44th ${ }^{\text {th }}$ ANNUAL MEETING OF NAFO - SEPTEMBER 2022

COMPILATION of SC Response to Feedback Questions Regarding its Scientific Advice

From European Union [COM WP 22-35]	1. Regarding 3M Cod assessment, EU would like SC to inform which F would correspond with a 50% probability of SSB_{2025} being greater than SSB_{2022} (according to table 2 of the provided assessment).					
Scientific Council responded [COM WP 22-38 Rev.]	Two projections based on Fishing Mortality have been performed to get $\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=50 \%$ and $\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=75 \%$. Results for these two projections are in Tables 1 and 2 as in the advisory sheet of the 3 M cod. Table 1 includes the results for the two new projections, while Table 2 shows the risk results for the projections from the advisory sheet together with the two new ones, sorted by the $\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)$. New projections in Table 2 are bolded. The F that gives a $\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=50 \%$ is $0.595^{*} F_{\text {lim }}=0.099$. The \mathbf{F} that gives a $\mathbf{P}\left(\right.$ SSB $_{25}>$ SSB $\left._{22}\right)=75 \%$ is $0.046{ }^{*} \boldsymbol{F}_{\text {lim }}=\mathbf{0 . 0 7 6}$. Table 1. Results of the projections of 3 M cod with $\mathrm{F}_{\mathrm{bar}}=0.595 * \mathrm{~F}_{\text {lim }}=0.099$ (giving a $\left.\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=50 \%\right)$ and $\mathrm{F}_{\text {bar }}=0.46 \mathrm{~F}_{\text {lim }}=0.089\left(\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=75 \%\right)$.					
	SSB					
	$\begin{array}{r} \text { Median and } 80 \% \mathrm{CI} \\ \hline \text { Fbar }=0.595 * \text { Flim (median }=0.099 \text {) } \end{array}$					
	2022	50511	(45475-56297)	25994	(23085-28992)	4000
	2023	48942	(43410-55808)	22651	(19983-25601)	6364
	2024	46841	(40525-54987)	23252	(20012-26635)	7507
	2025	42058	(34385-50956)	26175	(21473-31560)	
	$\mathrm{F}_{\text {bar }}=0.46$ *Flim (median $\left.=0.089\right)$					
	2022	50511	(45475-56297)	25994	(23085-28992)	4000
	2023	48942	(43410-55808)	22651	(19983-25601)	5050
	2024	48219	(41880-56341)	24447	(21252-27888)	6207
	2025	44583	(36905-53473)	28311	(23650-33758)	

www.nafo.int

www.nafo.int

Shrimp	Benthivore
Capelin	Planktivore
Squid	Planktivore

2. Yes. There is a TCI value per functional guild within an EPU.
3. The implementation of the TCI framework and 2TCI ecosystem reference point provides information to the Commission regarding how aggregated catches relate to ecosystem productivity and the risk of ecosystem overfishing, but the proposed framework does not prescribe any specific action in the case that catches are approaching or exceeding 2 TCI . How this information is used in the process of setting TACs is a matter for the Commission to consider as part of its discussions.

Catches exceeding 2TCI are a rare occurrence in recent times, but in occasions, cumulative TACs could have allowed catches to exceed 2TCI if the TACs had been fully taken. One example of this situation was used during the August 2022 WGEAFFM Workshop to explore how the TCI framework and 2TCI reference points could be used in practice. This example corresponds to the piscivore guild in the Flemish Cap (3M) EPU in 2019. The following figure shows the piscivore guild catches since 1991. If all TACs had been fully taken, catches would have exceeded 2TCI in 2019.

4. The proposed framework does not prescribe any specific action in the case that catches are approaching or exceeding 2TCI. How this information is used in the process of setting TACs is a matter for the Commission to consider as part of its discussions.
5. For stocks like Greenland halibut which distribute over more than one EPU the TAC can be partitioned among EPUs, for instance based on the proportion of catches actually taken from each EPU, but this will be assessed on a case-by-case basis.

