it takes into account how advice will be implemented (single TAC value).

Comparing the different projections settings tried for the new method (Proj2, Proj3 and Proj4), a main aspect to note is that the risk of being below $\mathrm{B}_{\mathrm{lim}}, \mathrm{P}\left(\mathrm{B}<\mathrm{B}_{\mathrm{lim}}\right)$, is higher when uncertainty in the inputs is used (Proj4). Between Proj2 and Proj3 the difference comes from a lower value in the median of the SSB in the projections, which means that the probability of being below $\mathrm{B}_{\mathrm{lim}}$ increases for Proj3. But when we introduce uncertainty (from Proj3 to Proj4), while the medians are very close, the confidence interval of SSB becomes wider, and, therefore, the risk increases because we are looking to the tails of the distribution. The NAFO Precautionary Approach Framework (NAFO, 2004) gives more importance to the tails than to the median asking for a very low probability of being below Blim (less than 10\%), and in this case that probability is almost impossible to achieve due to the wide tails. In fact, for Proj4 the SSB in 2019 has $19 \%$ probability of being below Blim although the median value of SSB is 39306 tons, much higher than $\mathrm{Blim}_{\mathrm{lim}}=14000$ tons, but the lower limit of the confidence interval is just 335 tons, much smaller than $\mathrm{B}_{\text {lim }}$. The same conclusions can be made for the $\mathrm{P}\left(\mathrm{B}_{2019}>\mathrm{B}_{2015}\right)$.

We have to be careful with these results as when we add uncertainty in the inputs the uncertainty in the results increases considerably from other Scenarios and from one year to the next with the corresponding increase in risk to be below $\mathrm{B}_{\mathrm{lim}}$, so giving advice for more than one year in this case will probably not be appropriate.

With regards to the risk of exceeding Flim, all scenarios with the new method (Proj2, Proj3, Proj4) present a probability of $30 \%$ or more, being a bit higher for Proj4. In this case, the level of the risk is due that the densities of the $F$ are spread in the right tail of the distribution, as we can see in Figure 6.

## Conclusions

To solve the problems previously encountered about the calculation of risks in projections, it was proposed a new method (measures the risk associated with fishing a unique TAC instead of a distribution of TACs (catches)
as was done in the past) to perform the 3 M cod projections and compute risk. The new method solves the problems raised by the FC. We consider this procedure more reasonable since the management is done using a single TAC so the prime interest should be on the risk that exists while fishing that single TAC.

The marked decreasing trend in the biological parameters (mean weight in catch, mean weight in stock and maturity ogives) for 3 M cod have created problems when providing advice for this stock. To reduce these problems, it is suggested in this paper to use as inputs in the projections the weights and maturity ogives of the last year instead of the usual mean of the last three years.

An additional improvement was explored to incorporate uncertainty in the projection data (mean weight in catch, mean weight in stock and maturity ogives) based on observed past interannual changes, taking into account the correlation observed between these variables. As the results from this approach show a very strong increase in uncertainty with a great impact on the estimation of the risk being below $B_{l i m}$, it is recommend that this way of accounting for uncertainty must be studied more in depth before considering its implementation.

## Acknowledgements

This research was funded by the European Union founds under the EASME/EMFF/2016/008 Provision of Scientific Advice for Fisheries beyond EU Waters - Specific Contract No. 03 (SC03) "Support to a robust model assessment, benchmark and development of a management strategy evaluation for cod in NAFO Division 3M".

## Disclaimer

The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither European Commission DG MARE nor the Executive Agency for Small and Medium-sized Enterprises (EASME) are responsible for any use that may be made of the information contained therein.

## References

González-Troncoso, D., 2015. Assessment of the Cod Stock in NAFO Division 3M. NAFO SCR Doc. 15/033, Serial No. N6458

NAFO, 2014. NAFO Precautionary Approach Framework. NAFO/FC Doc. 04/18, Serial No. N5069
NAFO, 2015a. Report of the Scientific Council Meeting. 29th May - 11st June 2015. NAFO SCS Doc. 15/12, Serial No. N6469.

NAFO, 2015b. Report of the Scientific Council Meeting. 21-25 September 2015. NAFO SCS Doc. 15/15, Serial No. N6507.

NAFO, 2015c. Report of the Fisheries Commission. 21-25 September 2015. NAFO SCS Doc. 15/23, Serial No. N6526.

Table 1.- Total commercial cod catch in Division 3M. Reported nominal catches since 1960 and estimated total catch from 1988 to 2015 in tons.

