NOT TO BE CITED WITHOUT PRIOR

REFERENCE TO THE AUTHOR(S)

Serial No. N6729
NAFO SCR Doc. 17/060

NAFO/ICES WG PANDALUS ASSESSMENT GROUP-September 2017
 Applying a stochastic surplus production model (SPiCT) to the West Greenland Stock of Northern Shrimp

by

Frank Rigét
and
AnnDorte Burmeister
Pinngortitaleriffik, Greenland Institute of Natural Resources
Box 570, 3900 Nuuk, Greenland

Greenland Institute of Natural Resources
Box 570, 3900 Nuuk, Greenland

Summary

A stochastic surplus production model (SPiCT) was applied to the West Greenland stock of Pandalus borealis. Input data composed of survey fishable biomass, catch and commercial CPUE indices. Different combinations of input data and time periods were explored. The model was stable and the perception was that the relative biomasse and fishing mortality were within safe biological limits. In general, model output was similar to the output of the stock-dynamic model used for assessing the Shrimpp stock in NAFO Division 0A.

Introduction

The SPiCT model is a stochastic surplus production model in continuous time (Pedersen \& Berg, 2016). The model was tried in order to compare the output with that of the stock-dynamic model of the West Greenland Northern shrimp stock (Burmeister and Rigét, 2017b) used in recent years. The model assumptions are:

1. The intrinsic growth rate represents a combination of natural mortality, growth, and recruitment.
2. The biomass refers to the exploitable part of the stock.
3. The stock is closed to migration
4. Age and size-distribution are stable in time.
5. Constant catchability of the gear used to gather information for the biomass index.

Material and Methods

The input data was a thirty years' time period (1988-2017), identical with the corresponding input data to the stock-dynamic model used in the assessment of the West Greenland stock of northern shrimp (Burmeister and Rigét 2017a) (Fig. 1). The input composed of catches as a proxy for the catches, survey fishable biomass abundance index and a commercial CPUE index (Burmeister \& Rigét 2017b; Hammeke 2017).

Results and Discussion

The SPiCT model were applied to combinations of the catch with the CPUE and survey fishable biomass index (Catch \& Index, Catch \& CPUE and Catch \& Index \& CPUE). In all cases the model was stable and converged. Using the survey fishable biomass index as the only index or the CPUE index as the only index resulted in quite different perceptions of the stock status. The survey fishable biomass index has a marked peak in the period 2003 to 2006, whereas the CPUE index is gradually increasing from about 2005 to 2008 . The difference of the two indices cause the discrepancy of the model output when the indices are applied alone. The model using both catch, survey fishable biomass, and CPUE indices was elected for the final analysis described below.

Model residuals and diagnostic are shown in Fig. 2. The One Step Ahead (OSA) residuals were not significant different from zero and therefore not biased (above figure row). Testing of multiple lags (here 4) show no significant autocorrelation of the residuals (ACF) in case of catch and CPUE time-series but significant for the survey fishable biomass index. Also in case of individual lags (lag 1 and 2) of the survey index. The residuals were not significantly different from being normal distributed in any case.

Table 1 show the correlations between model parameters. The correlations were relatively high in several occasions meaning that the parameters are not well separated. E.g. are the log value of maximum sustainable yield (m), carrying capacity (K) and the catchabilities (q) highly inter-correlated. Also the correlation between $\mathrm{B}_{\text {MSY }}$ and $\mathrm{F}_{\text {MSY }}$ was high (-0.98).

Fig. 3 show the relative fishing mortality ($\mathrm{F}_{\mathrm{t}} / \mathrm{F}_{\mathrm{MSY}}$) and the relative biomass ($\mathrm{B}_{\mathrm{t}} / \mathrm{B}_{\mathrm{MSY}}$) derived from the SPiCT model. $\mathrm{F}_{\mathrm{t}} / \mathrm{F}_{\text {msy }}$ has decreased steadily since the early 1990 s and is in recent years at a historical low level. The relative biomass ($\mathrm{B}_{\mathrm{t}} / \mathrm{B}_{\mathrm{MSY}}$) has since 2003 been above or close to one, and in the last 4 to 5 years been increasing. The development of biomass and fishing mortality since 1988 have moved from the yellow/red square ($\mathrm{F}_{\mathrm{t}} / \mathrm{F}_{\mathrm{MSY}}>1$ and $\mathrm{B}_{\mathrm{t}} / \mathrm{B}_{\mathrm{MSY}}<1$) to the green square $\left(\mathrm{F}_{\mathrm{t}} / \mathrm{F}_{\mathrm{MSY}}<1\right.$ and $\mathrm{B}_{\mathrm{t}} / \mathrm{B}_{\mathrm{MSY}}>1$).

Retrospective plots of fishing mortality and fishable biomass with 4 scenarios with catch, survey and CPUE time series are shortened by the 1 to 4 last observations, show high consistency between the scenarios (Fig. 4), especially in case of the relative fishing mortality and biomass.