Reference links:

Koen-Alonso et al., Review and Assessment of the Ecosystem Production Potential (EPP) model structure, sensitivity, and its use for fisheries advice in NAFO. NAFO SCR Doc. 22/002.
www.nafo.int

	Koen-Alonso. Supporting material for the independent scientific review of the estimation of fisheries production potential and total catch indices, and their adequacy for their proposed used within the NAFO Roadmap. NAFO SCR Doc. 22/003. Scientific Council response to Commission Request 5: Continue work on the sustainability of catches aspect of the Ecosystem Roadmap. NAFO SCS Doc. 22/18.
From the USA [COM WP 22-37]	In order to better understand how to support the growth of this stock over the long term, noting the projected total decline of total biomass under all fishing scenarios, what catch level in 2023 would result in a 75-percent probability of an increase in the spawning stock biomass for 3 M cod by 2025 ?
Scientific Council responded [COM WP 22-38 Rev.]	Two projections based on Fishing Mortality have been performed to get $\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=50 \%$ and $\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=75 \%$. Results for these two projections are in Tables 1 and 2 as in the advisory sheet of the 3 M cod. Table 1 includes the results for the two new projections, while Table 2 shows the risk results for the projections from the advisory sheet together with the two new ones, sorted by the $\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)$. New projections in Table 2 are bolded. The F that gives a $\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=50 \%$ is $0.595^{*} F_{\text {lim }}=0.099$. The \mathbf{F} that gives a $\mathbf{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=75 \%$ is $0.046{ }^{*} \boldsymbol{F}_{\text {lim }}=\mathbf{0 . 0 7 6}$. Table 1. Results of the projections of 3 M cod with $\mathrm{F}_{\mathrm{bar}}=0.595^{*} \mathrm{~F}_{\text {lim }}=0.099$ (giving a $\left.\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=50 \%\right)$ and $\mathrm{F}_{\text {bar }}=0.46 \mathrm{~F}_{\text {lim }}=0.089\left(\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=75 \%\right)$.
	Median and 80\% CI $\mathrm{F}_{\text {bar }}=0.595 *$ Flim (median $\left.=0.099\right)$
	2022 50511 $\begin{array}{lllll} \\ 202545-56297) & 25994 & (23085-28992)\end{array}$
	2023 48942 (43410-55808) 222651
	$2024 \begin{array}{llll} & 46841 & (40525-54987) & 23252\end{array}$
	$2025 \quad 42058$ (34385-50956) $26175 \quad$ (21473-31560)
	$\mathrm{F}_{\text {bar }}=0.46$ *Flim (median $=0.089$)
	2022 50511 4 (45475-56297) 425994
	2023 48942 $\begin{array}{lllll}\text { (43410-55808) } & 22651 & (19983-25601)\end{array}$
	$2024 \begin{array}{llll} & 48219 & (41880-56341) & 24447\end{array}$
	2025 44583 (36905-53473) 28311 (23650-33758)
	Table 2. Risk of the projections presented in June together risk of the projections with $\mathrm{F}_{\mathrm{bar}}=$ $0.595 * \mathrm{~F}_{\text {lim }}=0.099$ (giving a $\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=50 \%$) and $\mathrm{F}_{\text {bar }}=0.46 \mathrm{~F}_{\text {lim }}=0.089$ $\left(\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)=75 \%\right)$. The results are sorted by $\mathrm{P}\left(\mathrm{SSB}_{25}>\mathrm{SSB}_{22}\right)$. The new projections are bolded.