| Year | Estimated | Portugal | Russia | Spain | France | Faroes | UK | Poland | Norway | Germany | Cuba | Others | Total ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1960 |  | 9 | 11595 | 607 |  |  |  |  | 46 | 86 |  | 10 | 12353 |
| 1961 |  | 2155 | 12379 | 851 | 2626 |  | 600 | 336 |  | 1394 |  | 0 | 20341 |
| 1962 |  | 2032 | 11282 | 1234 |  |  | 93 | 888 | 25 | 4 |  | 349 | 15907 |
| 1963 |  | 7028 | 8528 | 4005 | 9501 |  | 2476 | 1875 |  |  |  | 0 | 33413 |
| 1964 |  | 3668 | 26643 | 862 | 3966 |  | 2185 | 718 | 660 | 83 |  | 12 | 38797 |
| 1965 |  | 1480 | 37047 | 1530 | 2039 |  | 6104 | 5073 | 11 | 313 |  | 458 | 54055 |
| 1966 |  | 7336 | 5138 | 4268 | 4603 |  | 7259 | 93 |  | 259 |  | 0 | 28956 |
| 1967 |  | 10728 | 5886 | 3012 | 6757 |  | 5732 | 4152 |  | 756 |  | 46 | 37069 |
| 1968 |  | 10917 | 3872 | 4045 | 13321 |  | 1466 | 71 |  |  |  | 458 | 34150 |
| 1969 |  | 7276 | 283 | 2681 | 11831 |  |  |  |  | 20 |  | 52 | 22143 |
| 1970 |  | 9847 | 494 | 1324 | 6239 |  | 3 | 53 |  |  |  | 35 | 17995 |
| 1971 |  | 7272 | 5536 | 1063 | 9006 |  |  | 19 |  | 1628 |  | 25 | 24549 |
| 1972 |  | 32052 | 5030 | 5020 | 2693 | 6902 | 4126 | 35 | 261 | 506 |  | 187 | 56812 |
| 1973 |  | 11129 | 1145 | 620 | 132 | 7754 | 1183 | 481 | 417 | 21 |  | 18 | 22900 |
| 1974 |  | 10015 | 5998 | 2619 |  | 1872 | 3093 | 700 | 383 | 195 |  | 63 | 24938 |
| 1975 |  | 10430 | 5446 | 2022 |  | 3288 | 265 | 677 | 111 | 28 |  | 108 | 22375 |
| 1976 |  | 10120 | 4831 | 2502 | 229 | 2139 |  | 898 | 1188 | 225 |  | 134 | 22266 |
| 1977 |  | 6652 | 2982 | 1315 | 5827 | 5664 | 1269 | 843 | 867 | 45 | 1002 | 553 | 27019 |
| 1978 |  | 10157 | 3779 | 2510 | 5096 | 7922 | 207 | 615 | 1584 | 410 | 562 | 289 | 33131 |
| 1979 |  | 9636 | 4743 | 4907 | 1525 | 7484 |  | 5 | 1310 |  | 24 | 76 | 29710 |
| 1980 |  | 3615 | 1056 | 706 | 301 | 3248 |  | 33 | 1080 | 355 | 1 | 62 | 10457 |
| 1981 |  | 3727 | 927 | 4100 | 79 | 3874 |  |  | 1154 |  |  | 12 | 13873 |
| 1982 |  | 3316 | 1262 | 4513 | 119 | 3121 | 33 |  | 375 |  |  | 14 | 12753 |
| 1983 |  | 2930 | 1264 | 4407 |  | 1489 |  |  | 111 | 3 |  | 1 | 10205 |
| 1984 |  | 3474 | 910 | 4745 |  | 3058 |  |  | 47 | 454 | 5 | 9 | 12702 |
| 1985 |  | 4376 | 1271 | 4914 |  | 2266 |  |  | 405 | 429 | 9 | 5 | 13675 |
| 1986 |  | 6350 | 1231 | 4384 |  | 2192 |  |  |  | 345 | 3 | 13 | 14518 |
| 1987 |  | 2802 | 706 | 3639 | 2300 | 916 |  |  |  |  |  | 269 | 10632 |
| 1988 | 28899 | 421 | 39 | 141 |  | 1100 |  |  |  |  | 3 | 14 | 1718 |
| 1989 | 48373 | 170 | 10 | 378 |  |  |  |  |  |  |  | 359 | 917 |
| 1990 | 40827 | 551 | 22 | 87 |  | 1262 |  |  |  |  |  | 840 | 2762 |
| 1991 | 16229 | 2838 | 1 | 1416 |  | 2472 | 26 |  | 897 |  | 5 | 1334 | 8989 |
| 1992 | 25089 | 2201 | 1 | 4215 |  | 747 | 5 |  |  |  | 6 | 51 | 7226 |
| 1993 | 15958 | 3132 | 0 | 2249 |  | 2931 |  |  |  |  |  | 4 | 8316 |
| 1994 | 29916 | 2590 | 0 | 1952 |  | 2249 |  |  | 1 |  |  | 93 | 6885 |
| 1995 | 10372 | 1641 | 0 | 564 |  | 1016 |  |  |  |  |  | 0 | 3221 |
| 1996 | 2601 | 1284 | 0 | 176 |  | 700 | 129 |  |  | 16 |  | 0 | 2305 |
| 1997 | 2933 | 1433 | 0 | 1 |  |  | 23 |  |  |  |  | 0 | 1457 |
| 1998 | 705 | 456 | 0 |  |  |  |  |  |  |  |  | 0 | 456 |
| 1999 | 353 | 2 | 0 |  |  |  |  |  |  |  |  | 0 | 2 |
| 2000 | 55 | 30 | 6 |  |  |  |  |  |  |  |  | 0 | 36 |
| 2001 | 37 | 56 | 0 |  |  |  |  |  |  |  |  | 0 | 56 |
| 2002 | 33 | 32 | 1 |  |  |  |  |  |  |  |  | 0 | 33 |
| 2003 | 16 | 7 | 0 |  |  |  |  |  |  |  |  | 9 | 16 |
| 2004 | 5 | 18 | 2 |  |  |  |  |  |  |  |  | 3 | 23 |
| 2005 | 19 | 16 | 0 |  |  | 7 |  |  |  |  |  | 3 | 26 |
| 2006 | 339 | 51 | 1 | 16 |  |  |  |  |  |  |  | 55 | 123 |
| 2007 | 345 | 58 | 6 | 33 |  |  |  |  |  |  |  | 28 | 125 |
| 2008 | 889 | 219 | 74 | 42 |  | 0 |  |  |  |  |  | 66 | 401 |
| 2009 | 1161 | 856 | 87 | 85 |  | 22 |  |  |  |  |  | 122 | 1172 |
| 2010 | 9192 | 1482 | 374 |  |  | 1183 | 761 |  | 519 |  |  | 85 | 4404 |
| 2011 | n.a. | 2412 | 655 | 1609 | 200 | 2211 | 1063 |  | 1117 |  | 185 | 342 | 9794 |
| 2012 | n.a. | 2663 | 745 | 1597 |  | 2045 | 868 |  | 826 |  | 172 | 87 | 9003 |
| 2013 | n.a. | 4709 | 899 | 2323 |  | 2819 | 1485 |  | 1296 |  |  | 455 | 13985 |
| 2014 | n.a. | 5251 | 950 | 2099 |  | 3388 |  | 392 | 1348 |  |  | 862 | 14290 |
| 2015 | n.a. | 5274 | 905 | 2099 |  | 3257 |  |  | 1600 |  |  | 650 | 13785 |

${ }^{1}$ Recalculated from NAFO Statistical data base using the NAFO 21A Extraction Tool

Table 2.- Catch-at-age (thousands).

