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Abstract 

Using a dynamic production model along with commercial fishery data, it is possible to 
evaluate the estimates of stock abundance for every year of the period of an intensive fishery 
(including the last one) and the TACs for a few years ahead. But being dependent upon the initial 
fishery data, these estimates are to be regarded as random ones, and therefore, it is necessary to 
provide them with confidence intervals. Taking into account non-linearity of the models under 
consideration, and the fact that usually data series are sufficiently short, the only real way to get 
the confidence intervals is the residual (conditional) bootstrap. The corresponding procedure is 
described and discussed. Two hypotheses (the error is an additive or a multiplicative one) and two 
kinds of bootstrap techniques (parametric and non-parametric) are compared. 

Introduction 

When dealing with the problem of stock and total 
allowable catch (TAC) assessment, one has to some
times operate with comercial fishery data which do not 
reflect the age structure of the exploitable population. 
In such a case, a surplus production model can serve as 
a mathematical instrument for the investigation. 

The initial data which are used for model fitting, 
especially, catch-per-unit-effort (CPU E) series contain 
errors of a different nature. Those errors can be 
regarded as random ones. This implies that any 
dynamic production model for TAC forecasting should 
be constructed as an observation error model (using 
the terminology of Walters, 1986). Therefore the fitting 
procedure for a non-linear model cannot be a simple 
regression, but must contain a certain iterative proce
dure providing gradual tuning of the model to best 
describe real stock dynamics. In such a case, any direct 
analytical estimation of confidence intervals of the 
model parameters, the stock size and TAC estimates 
(which are random values too) can be carried out very 
rarely, and the bootstrap technique offers the only real 
way to get the corresponding confidence intervals. 

As an example, the dynamic production model 
with the control through fishing effort suggested by 
Kizner (MS 1989; MS 1990), is considered below. The 
model may be shown to be stable (Kizner, MS 1990), 
therefore, its confidence intervals are rather narrow 
compared to other versions of the model (e.g. the 
model with the control through catch). The model itself 
is described in the next section, followed by the fitting 
procedure. The bootstrap procedure is then described, 
where two approaches are compared. 

The Model 

Two equations expressing balance of the stock 
biomass and the proportion between the biomass and 
CPUE: 

... (1) 

... (2) 

will serve as a basis of the following constructions 

where 

Bi - biomass at start of the year i 

Vi - CPUE at start of the year i 

C - catch in the year i 

G( ) - production function: G(Bi) = rBi(1-B i/K) 
and G(Bi) = rBi(1-1 nB/1 nK) according to 
Schaefer and Fox, respectively 

q,r,K - positive constants: q - catchability coeffi
cient, K - carrying capacity. 

Here and below in this section we operate only with 
'model' (estimated) variables (except Ci and fi). 

Substitution of equation (2) into (1) and replacing 
Ci in (1) by fi (Vi + Vi+1 )/2 reduces the system to one 
equation with respect to·CPUE: 

which gives: 

(1 - qf;l2) Vi + qG(V;/q) 

1 + qf;/2 . 
... (3) 
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Here fi is the fishing effort in the year i. For example, 
when G is the Schaefer function, the governing equa
tion is: 

1- qf;/2 + r(1-V;/qK) 
Vi+1 = Vi 1 + qf;/2 

... (4) 

The TAC forecasts are calculated in this model as 

T ACn+1 = fO.1 (Vn+1 + Vn+1+1 )/2 

where every new CPUE value is related to the previous 
one through the relationship analogous to equation (3). 
For example, for the Schaefer-type model 

V -V 1-qfo.'/2 + r(1-Vn+k/q K) 
n+k+1 - n+k 

Hqfo.1/2 

for k= 1,000., I (Vn+1 is determined by equation (4), fO.1 is 
a given control action and is described by the model 
parameters) . 

The stock biomass estimates can be obtained 
using equation (2). 

Fitting Procedure 

First, the initial (start) 'model' CPUE must be evalu
ated as 

where the actual (observed) CPUEs are denoted as 
'obs'. 

Then, the first approximations of the model 
parameters q, r, K must be given (the values of the 
parameters of the corresponding 'process error' mod
els can be taken) and the first approximations of the 
estimated Viti = 3, ... , n+1) must be evaluated through 
equation (3) (from equation (4), for the case of the 
Schaefer surplus production function). 

Every next approximation of the estimates of the 
series (Vi) and of the set of the model parameters must 
be found in the course of the iterative procedure of 
minimizing the functional 

i [(Vi+Vi+1)/2 - CPUE~bs12 ... (5) 
i=2 

if the error is supposed to be additive or 

n 

L [In ((Vi+Vi+1 )/2) - In CPUE~bs12 
i=2 

... (6) 

if the error is supposed to be multiplicative. 