www.nafo.int

		Yield			P (SSB $<$ Bim)				P (Fbar $>$ Fim)			
		2022	2023	2024	2022	2023	2024	2025	2022	2023	2024	$\mathrm{P}_{(\text {(SSB2 } 2>8}$
	F=0	4000	0	0	<1\%	<1\%	<1\%	<1\%	$<1 \%$	$<1 \%$	<1\%	100\%
	$\mathrm{F}_{2021}=0.022$	4000	3425	4429	<1\%	<1\%	<1\%	<1\%	$<1 \%$	$<1 \%$	<1\%	95\%
	$\mathrm{C}=4000 \mathrm{t}$	4000	4000	4000	<1\%	<1\%	<1\%	<1\%	<1\%	<1\%	$<1 \%$	94\%
	$\mathrm{C}=5000 \mathrm{t}$	4000	5000	5000	<1\%	<1\%	<1\%	<1\%	$<1 \%$	$<1 \%$	<1\%	86\%
	$0.46{ }^{*}$ Fim $=0.076$	4000	5050	6207	<1\%	<1\%	<1\%	<1\%	<1\%	<1\%	<1\%	75\%
	$1 / 2 \mathrm{Flim}=0.083$	4000	5446	6610	<1\%	<1\%	<1\%	<1\%	<1\%	<1\%	<1\%	67\%
	$\mathrm{Fsq}_{\text {sq }}=0.089$	4000	5791	6987	<1\%	<1\%	<1\%	<1\%	$<1 \%$	$<1 \%$	<1\%	60\%
	$0.595 *$ Finim $=0.099$	4000	6364	7507	<1\%	<1\%	<1\%	$<1 \%$	< 1%	<1\%	<1\%	50\%
	$2 / 3 \mathrm{~F}$ lim $=0.111$	4000	7032	8128	<1\%	<1\%	1\%	1\%	$<1 \%$	$<1 \%$	$<1 \%$	39\%
	$3 / 4 \mathrm{Fim}=0.125$	4000	7787	8790	<1\%	<1\%	1\%	1\%	$<1 \%$	$<1 \%$	3%	27\%
	Fiim $=0.166$	4000	9915	10431	<1\%	<1\%	3\%	6\%	$<1 \%$	50\%	50\%	9\%
From Denmark (in respect of the Faroe Islands and Greenland) [COM WP 22-39]	DFG supports the Catch and Effort Limitation outline in NAFO CEM Article $5.5(\mathrm{j})$ stating that:											
	5. Each Contracting Party shall											
	(j) clos and 24 that its line wi	its dir 0 UTC vessel Artic	cted fis 31 Ma imit 6.3(a)	C ch 202 e catc and o	cod . Dur s ret serve	Divis g this ned o mo	n 3M eriod board e-on p	etwe all Co and in ovisi	00:0 ractin ny o s in A	UTC Parti haul icle 6	anua shal this (b).	2022 nsure ock in
	DFG appreciates and supports this temporary protective measuring in Article $5.5(\mathrm{j})$ concerning Cod in Division 3M during its spawning season.											
	DFG would like the Scientific Council to provide guidance on the following:											
	- Is it scien protective 24:00 UTC March 202	ically easu 1 Mar ?		le for cle 5 to tw	the s j) fro mon	ck du thre (00:	ing th mont 0 UTC	$\begin{aligned} & \text { spar } \\ & \text { s }(00 \\ & 1 \text { Febr } \end{aligned}$	ing 0 UT ary 2		red ry 2 4:00	e the 3 and TC 31
	- If it is not scientifically advisable to reduce the protective measuring in Article 5.5(j) from three months to two months, is it scientifically advisable to move the three-month protective measure so that its starts 00:00 UTC 1 February 2023 and 24:00 UTC 30 April 2023?											
Scientific Council responded: [COM WP 22-47]	During its June 2020 meeting, SC studied the percentage of spawning female cod by month in Div. 3M for the 2010-2018 period (SCR Doc. 20-021, SCS Doc. 20-014Rev.), the results are presented in Table 1:											
	Table 1. Percentage of spawning female cod by month in Div. 3M for the 2010-2018.											