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1972 | 0 | 0 | 278 | 19303 | 12372 | 6555 | 3083 | 3177 |
| 1973 | 0 | 0 | 2035 | 116 | 11709 | 3470 | 853 | 1085 |
| 1974 | 0 | 0 | 5999 | 11130 | 2232 | 1894 | 271 | 257 |
| 1975 | 0 | 0 | 7090 | 2436 | 1241 | 238 | 281 | 258 |
| 1976 | 0 | 0 | 17564 | 10653 | 386 | 100 | 63 | 5 |
| 1977 | 0 | 0 | 119 | 17581 | 8502 | 436 | 267 | 318 |
| 1978 | 0 | 0 | 428 | 3092 | 18077 | 3615 | 329 | 270 |
| 1979 | 0 | 0 | 167 | 2616 | 5599 | 5882 | 316 | 137 |
| 1980 | 0 | 0 | 551 | 500 | 1423 | 1051 | 1318 | 96 |
| 1981 | 0 | 0 | 1732 | 6768 | 161 | 326 | 189 | 539 |
| 1982 | 0 | 0 | 21 | 3040 | 1926 | 310 | 97 | 357 |
| 1983 | 0 | 0 | 2818 | 713 | 765 | 657 | 94 | 131 |
| 1984 | 0 | 0 | 9 | 2229 | 966 | 59 | 90 | 146 |
| 1985 | 0 | 0 | 19 | 5499 | 3549 | 1232 | 931 | 218 |
| 1986 | 0 | 2549 | 2266 | 4251 | 2943 | 1061 | 169 | 162 |
| 1987 | 814 | 1848 | 3102 | 1915 | 1259 | 846 | 313 | 112 |
| 1988 | 1 | 3500 | 25593 | 11161 | 1399 | 414 | 315 | 162 |
| 1989 | 0 | 52 | 15399 | 23233 | 9373 | 943 | 220 | 205 |
| 1990 | 7 | 254 | 2180 | 15740 | 10824 | 2286 | 378 | 117 |
| 1991 | 1 | 561 | 5196 | 1960 | 3151 | 1688 | 368 | 76 |
| 1992 | 0 | 15517 | 10180 | 4865 | 3399 | 2483 | 1106 | 472 |
| 1993 | 0 | 2657 | 14530 | 3547 | 931 | 284 | 426 | 213 |
| 1994 | 0 | 1219 | 25400 | 8273 | 386 | 185 | 14 | 182 |
| 1995 | 0 | 0 | 264 | 6553 | 2750 | 651 | 135 | 232 |
| 1996 | 0 | 81 | 714 | 311 | 1072 | 88 | 0 | 0 |
| 1997 | 0 | 0 | 810 | 762 | 143 | 286 | 48 | 0 |
| 1998 | 0 | 0 | 8 | 170 | 286 | 30 | 19 | 2 |
| 1999 | 0 | 0 | 15 | 15 | 96 | 60 | 3 | 1 |
| 2000 | 0 | 10 | 54 | 1 | 1 | 4 | 1 | 0 |
| 2001 | 0 | 9 | 0 | 4 | 2 | 0 | 2 | 2 |
| 2002 |  |  |  |  |  |  |  |  |
| $2003$ |  |  |  |  |  |  |  |  |
| $2004$ |  |  |  |  |  |  |  |  |
| $2005$ |  |  |  |  |  |  |  |  |
| 2006 | 0 | 22 | 19 | 81 | 2 | 10 | 2 | 0 |
| 2007 | 0 | 2 | 30 | 1 | 27 | 1 | 14 | 5 |
| 2008 | 1 | 89 | 136 | 133 | 3 | 40 | 1 | 3 |
| 2009 | 0 | 23 | 51 | 210 | 108 | 0 | 32 | 7 |
| 2010 | 34 | 452 | 1145 | 1498 | 808 | 388 | 4 | 103 |
| $2011{ }^{1}$ | 0.003 | 0.098 | 0.293 | 0.126 | 0.198 | 0.161 | 0.063 | 0.056 |
| $2012{ }^{1}$ | 0.008 | 0.080 | 0.297 | 0.171 | 0.199 | 0.136 | 0.061 | 0.048 |
| 2013 | 31 | 894 | 5624 | 1236 | 1158 | 640 | 382 | 252 |
| 2014 | 8 | 15 | 809 | 4554 | 1581 | 871 | 509 | 341 |
| 2015 | 0 | 94 | 402 | 1548 | 1457 | 2596 | 602 | 480 |