Table 2 show the stochastic reference points from the SPiCT model. Bmsy is estimated to 158 Kt , B_{2017} /Bmsy to 1.25 and $\mathrm{F}_{2017} / \mathrm{F}_{\text {mSY }}$ to 0.45 . However, the confidence limits are relative broad. Compared to the output from the stock-dynamic model the $\mathrm{B}_{\text {msy }}$ is similar, $\mathrm{B}_{2017} / \mathrm{B}_{\text {мяу }}(1.45)$ and $\mathrm{F}_{2017} / \mathrm{F}_{\text {msy }}\left(\mathrm{Z}_{2017} / \mathrm{Z}_{\text {msy }}=0.57\right)$ are somewhat smaller. The predicted catch in 2018 at $\mathrm{F}=\mathrm{F}_{2017}$ amount to 90 Kt .

Forecast for the year 2018 is shown in Table 3. Six forecast scenarios are presented. The $\mathrm{B}_{2017} / \mathrm{B}_{\text {msy }}$ are above 1 in all scenarios and the $\mathrm{F}_{2017} / \mathrm{Fmsy}_{\text {are }}$ arelow 1 in all scenarios except for no fishing and fishing at $\mathrm{F}_{\text {msy. }}$. The B increase in all scenarios except with fishing at $\mathrm{F}_{\text {msy }}$ and with a 25% increase of F .

Table 4 compare the output of the above described results with runs using different combinations of input data and with using the total catch series back to 1970. When only using the catch data and survey index, $\mathrm{B}_{2017} / \mathrm{B}_{\mathrm{MSY}}$ are below 1 and $\mathrm{F}_{2017} / \mathrm{F}_{\text {MSY }}$ above 1. Using only catch data and the CPUE index, the results are similar to those using both CPUE index and survey index. When the catch data going back to 1970 is applied MSY decrease with about 30 Kt and B_{2017} /BMSY decrease to 1.14 and F_{2017} /FMSY increase to 0.63 .

Conclusion

The SPiCT model appears stable and give the perception of the stock being exploited well bellow Fmsy and that the biomass is well above Bmsу. In general, the output from the SPiCT model and the stock-dynamic model are consistent and support each other.

References

BURMEISTER, AD., F.F RIGET. 2017a. The West Greenland trawl survey for Pandalus borealis, 2017, with reference to earlier results. NAFO SCR Doc. 017/051, Ser. No. N6720. 39 pp.

BURMEISTER, AD., F.F RIGET. 2017b. A Provisional Assessment of the Shrimp Stock off West Greenland in 2017. NAFO SCR Doc. 017/052, Ser. No. N6721.

HAMMEKEN, N. 2017. The Fishery for Northern Shrimp (Pandalus borealis) off West Greenland 1970-2017. NAFO SCR Doc. 017/056, Ser. No. N6725.

PEDERSEN, M.W., BERG, C.W. 2017. A stochastic surplus production model in continuous time. Fish \& Fisheries, 18(2), pp 226-243.

Table 1. Correlation matrix for the estimated SPiCT model parameters

logm		- logK	logq	$9 \quad \mathrm{logq}$	q logn
logm	1.0000000000	0.805240205	-0.8555477426	-0.8582002811	10.762910453
logK	0.8052402047	7.000000000	-0.9875600171	-0.9906218609	90.411168673
logq	-0.8555477426	$6-0.987560017$	1.0000000000	0.9968897448	-0.514272535
logq	-0.8582002811	$1-0.990621861$	0.9968897448	1.0000000000	-0.515866969
logn	0.7629104533	30.411168673	-0.5142725349	-0.5158669694	41.000000000
logsdb	0.1017495100	-0.077743424	0.0372569937	0.0373725109	90.173356136
logsdf	-0.0009598998	-0.011799562	0.0095425632	0.0095721497	70.007238227
logsdi	0.0028765868	-0.001186700	0.0005861477	0.0005879801	10.003427963
logsdi	-0.0399197594	40.045374499	-0.0288439804	-0.0289334131	-0.096324834
logsdc	-0.0290578423	30.007129401	0.0018014219	0.0018070055	-0.046377617
	logsdb	logsdf	logsdi	logsdi	logsdc
logm	0.10174951 -0	-0.0009598998	0.0028765868	-0.03991976-0.0	0.029057842
logK	-0.07774342-0	-0.0117995616	-0.0011867004	0.04537450 0.	0.007129401
logq	0.03725699	0.0095425632	0.0005861477	-0.02884398 0	0.001801422
logq	0.03737251	0.0095721497	0.0005879801	-0.02893341 0	0.001807006
logn	0.17335614	0.0072382268	0.0034279634	-0.09632483-0.0	0.046377617
logsdb	1.00000000	0.0277061590	0.0193360365	-0.41771689-0	0.133054429
logsdf	0.02770616	1.0000000000	0.0035193340	-0.08150334-0.	0.384654618
logsdi	0.01933604	0.0035193340	1.0000000000	-0.03381426-0.0	0.003904784
logsdi	-0.41771689-0	-0.0815033411	-0.0338142596	1.000000000	0.087683356
logsdc	-0.13305443-0	-0.3846546175	-0.0039047845	0.087683361.	1.000000000