www.nafo.int

	Month Spawning $\%$ Not Spawning $\%$ n Jan 88.89 11.11 90 Feb 72.73 27.27 33 Mar 60.12 39.88 1457 Apr 18.35 81.65 1695 May 1.80 98.20 557 Jun 0.11 99.89 950 Jul 8.14 91.86 921 Aug 0.27 99.73 728 Sep 0.40 99.60 506 Oct 0.78 99.22 257 Spawning of 3M cod occurs between January and April, with the highest activity being in the first three months, and January being the month with highest percentage of spawning females (Table 1.). SC concludes that, in order to protect the spawning activity, it is not scientifically advisable to change the duration or timing of the spawning closure and that it should therefore be maintained for the entire first quarter of the year (from $1^{\text {st }}$ January until $31^{\text {st }}$ of March).
From Norway [COM WP 22-43]	The 3M shrimp stock is managed by fishing-days while Scientific Council provides advice in terms of catch ("TAC advice"). This creates ambiguity in using the scientific advice to inform management and promote efficient and sustainable utilization of this resource. SC advised that they do "not consider that the management procedure initiated some 25 years ago constitutes effective means of managing the stock" and that they recommend "that the management of $3 M$ shrimp be converted from the existing "effort regulation" to "catch regulation" in line with all other stocks in the NRA" ((SCS 19-23, pp 4-5 and reiterated in the advice for shrimp in 3M for 2023). In the event of a reopening of the fishery, and the COM has not agreed on a new allocation scheme, the fishing activity will be resumed based on the current effort allocation key. Consequently, there will still be a need for advice in terms of fishing days. We therefore ask SC to reflect on: 1. the opportunities for converting "catch advice" into "fishing-day advice" e.g., by applying estimates of average catch rates (catch by fishing-day). As SC noted in SCS 1923 such estimates may be uncertain for various reasons, nevertheless, in need of other means of providing advice in accordance with the management needs, this might still be the best we can do. 2. whether it would be feasible to include both metrics in future advice, i.e., Total Allowable Catch (TAC) and Total Allowable Fishing-days (TAF) - the latter maybe with some indication of the associated uncertainty or range as SC finds appropriate.

www.nafo.int

Scientific Council responded: [COM WP 22-49]

3. whether such additional information could assist COM in their reiterated aim at ensuring a sustainable management of this stock.
4. SC reiterates the advice provided in SCS 19-23:
over the period of this fishery the overall effort allowed has always been high and has not posed much constraint on fishing activity, and it is difficult to standardize "effort units" (e.g. fishing days) in terms of pressure on the stock due to creep in fishing efficiency and the diversity of the individual vessels participating in the fishery. This increases the uncertainty of advice given in fishing days. Therefore, SC recommended that the management of 3 M shrimp be converted from the existing "effort regulation" to a "catch regulation" in line with all other stocks in the NRA.

However, when the catch/days fishing (df, Table 1) from any year from 2000-2010 (effort data from STATLANT 21B) and 2020-2021 (From SC shrimp meeting 2022) is applied to the recommended TAC from 2019, the range of total days fished to be allocated ranges from 193 to 1448 total days (Table 2). This is much lower than the 2640 allocated in 2020 and 2021.
2. Given the range in days fished arising from Table 2, it would be difficult to give advice on total allowable days.

Table 1. Calculation of tonnes per fishing day based on catches and effort used in the years 2000 to 2021.

NIPAG Catch (000s t)	Recommended TAC (000s mt)	Allocated Effort (days)	Effort Used (days)	tonnes /days fishing	
2000	50	30		3200	15.6
2001	54	30		5445	9.9
2002	49	45		4237	11.6
2003	63	45		5243	12.0
2004	45	45		4042	11.1
2005	32	48		2155	14.8
2006	18	48	10555	1049	17.2
2007	21	48	10555	1335	15.7
2008	13	$17-32$	10555	1069	12.2
2009	5	$18-27$	10555	447	11.2
2010	2	ndf	5277	71	28.2
2020	0.079	5.448	2640	21	3.8
2021	6.042	5.448	2640	440	13.7