[^0]Table 3.- Weight-at-age (kg) in catch.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1972 | 0.091 | 0.165 | 0.811 | 0.722 | 0.981 | 1.500 | 1.930 | 2.296 |
| 1973 | 0.091 | 0.165 | 0.633 | 0.314 | 1.300 | 0.994 | 0.828 | 3.430 |
| 1974 | 0.091 | 0.165 | 0.657 | 0.805 | 1.769 | 2.829 | 3.983 | 7.701 |
| 1975 | 0.091 | 0.165 | 0.697 | 1.636 | 1.798 | 2.658 | 3.766 | 6.497 |
| 1976 | 0.091 | 0.165 | 0.671 | 1.293 | 4.192 | 5.085 | 5.923 | 6.298 |
| 1977 | 0.091 | 0.165 | 0.314 | 0.845 | 1.400 | 3.433 | 5.156 | 7.722 |
| 1978 | 0.091 | 0.165 | 0.374 | 0.600 | 1.102 | 1.582 | 2.658 | 6.351 |
| 1979 | 0.091 | 0.165 | 0.790 | 1.070 | 1.480 | 2.450 | 4.350 | 7.079 |
| 1980 | 0.091 | 0.165 | 0.859 | 1.137 | 1.747 | 2.466 | 3.167 | 4.676 |
| 1981 | 0.091 | 0.165 | 0.620 | 1.250 | 1.880 | 2.680 | 3.190 | 4.747 |
| 1982 | 0.091 | 0.165 | 0.760 | 1.340 | 2.450 | 2.870 | 4.680 | 6.146 |
| 1983 | 0.091 | 0.165 | 1.330 | 1.140 | 2.240 | 3.530 | 4.760 | 9.163 |
| 1984 | 0.091 | 0.165 | 0.460 | 1.866 | 3.695 | 3.660 | 6.588 | 6.655 |
| 1985 | 0.091 | 0.165 | 0.283 | 0.851 | 1.605 | 2.816 | 4.522 | 7.978 |
| 1986 | 0.091 | 0.165 | 0.411 | 0.784 | 1.631 | 2.836 | 4.317 | 7.389 |
| 1987 | 0.091 | 0.133 | 0.327 | 1.040 | 1.890 | 2.993 | 4.440 | 7.630 |
| 1988 | 0.058 | 0.198 | 0.442 | 0.821 | 2.190 | 3.386 | 5.274 | 7.969 |
| 1989 | 0.069 | 0.209 | 0.576 | 0.918 | 1.434 | 2.293 | 4.721 | 7.648 |
| 1990 | 0.080 | 0.153 | 0.500 | 0.890 | 1.606 | 2.518 | 3.554 | 7.166 |
| 1991 | 0.118 | 0.229 | 0.496 | 0.785 | 1.738 | 2.622 | 3.474 | 6.818 |
| 1992 | 0.116 | 0.298 | 0.414 | 0.592 | 1.093 | 1.704 | 2.619 | 3.865 |
| 1993 | 0.114 | 0.210 | 0.509 | 0.894 | 1.829 | 2.233 | 3.367 | 4.841 |
| 1994 | 0.113 | 0.289 | 0.497 | 0.792 | 1.916 | 2.719 | 2.158 | 4.239 |
| 1995 | 0.111 | 0.288 | 0.415 | 0.790 | 1.447 | 2.266 | 3.960 | 5.500 |
| 1996 | 0.109 | 0.286 | 0.789 | 1.051 | 1.543 | 2.429 | 2.650 | 4.954 |
| 1997 | 0.107 | 0.360 | 0.402 | 0.640 | 0.869 | 1.197 | 1.339 | 4.408 |
| 1998 | 0.106 | 0.435 | 0.719 | 1.024 | 1.468 | 1.800 | 2.252 | 3.862 |
| 1999 | 0.104 | 0.509 | 0.920 | 1.298 | 1.848 | 2.436 | 3.513 | 4.893 |
| 2000 | 0.102 | 0.583 | 0.672 | 1.749 | 2.054 | 2.836 | 3.618 | 5.055 |
| 2001 | 0.100 | 0.481 | 0.998 | 1.696 | 2.560 | 3.303 | 3.905 | 5.217 |
| 2002 | 0.099 | 0.588 | 1.323 | 1.388 | 2.572 | 3.770 | 5.158 | 5.603 |
| 2003 | 0.097 | 0.462 | 1.063 | 1.455 | 2.978 | 3.696 | 5.859 | 6.120 |
| 2004 | 0.095 | 0.839 | 1.677 | 2.009 | 3.353 | 5.576 | 6.241 | 8.273 |
| 2005 | 0.093 | 0.895 | 1.618 | 2.368 | 3.259 | 4.767 | 6.177 | 6.553 |
| 2006 | 0.092 | 1.081 | 1.462 | 2.283 | 3.966 | 5.035 | 6.332 | 7.997 |
| 2007 | 0.090 | 0.974 | 1.858 | 3.388 | 4.062 | 6.128 | 6.809 | 9.440 |
| 2008 | 0.088 | 0.448 | 1.364 | 3.037 | 3.498 | 5.248 | 6.643 | 8.251 |
| 2009 | 0.172 | 0.507 | 1.026 | 2.087 | 3.727 | 4.810 | 5.900 | 9.534 |
| 2010 | 0.162 | 0.700 | 1.279 | 1.829 | 2.764 | 4.372 | 4.199 | 8.575 |
| 2011 | 0.086 | 0.396 | 0.939 | 1.523 | 2.224 | 3.558 | 5.979 | 8.677 |
| 2012 | 0.086 | 0.374 | 0.990 | 1.491 | 2.135 | 3.585 | 6.198 | 9.041 |
| 2013 | 0.067 | 0.284 | 0.758 | 1.289 | 2.027 | 2.868 | 4.476 | 8.243 |
| 2014 | 0.108 | 0.203 | 0.538 | 1.108 | 1.809 | 2.874 | 4.087 | 7.669 |
| 2015 | 0.085 | 0.261 | 0.531 | 0.857 | 1.370 | 1.938 | 3.570 | 6.252 |

Table 4- Canadian bottom trawl survey abundance at age (thousands).

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $8+$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1978 | 0 | 95 | 4757 | 15531 | 45688 | 12135 | 476 | 570 |
| 1979 | 0 | 4675 | 1067 | 5619 | 5465 | 6676 | 1706 | 405 |
| 1980 | 0 | 1030 | 19475 | 2377 | 2990 | 2737 | 3912 | 224 |
| 1981 | 32 | 0 | 5172 | 15479 | 975 | 2108 | 1041 | 2211 |
| 1982 | 627 | 1781 | 21 | 1663 | 978 | 32 | 150 | 377 |
| 1983 | 293 | 71000 | 7817 | 319 | 2357 | 958 | 45 | 401 |
| 1984 | 43 | 1527 | 15834 | 1897 | 74 | 646 | 427 | 221 |
| 1985 | 39 | 520 | 6212 | 19955 | 774 | 50 | 105 | 196 |

Table 5.- EU bottom trawl survey abundance at age (thousands).

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1988 | 4850 | 78920 | 49050 | 13370 | 1450 | 210 | 220 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1989 | 22100 | 12100 | 106400 | 63400 | 23800 | 1600 | 200 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1990 | 2660 | 14020 | 5920 | 19970 | 18420 | 5090 | 390 | 170 | 90 | 30 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1991 | 146100 | 29400 | 2600 | 2500 | 7800 | 2100 | 300 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1992 | 75480 | 44280 | 6290 | 2540 | 410 | 1500 | 270 | 10 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
| 1993 | 4600 | 156100 | 35400 | 1300 | 1500 | 200 | 600 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1994 | 3340 | 4550 | 31580 | 5760 | 150 | 70 | 10 | 120 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1995 | 1640 | 13670 | 1540 | 4490 | 1070 | 40 | 30 | 0 | 20 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1996 | 41 | 3580 | 7649 | 1020 | 2766 | 221 | 9 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1997 | 42 | 171 | 3931 | 5430 | 442 | 1078 | 24 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 |
| 1998 | 27 | 94 | 106 | 1408 | 1763 | 87 | 165 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1999 | 7 | 96 | 128 | 129 | 792 | 491 | 21 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2000 | 186 | 16 | 343 | 207 | 100 | 467 | 180 | 11 | 17 | 0 | 0 | 5 | 0 | 5 | 0 | 0 |
| 2001 | 487 | 2048 | 15 | 125 | 81 | 15 | 146 | 101 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2002 | 0 | 1340 | 609 | 24 | 68 | 36 | 28 | 96 | 33 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2003 | 665 | 53 | 610 | 131 | 22 | 47 | 7 | 8 | 37 | 25 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2004 | 0 | 3379 | 25 | 602 | 168 | 5 | 10 | 3 | 5 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8069 | 16 | 1118 | 78 | 708 | 136 |  | 17 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 19710 | 3883 | 62 | 1481 | 86 | 592 | 115 | 7 | 0 | 7 | 14 | 0 | 7 | 0 | 0 | 0 |
| 2007 | 3910 | 11620 | 5020 | 21 | 1138 | 58 | 425 | 74 | 13 | 20 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 6090 | 16670 | 12440 | 4530 | 70 | 940 | 60 | 230 | 80 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
| 2009 | 5139 | 7479 | 16150 | 14310 | 4154 | 26 | 1091 | 0 | 335 | 0 | 0 | 14 | 0 | 0 | 0 | 0 |
| 2010 | 66370 | 27689 | 8654 | 7633 | 4911 | 1780 | 8 | 442 | 46 | 251 | 26 | 0 | 0 | 0 | 0 | 0 |
| 2011 | 347674 | 142999 | 16993 | 6309 | 7739 | 3089 | 1191 | 0 | 215 | 0 | 89 | 0 | 0 | 0 | 0 | 0 |
| 2012 | 103494 | 128087 | 10942 | 11721 | 4967 | 4781 | 1630 | 832 | 24 | 93 | 30 | 101 | 0 | 17 | 0 | 0 |
| 2013 | 5525 | 67521 | 32339 | 4776 | 4185 | 2782 | 1807 | 963 | 278 | 40 | 29 | 32 | 5 | 0 | 0 | 0 |
| 2014 | 7282 | 2372 | 48564 | 43168 | 17861 | 6842 | 3447 | 1931 | 1551 | 600 | 79 | 54 | 8 | 0 | 0 | 0 |
| 2015 | 1141 | 12952 | 7250 | 25614 | 14107 | 21854 | 3434 | 1426 | 762 | 366 | 194 | 14 | 21 | 21 | 0 | 7 |