Table 2. Results from the SPiCT model including parameter estimates, reference points and predictions

Table 3. Forecast with six scenarios.

| Observed interval, index: | $1988.00-2017.00$ |
| :--- | :--- | :--- |
| Observed interval, catch: | $1988.00-2018.00$ |
| | |
| Fishing mortality (F) prediction: 2019.00 | |
| Biomass (B) prediction: | 2019.00 |
| Catch (C) prediction interval: | $2018.00-2019.00$ |

Predictions

| | C | B | F | $B / B m s y$ | $F / F m s y$ | perc.dB perc.dF | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1. Keep current catch | 90.0 | 1392.6 | 0.065 | 1.260 | 0.451 | 0.3 | -0.3 |
| 2. Keep current F | 90.3 | 1393.1 | 0.065 | 1.261 | 0.453 | 0.3 | 0.0 |
| 3. Fish at Fmsy | 193.5 | 1314.6 | 0.143 | 1.189 | 1.000 | -5.3 | 120.8 |
| 4. No fishing | 0.1 | 1455.5 | 0.000 | 1.317 | 0.000 | 4.8 | -99.9 |
| 5. Reduce F 25\% | 68.2 | 1409.0 | 0.049 | 1.275 | 0.340 | 1.5 | -25.0 |
| 6. Increase F 25\% | 112.2 | 1377.1 | 0.081 | 1.246 | 0.566 | -0.8 | 25.0 |

95\% CIs of absolute predictions
C.lo C.hi B.lo B.hi F.lo F.hi

1. Keep current catch $84.3 \quad 96.1374 .85173 .90 .017 \quad 0.244$
2. Keep current $\mathrm{F} \quad 74.3109 .9374 .85177 .80 .017 \quad 0.255$
3. Fish at Fmsy 160.0234 .0325 .55308 .80 .0370 .562
4. No fishing $0.1 \quad 0.1416 .25090 .20 .0000 .000$
5. Reduce F 25\% 55.9 83.1 385.2 5153.9 0.012 0.191
6. Increase F 25\% $92.5136 .2364 .5 \quad 5202.9 \quad 0.021 \quad 0.318$
95\% CIs of relative predictions
B/Bmsy.lo B/Bmsy.hi F/Fmsy.lo F/Fmsy.hi

1. Keep current catch	1.045	1.520	0.307	0.664
2. Keep current F	1.041	1.526	0.290	0.707
3. Fish at Fmsy	0.989	1.430	0.641	1.560
4. No fishing	1.050	1.652	0.000	0.001
5. Reduce F 25\%	1.046	1.554	0.218	0.530
6. Increase F 25\%	1.035	1.500	0.363	0.883

Table 4. Comparison of the SPiCT output using different input data.

West Greenland	MSY	B_MSY	F_MSY	$\begin{aligned} & \text { B/Bmsy } \\ & 2017 \end{aligned}$	F/Fmsy 2017	$\begin{aligned} & \text { Catch } \\ & 2018 \end{aligned}$	
Survey	149.876	355,944	0.421	0.430	1.370	100,633	Catch 1970-2017, Survey 1988-2017, CPUE 1987-2017
CPUE	126,347	1,187,607	0.107	1.137	0.627	91,515	Catch 1970-2017, Survey 1988-2017, CPUE 1987-2017
Survey+CPUE	126,182	1,179,524	0.107	1.140	0.626	91,509	Catch 1970-2017, Survey 1988-2017, CPUE 1987-2017
Survey	144,678	280,408	0.516	0.519	1.172	99,836	Same period as Assessment Model 1988-2017
CPUE	158,492	1,107,490	0.143	1.252	0.454	90,333	Same period as Asessment Model 1988-2017
Survey+CPUE	158,269	1,105,145	0.143	1.251	0.453	90,337	Same period as Assessment Model 1988-2017

Fig. 1. Input data for the SPiCT models of West Greenland stock of northern shrimp. Top: Catch, Mittel: Survey index, Bottom: CPUE index.

Fig. 2. Diagnostics. First column show log of the input data series; catch, survey index and CPUE. Second column "one-step ahead" (OSA) residuals and a test for bias, Third column show the autocorrelation of the residuals including Ljung-Box test of multiple lags and tests for the individual lags. Fourth column test for normality of the residuals.

Fig. 3. Plot of the estimated relative fishing mortality $\left(\mathrm{F}_{\mathrm{t}} / \mathrm{F}_{\mathrm{MSY}}\right)$ and relative biomass ($\mathrm{B}_{\mathrm{t}} / \mathrm{B}_{\mathrm{MSY}}$) trough time.

Fig. 4. Retrospective plots of fishing mortality and fishable biomass with 4 scenarios where the time-series of catch, survey and CPUE are shortened by the 1 to 4 last observations