Table 2. Fishing effort that would have been advised for a TAC of 5448 tonnes using observed catch rates from table 1.
www.nafo.int

	tonnes/days fishing Days fishing for a recommended catch of $\mathbf{5 4 4}$ tonnes 15.6 349 9.9 549 11.6 471 12.0 453 11.1 489 14.8 367 17.2 317 15.7 346 12.2 448 11.2 487 28.2 193 3.8 1448 13.7 397 3. Scientific Council reiterates that management by TAC is the most appropriate way to manage the fishery. Nevertheless, setting the allocated days to those close to the values shown in the last column of table 2 could assist in managing this fishery better than it is currently. SC notes that these values would be a factor of 10 lower than the currently allocated days.
From Canada [COM WP 22-44]	Given the different interpretation by Contracting Parties of the total stock biomass trajectory for 3 M cod, can the Scientific Council confirm that the total biomass is projected to decline under all fishing scenarios? Can the Scientific Council confirm that the total biomass has decreased in recent years? Can the Science Council advise the range of fishing scenario where total stock biomass is projected to increase?

Scientific Council responded:

 [COM WP 22-50]The biomass for 3M cod is projected to decline in the last year projected (2025) under all the fishing scenarios (other than $\mathrm{F}=0$) that were performed during the June SC meeting (Figure 1):

Projected Biomass

Figure 1. Projections for Total Biomass with different scenarios (STACTFIS report for 3M cod).
The results of the assessment performed for 3M cod results in the biomass decreasing starting in 2013:

Total Biomass: 1988-2021

Figure 2. Estimated trends in total biomass. The solid line is the posterior median and the dashed lines show the limits of 80\% posterior credible intervals (SCR 22/25).

Projecting F values show that the highest F value for which the Total Biomass of cod is projected to increase in 2025 is $\mathrm{F}_{\mathrm{bar}}=0.03$ (Table 1).

It has to be noted that the uncertainty in the projected years is higher than in the assessment years, and so the confidence interval for the Total Biomass for 2025 is higher than the one for 2022.
www.nafo.int

	SC notes that projections of total biomass are more highly dependent on assumptions of recruitment and year classes that are poorly estimated than would be the case for SSB projections. Table 1. Results of the projections of 3 M cod with several $\mathrm{F}_{\mathrm{bar}}$.					
			B		SSB	Yield
					and 80% CI	
	$\mathrm{F}_{\text {bar }}=\mathrm{F}_{\text {sq }}($ median $=0.089)$					
	2022	50511	(45475-56297)	25994	(23085-28992)	4000
	2023	48942	(43410-55808)	22651	(19983-25601)	5791
	2024	47441	(41115-55572)	23797	(20536-27170)	6987
	2025	43101	(35439-52003)	27046	(22345-32507)	
	$\mathrm{F}_{\text {bar }}=0$					
	2022	50511	(45475-56297)	25994	(23085-28992)	4000
	2023	48942	(43410-55808)	22651	(19983-25601)	0
	2024	53489	(47131-61613)	29062	(25841-32474)	0
	2025	55443	(47659-64531)	37876	(33038-43336)	
	$\mathrm{F}_{\text {bar }}=0.033$ (median)					
	2022	50511	(45475-56297)	25994	(23085-28992)	4000
	2023	48942	(43410-55808)	22651	(19983-25601)	2274
	2024	51101	(44757-59241)	27004	(23750-30334)	3044
	2025	50329	(42598-59287)	33360	(28532-38763)	
	$\mathrm{F}_{\text {bar }}=0.030$ (median)					
	2022	50511	(45475-56297)	25994	(23085-28992)	4000
	2023	48942	(43410-55808)	22651	(19983-25601)	2105
	2024	51280	(44938-59422)	27112	(23908-30578)	2832
	2025	50695	(42952-59678)	33622		