Table 6.- Weight-at-age (kg) in stock.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1972 | 0.045 | 0.200 | 0.811 | 0.722 | 0.981 | 1.500 | 1.930 | 2.296 |
| 1973 | 0.045 | 0.200 | 0.633 | 0.314 | 1.300 | 0.994 | 0.828 | 3.430 |
| 1974 | 0.045 | 0.200 | 0.657 | 0.805 | 1.769 | 2.829 | 3.983 | 7.701 |
| 1975 | 0.045 | 0.200 | 0.697 | 1.636 | 1.798 | 2.658 | 3.766 | 6.497 |
| 1976 | 0.045 | 0.200 | 0.671 | 1.293 | 4.192 | 5.085 | 5.923 | 6.298 |
| 1977 | 0.045 | 0.200 | 0.314 | 0.845 | 1.400 | 3.433 | 5.156 | 7.722 |
| 1978 | 0.045 | 0.200 | 0.374 | 0.600 | 1.102 | 1.582 | 2.658 | 6.351 |
| 1979 | 0.045 | 0.200 | 0.790 | 1.070 | 1.480 | 2.450 | 4.350 | 7.079 |
| 1980 | 0.045 | 0.200 | 0.859 | 1.137 | 1.747 | 2.466 | 3.167 | 4.676 |
| 1981 | 0.045 | 0.200 | 0.620 | 1.250 | 1.880 | 2.680 | 3.190 | 4.747 |
| 1982 | 0.045 | 0.200 | 0.760 | 1.340 | 2.450 | 2.870 | 4.680 | 6.146 |
| 1983 | 0.045 | 0.200 | 1.330 | 1.140 | 2.240 | 3.530 | 4.760 | 9.163 |
| 1984 | 0.045 | 0.200 | 0.460 | 1.866 | 3.695 | 3.660 | 6.588 | 6.655 |
| 1985 | 0.045 | 0.200 | 0.283 | 0.851 | 1.605 | 2.816 | 4.522 | 7.978 |
| 1986 | 0.045 | 0.200 | 0.411 | 0.784 | 1.631 | 2.836 | 4.317 | 7.389 |
| 1987 | 0.045 | 0.200 | 0.327 | 1.040 | 1.890 | 2.993 | 4.440 | 7.630 |
| 1988 | 0.030 | 0.100 | 0.310 | 0.680 | 1.970 | 3.590 | 5.770 | 6.930 |
| 1989 | 0.040 | 0.240 | 0.540 | 1.040 | 1.600 | 2.510 | 4.270 | 6.930 |
| 1990 | 0.040 | 0.170 | 0.340 | 0.850 | 1.500 | 2.430 | 4.080 | 5.640 |
| 1991 | 0.050 | 0.170 | 0.500 | 0.860 | 1.610 | 2.610 | 4.260 | 7.690 |
| 1992 | 0.050 | 0.250 | 0.490 | 1.380 | 1.700 | 2.630 | 3.130 | 6.690 |
| 1993 | 0.040 | 0.220 | 0.660 | 1.210 | 2.270 | 2.370 | 3.450 | 5.890 |
| 1994 | 0.060 | 0.210 | 0.590 | 1.320 | 2.260 | 4.030 | 4.030 | 6.720 |
| 1995 | 0.050 | 0.240 | 0.470 | 0.960 | 1.850 | 3.160 | 5.560 | 8.480 |
| 1996 | 0.040 | 0.250 | 0.530 | 0.800 | 1.320 | 2.270 | 4.000 | 5.030 |
| 1997 | 0.080 | 0.320 | 0.640 | 1.000 | 1.310 | 2.100 | 2.000 | 9.570 |
| 1998 | 0.070 | 0.360 | 0.750 | 1.190 | 1.660 | 1.990 | 3.100 | 7.400 |
| 1999 | 0.100 | 0.370 | 0.920 | 1.300 | 1.850 | 2.440 | 3.510 | 4.890 |
| 2000 | 0.100 | 0.580 | 0.960 | 1.610 | 1.910 | 2.830 | 3.470 | 5.280 |
| 2001 | 0.080 | 0.480 | 1.250 | 1.700 | 2.560 | 3.420 | 3.910 | 5.220 |
| 2002 | 0.065 | 0.420 | 1.120 | 1.430 | 2.470 | 3.590 | 4.860 | 5.310 |
| 2003 | 0.050 | 0.330 | 0.900 | 1.500 | 2.860 | 3.520 | 5.520 | 5.800 |
| 2004 | 0.070 | 0.600 | 1.420 | 2.070 | 3.220 | 5.310 | 5.880 | 7.840 |
| 2005 | 0.020 | 0.640 | 1.370 | 2.440 | 3.130 | 4.540 | 5.820 | 6.210 |
| 2006 | 0.090 | 0.700 | 1.060 | 2.490 | 3.570 | 4.690 | 5.760 | 9.550 |
| 2007 | 0.050 | 0.590 | 1.600 | 3.400 | 4.010 | 5.690 | 6.270 | 8.760 |
| 2008 | 0.070 | 0.380 | 1.340 | 2.690 | 3.190 | 5.020 | 6.320 | 7.940 |
| 2009 | 0.080 | 0.410 | 0.980 | 2.070 | 3.880 | 6.960 | 6.580 | 9.460 |
| 2010 | 0.060 | 0.380 | 1.090 | 1.680 | 2.960 | 5.380 | 7.620 | 9.140 |
| 2011 | 0.040 | 0.230 | 0.970 | 1.700 | 2.450 | 3.740 | 6.260 | 9.670 |
| 2012 | 0.070 | 0.370 | 0.730 | 1.350 | 1.990 | 2.660 | 4.930 | 7.810 |
| 2013 | 0.070 | 0.170 | 0.690 | 1.160 | 2.000 | 2.750 | 4.210 | 7.610 |
| 2014 | 0.050 | 0.170 | 0.350 | 1.060 | 1.620 | 2.540 | 3.850 | 8.440 |
| 2015 | 0.050 | 0.160 | 0.470 | 0.750 | 1.220 | 1.850 | 3.430 | 6.770 |

Table 7.- Maturity at age and age of first maturation (median values of ogives).