On the output of the procedure described, one has 
the final estimates of q, r, K, as well as Vi for i = 3, ... , n+1. 

Bootstrap Estimation of the Confidence Intervals 

The initial data series (CPUE?bS) is in fact only a 
sample (and usually a rather short one) from any set of 
possible CPUE values (parent population). If a number 
of such samples were available, we could repeat the 
whole computational procedure over and over again to 
obtain a lot of estimates of the model parameters, of 
TACs and biomass values, and then using conventional 
statistical methods to evaluate corresponding confi
dence intervals. The residual (conditional) bootstrap 
(Efron, 1982), which is based on this very idea, is actu
ally a kind of Monte-Carlo approach to evaluating the 
statistical characteristics of the above-mentioned esti
mates by means of simulation of artificial input data 
statistically similar to the initial data series. 

Starting from the maximum likelihood prin
ciple, the residual bootstrap regards the residuals Ei = 
CPUEPbS - Vi as being a sample representing the ran
dom component in the input data, when the error is an 
additive one. Supposing all Ei are equally distributed, 
we can take any permutation of the residuals and add 
every term of the new sequence to corresponding 
'model' (estimated) CPUE values to obtain a new data 
series (a replication) similar to but different from the 
initial one. In the case of the multiplicative error, the 
ratios ai = CPUE~bS /Vi should be rearranged, and then 
every 'model' CPUE value must be multiplied by corres
ponding ai to get a new artificial data series. This des
cribed approach is called non-parametric bootstrap. 

A modification of this method, called parametric 
bootstrap, can be obtained by the use of a generator of 
pseudo-random numbers distributed just as the residu
als are. Since the method of least squares is used when 
fitting the model, it is only natural to use a generator of 
normal (if the error in the initial data is supposed to be 
additive) or lognormal (in the case of the multiplicative 
error) numbers; minimization of the functionals (5) and 
(6) should be performed in the first and the second case 
correspondingly. 

Results and Discussion 

A comparison of different variants of the descri bed 
bootstrap technique was carried out with the use of a 
computer program made by the author in co-operation 
with V. Babajan and M. Matushansky (Babajan et al., 
MS 1989). It was found that for an app'roximately 25-
year series it is sufficient to produce about 200-250 
replications to get more or less accurate estimates of 
the confidence intervals. Another result is that for the 
present model, the hypothesis of the multiplicative 
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Fig. 1. Actual data, estimated CPUE and 95% confidence intervals 
for forecasted TACs for Cape hake in ICSEAF Division 1.5. 

TABLE 1. Main results of the computations (numbers in parentheses 
are the coefficients of variation, i.e. the ratios of standard 
errors to corresponding estimates). 

Estimates and coefficients of variation 

Model parameters 

q = 0.001412(0.2691) 
K = 1221.294312(0.1758) 
r = 0.554281 (0.2098) 

Parameters of the equilibrium CPUE vs effort relationship 

a = 1.724625(0.1095) 

Fm" strategy 

MSY 
Emsy 

Bmsy 

CPU Em" 

169.234924 (0.0494) 
196.257065 (0.0906) 
610.647156 (0.1758) 

0.862313(0.1095) 

Fo.1 strategy 

Eo, 
B01 
CPUEo.1 

176.631348 (0.0906) 
671.711853 (0.1758) 

0.948544 (0.1095) 

Fitting statistics 

0.004394(0.1876) 

At start of the current year 

Bt 

Bt/K 
BtlBmsy 

665.309737 (0.2314) 
0.544758 (0.0945) 
1.089516 (0.0945) 

RY=G(Bt ) 165.804106 (0.0521) 

SS = 0.330712 Residual mean = 0.005056 S.D.E. = 0.125385 

nature of the error and, consequently, minimization of 
the functional (6) and utilization of the generator of 
lognormal numbers are preferable. 

It goes without saying, that the increase in number 
of replications increases the accuracy of the confi
dence intervals estimate (say 1 ,000, which seems to be 
enough in the present case). But the upper limit of this 
number depends also on the capacity of the computer. 

The results of application of the described 
approach to analysis of the Cape hake fishery (in the 
ICSEAF Div. 1.5) can serve as an illustration of the 
parametric bootstrap estimation of confidence inter
vals of the model parameters, T AC forecasts and cur
rent stock size (see Fig. 1 and 2, and Table 1). 
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Fig. 2. Histograms of forecasted (A) GPUEs and (8) TAGs 3 years 

ahead (1991) for 200 bootstrap replications (the data are 
shown in Fig. 1). 
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