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8+ | a50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1972 | 0.000 | 0.000 | 0.000 | 0.002 | 0.507 | 0.998 | 1.000 | 1.000 | 5.00 |
| 1973 | 0.000 | 0.000 | 0.000 | 0.002 | 0.507 | 0.998 | 1.000 | 1.000 | 5.00 |
| 1974 | 0.000 | 0.000 | 0.000 | 0.002 | 0.507 | 0.998 | 1.000 | 1.000 | 5.00 |
| 1975 | 0.000 | 0.000 | 0.000 | 0.002 | 0.507 | 0.998 | 1.000 | 1.000 | 5.00 |
| 1976 | 0.000 | 0.000 | 0.000 | 0.002 | 0.507 | 0.998 | 1.000 | 1.000 | 5.00 |
| 1977 | 0.000 | 0.000 | 0.000 | 0.002 | 0.507 | 0.998 | 1.000 | 1.000 | 5.00 |
| 1978 | 0.000 | 0.000 | 0.000 | 0.002 | 0.507 | 0.998 | 1.000 | 1.000 | 5.00 |
| 1979 | 0.000 | 0.000 | 0.000 | 0.008 | 0.154 | 0.813 | 0.991 | 1.000 | 5.54 |
| 1980 | 0.000 | 0.000 | 0.002 | 0.029 | 0.302 | 0.862 | 0.989 | 1.000 | 5.31 |
| 1981 | 0.000 | 0.000 | 0.005 | 0.104 | 0.716 | 0.982 | 0.999 | 1.000 | 4.70 |
| 1982 | 0.000 | 0.000 | 0.007 | 0.146 | 0.809 | 0.991 | 1.000 | 1.000 | 4.55 |
| 1983 | 0.000 | 0.000 | 0.007 | 0.146 | 0.809 | 0.991 | 1.000 | 1.000 | 4.55 |
| 1984 | 0.000 | 0.000 | 0.007 | 0.146 | 0.809 | 0.991 | 1.000 | 1.000 | 4.55 |
| 1985 | 0.000 | 0.000 | 0.007 | 0.146 | 0.809 | 0.991 | 1.000 | 1.000 | 4.55 |
| 1986 | 0.000 | 0.000 | 0.007 | 0.146 | 0.809 | 0.991 | 1.000 | 1.000 | 4.55 |
| 1987 | 0.000 | 0.000 | 0.007 | 0.146 | 0.809 | 0.991 | 1.000 | 1.000 | 4.55 |
| 1988 | 0.054 | 0.099 | 0.175 | 0.291 | 0.441 | 0.603 | 0.745 | 0.879 | 5.36 |
| 1989 | 0.054 | 0.099 | 0.175 | 0.291 | 0.441 | 0.603 | 0.745 | 0.879 | 5.36 |
| 1990 | 0.054 | 0.099 | 0.175 | 0.291 | 0.441 | 0.603 | 0.745 | 0.879 | 5.36 |
| 1991 | 0.018 | 0.045 | 0.111 | 0.247 | 0.463 | 0.687 | 0.849 | 0.951 | 5.16 |
| 1992 | 0.002 | 0.011 | 0.048 | 0.184 | 0.503 | 0.819 | 0.953 | 0.993 | 4.99 |
| 1993 | 0.001 | 0.007 | 0.049 | 0.282 | 0.751 | 0.959 | 0.994 | 1.000 | 4.46 |
| 1994 | 0.000 | 0.001 | 0.050 | 0.657 | 0.986 | 1.000 | 1.000 | 1.000 | 3.82 |
| 1995 | 0.000 | 0.000 | 0.006 | 0.803 | 1.000 | 1.000 | 1.000 | 1.000 | 3.79 |
| 1996 | 0.000 | 0.000 | 0.029 | 0.666 | 0.993 | 1.000 | 1.000 | 1.000 | 3.84 |
| 1997 | 0.000 | 0.008 | 0.111 | 0.670 | 0.971 | 0.998 | 1.000 | 1.000 | 3.75 |
| 1998 | 0.000 | 0.002 | 0.096 | 0.874 | 0.998 | 1.000 | 1.000 | 1.000 | 3.54 |
| 1999 | 0.000 | 0.001 | 0.130 | 0.902 | 0.999 | 1.000 | 1.000 | 1.000 | 3.46 |
| 2000 | 0.000 | 0.001 | 0.160 | 0.971 | 1.000 | 1.000 | 1.000 | 1.000 | 3.34 |
| 2001 | 0.000 | 0.001 | 0.315 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 3.12 |
| 2002 | 0.000 | 0.010 | 0.636 | 0.997 | 1.000 | 1.000 | 1.000 | 1.000 | 2.89 |
| 2003 | 0.001 | 0.024 | 0.513 | 0.978 | 0.999 | 1.000 | 1.000 | 1.000 | 2.99 |
| 2004 | 0.000 | 0.000 | 0.100 | 0.967 | 1.000 | 1.000 | 1.000 | 1.000 | 3.40 |
| 2005 | 0.041 | 0.171 | 0.502 | 0.830 | 0.959 | 0.991 | 0.998 | 1.000 | 3.00 |
| 2006 | 0.000 | 0.014 | 0.365 | 0.959 | 0.999 | 1.000 | 1.000 | 1.000 | 3.15 |
| 2007 | 0.000 | 0.012 | 0.261 | 0.920 | 0.997 | 1.000 | 1.000 | 1.000 | 3.31 |
| 2008 | 0.000 | 0.012 | 0.231 | 0.882 | 0.995 | 1.000 | 1.000 | 1.000 | 3.37 |
| 2009 | 0.000 | 0.010 | 0.181 | 0.830 | 0.991 | 1.000 | 1.000 | 1.000 | 3.49 |
| 2010 | 0.000 | 0.009 | 0.167 | 0.812 | 0.989 | 1.000 | 1.000 | 1.000 | 3.52 |
| 2011 | 0.001 | 0.008 | 0.072 | 0.428 | 0.878 | 0.986 | 0.999 | 1.000 | 4.13 |
| 2012 | 0.000 | 0.000 | 0.018 | 0.578 | 0.990 | 1.000 | 1.000 | 1.000 | 3.93 |
| 2013 | 0.004 | 0.037 | 0.285 | 0.804 | 0.977 | 0.998 | 1.000 | 1.000 | 3.39 |
| 2014 | 0.000 | 0.003 | 0.046 | 0.400 | 0.902 | 0.992 | 0.999 | 1.000 | 4.15 |
| 2015 | 0.000 | 0.000 | 0.004 | 0.117 | 0.794 | 0.991 | 1.000 | 1.000 | 4.60 |

Table 8.- Posterior results: total biomass, SSB, recruitment (tons) and Fbar.

|  | B quantiles |  |  | SSB quantiles |  |  | R quantiles |  |  | $\mathrm{F}_{\text {bar }}$ quantiles |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 50\% | 5\% | 95\% | 50\% | 5\% | 95\% | 50\% | 5\% | 95\% | 50\% | 5\% | 95\% |
| 1972 | 84202 | 79367 | 90690 | 36966 | 33935 | 40572 | 17310 | 14230 | 22051 | 0.699 | 0.658 | 0.733 |
| 1973 | 49956 | 46393 | 54812 | 20416 | 17292 | 23851 | 60545 | 48278 | 79970 | 0.595 | 0.545 | 0.623 |
| 1974 | 53622 | 48456 | 61433 | 15181 | 13309 | 19665 | 119900 | 95628 | 57500 | 1.379 | 1.198 | 1.497 |
| 1975 | 68818 | 60682 | 80590 | 7780 | 6287 | 11989 | 22410 | 17400 | 30621 | 0.684 | 0.566 | 0.769 |
| 1976 | 111483 | 100575 | 126935 | 8758 | 6748 | 12619 | 9856 | 7865 | 13000 | 0.344 | 0.308 | 0.376 |
| 1977 | 84668 | 77983 | 94527 | 21214 | 17223 | 27543 | 2946 | 2242 | 4100 | 0.468 | 0.435 | 0.497 |
| 1978 | 57003 | 53091 | 62471 | 28735 | 23692 | 34218 | 19690 | 15780 | 25740 | 0.476 | 0.438 | 0.506 |
| 1979 | 50231 | 45964 | 55950 | 24355 | 21391 | 28739 | 13220 | 10480 | 17640 | 0.725 | 0.660 | 0.780 |
| 1980 | 31479 | 28174 | 36370 | 11643 | 9841 | 15415 | 7506 | 5667 | 10570 | 0.566 | 0.511 | 0.608 |
| 1981 | 34406 | 29825 | 40890 | 13350 | 9469 | 19071 | 20390 | 16150 | 27200 | 0.509 | 0.470 | 0.544 |
| 1982 | 30441 | 27442 | 34835 | 13340 | 11770 | 15825 | 20095 | 15830 | 26880 | 0.611 | 0.558 | 0.655 |
| 1983 | 40775 | 36262 | 46967 | 12266 | 10625 | 14685 | 12640 | 10040 | 16750 | 0.281 | 0.249 | 0.312 |
| 1984 | 46514 | 42120 | 52392 | 19814 | 17291 | 23009 | 14260 | 11250 | 19000 | 0.239 | 0.217 | 0.257 |
| 1985 | 39011 | 36084 | 43045 | 20967 | 19266 | 23008 | 56770 | 45479 | 74540 | 0.585 | 0.529 | 0.624 |
| 1986 | 41296 | 36960 | 47374 | 15662 | 13896 | 18464 | 116300 | 95680 | 47800 | 0.761 | 0.696 | 0.815 |
| 1987 | 54471 | 48566 | 62797 | 12647 | 11188 | 15364 | 73260 | 60810 | 92291 | 0.448 | 0.398 | 0.488 |
| 1988 | 65819 | 60502 | 73001 | 19363 | 15421 | 24258 | 15340 | 12350 | 20041 | 0.509 | 0.465 | 0.545 |
| 1989 | 106359 | 99485 | 15546 | 33997 | 27685 | 41702 | 20335 | 16920 | 25511 | 0.862 | 0.805 | 0.908 |
| 1990 | 64939 | 61092 | 70212 | 25455 | 21814 | 29723 | 25590 | 21640 | 31480 | 0.894 | 0.835 | 0.945 |
| 1991 | 44641 | 41262 | 49336 | 17721 | 14952 | 21174 | 64370 | 55540 | 77133 | 0.492 | 0.458 | 0.522 |
| 1992 | 58776 | 55284 | 63452 | 20972 | 18468 | 23890 | 58325 | 49860 | 70791 | 1.535 | 1.454 | 1.602 |
| 1993 | 46540 | 43296 | 50849 | 10393 | 8879 | 12590 | 3134 | 2695 | 3831 | 1.017 | 0.942 | 1.079 |
| 1994 | 50168 | 46617 | 55465 | 21671 | 18762 | 26656 | 4381 | 3268 | 6447 | 0.945 | 0.895 | 0.987 |
| 1995 | 22732 | 21378 | 24769 | 19406 | 18214 | 21226 | 2278 | 1839 | 2980 | 1.401 | 1.254 | 1.508 |
| 1996 | 5781 | 5116 | 6799 | 3473 | 3082 | 4120 | 141 | 92 | 229 | 0.676 | 0.562 | 0.768 |
| 1997 | 4789 | 4065 | 5942 | 3206 | 2646 | 4123 | 136 | 85 | 226 | 0.748 | 0.591 | 0.897 |
| 1998 | 3338 | 2451 | 4829 | 3118 | 2254 | 4596 | 207 | 145 | 314 | 0.312 | 0.226 | 0.432 |
| 1999 | 2431 | 1622 | 3823 | 2285 | 1489 | 3658 | 35 | 25 | 53 | 0.293 | 0.215 | 0.396 |
| 2000 | 2198 | 1325 | 3753 | 2034 | 1169 | 3583 | 343 | 203 | 586 | 0.186 | 0.127 | 0.266 |
| 2001 | 1856 | 1284 | 2729 | 1648 | 1082 | 2510 | 564 | 350 | 933 | 0.035 | 0.024 | 0.051 |
| 2002 | 2169 | 1599 | 3002 | 1855 | 1305 | 2675 | 67 | 41 | 112 | 0.015 | 0.007 | 0.033 |
| 2003 | 2402 | 1857 | 3174 | 2130 | 1610 | 2897 | 1192 | 766 | 1913 | 0.011 | 0.007 | 0.019 |
| 2004 | 3874 | 3116 | 4828 | 3150 | 2484 | 4079 | 84 | 60 | 123 | 0.003 | 0.002 | 0.005 |
| 2005 | 4283 | 3532 | 5141 | 3513 | 2880 | 4260 | 3747 | 2524 | 5977 | 0.007 | 0.004 | 0.011 |
| 2006 | 6867 | 5557 | 8706 | 3818 | 3070 | 4790 | 7741 | 5415 | 11990 | 0.217 | 0.168 | 0.278 |
| 2007 | 12763 | 10256 | 16405 | 5341 | 4122 | 6989 | 10410 | 7605 | 15120 | 0.031 | 0.024 | 0.042 |
| 2008 | 20144 | 16311 | 25600 | 9704 | 7813 | 12398 | 10135 | 7585 | 14261 | 0.075 | 0.058 | 0.098 |
| 2009 | 30640 | 25529 | 37805 | 18553 | 15323 | 23164 | 13280 | 10070 | 19000 | 0.044 | 0.035 | 0.054 |
| 2010 | 45857 | 39220 | 53990 | 31773 | 26867 | 38156 | 18940 | 14030 | 27852 | 0.266 | 0.220 | 0.313 |
| 2011 | 50694 | 42592 | 61320 | 31099 | 25347 | 39333 | 34090 | 23239 | 54950 | 0.290 | 0.216 | 0.376 |
| 2012 | 54599 | 44557 | 69238 | 28205 | 22142 | 38962 | 30360 | 17530 | 53710 | 0.238 | 0.180 | 0.307 |
| 2013 | 55315 | 45607 | 69766 | 36152 | 29721 | 46131 | 5348 | 2956 | 9686 | 0.273 | 0.214 | 0.333 |
| 2014 | 52206 | 42155 | 66861 | 32763 | 26754 | 42270 | 9664 | 4485 | 21051 | 0.254 | 0.181 | 0.363 |
| 2015 | 46174 | 35086 | 62188 | 28743 | 21497 | 40999 | 5752 | 2114 | 16580 | 0.157 | 0.103 | 0.266 |
| 2016 | 44247 | 29818 | 64914 | 33960 | 21600 | 53149 |  |  |  |  |  |  |

Table 9.- Median of the posterior of M during the assessment with data until 2010-2015.

| Data until | $\mathbf{2 0 1 0}$ | $\mathbf{2 0 1 1}$ | $\mathbf{2 0 1 2}$ | $\mathbf{2 0 1 3}$ | $\mathbf{2 0 1 4}$ | $\mathbf{2 0 1 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value of M | 0.149 | 0.150 | 0.146 | 0.156 | 0.160 | 0.174 |

Table 10.- Results of the different projections made by $\mathrm{F}=3 / 4 \mathrm{~F}_{\mathrm{lim}}$.


Table 11.- Risk associated to the different projections made by $\mathrm{F}=3 / 4 \mathrm{~F}_{\text {lim }}$.

|  | Yield |  |  | $\mathrm{P}\left(\mathrm{B}_{\text {year }}<\mathrm{Blim}^{\text {l }}\right.$ ) |  |  |  | $\mathrm{P}\left(\mathrm{F}_{\text {year }}>\mathrm{Flim}_{\text {lim }}\right)$ |  |  | $\mathrm{P}\left(\mathrm{B}_{2019}>\mathrm{B}_{2015}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2019 | 2016 | 2017 | 2018 |  |
| Proj1, 3 years | 13931 | 13359 | 13094 | 0.000 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.889 |
| Proj2, 3 years | 13931 | 13358 | 13184 | 0.000 | 0.000 | 0.020 | 0.060 | 0.520 | 0.300 | 0.340 | 0.840 |
| Proj3, 1 year | 13931 | 9729 | 10215 | 0.000 | 0.030 | 0.060 | 0.110 | 0.740 | 0.310 | 0.340 | 0.700 |
| Proj4, 1 year Unc | 13931 | 9834 | 10364 | 0.010 | 0.090 | 0.140 | 0.210 | 0.680 | 0.370 | 0.390 | 0.620 |



Fig. 1. 3 M Cod catch and TACs


Fig. 2. Mean Weights in catch


Fig. 3. Mean Weights in stock


Fig. 4. Maturity ogive


Fig. 5. Density (solid line) and median (dashed line) of the 5000 catches coming from $3 / 4 \mathrm{~F}_{\text {lim }}$ for Proj1 during the Y+2 projected year (2017 in our case)

Flim (black), F_3/4Flim_2017 (red), F_3/4Flim_2018 (blue), Proj4


Fig. 6. Density of Flim and the F in 2017 and 2018 corresponding to the Proj 3 projected with $3 / 4$ Flim. The dashed lines are the medians of the distributions, and the red dotted line is the $95 \%$ confidence interval limit for the 2017. The $95 \%$ limit for 2018 is out of the graph.


Fig.7. 3M cod correlation between Log abundance, mean weights in catches (MWC), mean weights in the stock (MWS) and maturity (MO) by age.


Fig. 8. Distribution of the interannual changes (1972-2015) for mean weight in catch, mean weight in stock and the parameters $\beta_{1}$ and $\beta_{2}$ of the maturity ogive


Fig. 9. 3 M cod correlation between the interannual variation of $\log$ mean weights (age) and the parameters $\beta_{1}$ and $\beta_{2}$ of the maturity ogive


Fig. 10. 3 M cod correlation between the generated interannual variation of $\log$ mean weights (age) and the parameters $\beta_{1}$ and $\beta_{2}$ of the maturity ogive


Fig. 11. Inputs of the projections with affe without uncertainty


Fig. 12. 3M cod correlation between the mean weights (age) and the maturity ogive in the projections

Total Biomass: 1972-2016


Recruitment: 1972-2016


SSB: 1972-2016; Blim=14000


Fbar(3-5): 1972-2015


Fig. 13. Estimated trends in biomass, SSB, recruitment and $F_{\text {bar. The solid lines represent the posterior medians and the dashed lines the limits }}$ of $90 \%$ posterior credible intervals. Red plots are the results at the beginning of 2016. Red horizontal line in the SSB graph represent $\mathrm{B}_{\mathrm{lim}}=14000$.


Fig. 14. Results of the four projections with $\mathrm{F}=3 / 4 \mathrm{Flim}$


[^0]:    ${ }^{1}$ As there is no total catch available, the proportion of number per age is given

