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Abstract 

Von Bertalanffy growth parameter estimates derived from ageing contain errors 
and imprecisions, as do growth parameter estimates derived from length-based mod
els. These uncertainties propagate into management models and benchmarks based on 
the estimates. Thus management benchmarks are imprecise, and may be biased even 
when the original parameter estimates are unbiased (but uncertain). 

A Monte Carlo study was conducted to examine propagation of uncertainty from 
growth parameters into the management measure Fo.,. Size-at-age data from several 
anadromous fish species found in Chesapeake Bay (eastern USA) provided examples. 
While these particular species are not managed by Fo." the simulations are nonetheless 
illustrative. 

Length-at-age data were supplied by colleagues at the Maryland Department of 
Natural Resources and the Virginia I nstitute of Marine Sciences. Species studied were 
American shad (A/osa sapidissima), alewife (A/osa pseudoharengus), blueback herring 
(A/osa aestiva/is), and striped bass (Marone saxati/is). Estimates of natural mortality M, 
age at first capture te , and age at recruitment 1, were also supplied. Because growth 
varied by sex, analyses of the alosid stocks were performed using both pooled data and 
data separated by sex. The data for shad were collected geographically and they were 
analyzed by area, but the stock structure was not well known. 

The simulation procedure for each data set began with estimation of a reference set 
of growth parameters and its covariance matrix. Parameter estimates for several data 
sets did not converge after 150 iterations, but since the parameter estimates at this stage 
seemed to characterize mean growth well, the analysis was continued. As the absolute 
magnitude of asymptotic weight (Woo) was of no importance, Woo was estimated from 
asymptotic length (Loo) by assuming weight proportional to length and dividing by 200 
as a scaling factor. Reference estimates of Fo, and YO.1 (yield at Fo1 ) were then com
puted from the reference vector of growth parameter estimates. 

The analysiS continued with simulation of variability in the parameter estimates. 
For each data set, 1,000 random triplets of growth parameters were generated from a 
trivariate normal distribution whose mean was the reference vector of growth parame
ter estimates and whose covariance matrix was their estimated covariance matrix. For 
numerical reasons, the simulation had to be abandoned for eight example data sets in 
which the estimated correlation of K and Loowas extreme (r >0.999). For the other data 
sets, Fo.1 and Y01 were estimated for each vector of simulated growth parameters. 
Analyses of variability and bias in Fo.1 and YO.1 were made; bias was defined as the 
difference between the mean of simulated values and the reference value. A few 
duplicate simulations using 5,000 realizations demonstrated the sufficiency of the 1,000 
realizations used for this work. 
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For evaluation of bias and variability, the relative bias in FO.1 or YO.1 were defined as 
the bias divided by the reference estimate, the result expressed as a percentage. The 
relative range was defined as the interquartile range (the 75th percentile minus the 25th 
percentile) divided by the reference estimate, the result expressed as a percentage. 

The frequency distributions of simulated values of FO.1 and YO.1 included unimodal, 
bimodal and some highly skewed distributions. In most cases, the shapes of the 
distributions of FO.1 and YO.1 were dissimilar. 

The biases resulting from growth variability were small, typically on the order of 
-0.02/year in the estimate of Fo.1. The relative bias for all 21 data sets analyzed was 
negative, and usually smaller than 1 %, but had a highly skewed distribution; the mean 
was -2.6%, and the most sizable bias was -16.9%; this was the only one more than 
-10%. The examples with unconverged growth parameters had minimal biases, 
although this is likely to be due to chance. 

Compared to the very small biases, the variability in FO.1 was larger but usually 
moderate. The mean relative range was 1 0.2%. The distribution was highly skewed, with 
four of the 21 analyses having a relative range over 20%. The largest relative range was 
29.1%. 

The simulated estimates of YO.1 exhibited more bias and variability than the esti
mates of FO.1. Biases were generally negative, the examples in which growth parameters 
did not converge had larger relative biases and larger relative ranges. 

The alosid stocks examined here, which have a large spawning mortality, are 
unlikely candidates for management by FO.1. The striped bass data probably provide 
more representative examples. Those examples exhibited very small relative biases in 
FO.1 (magnitude less than 1%) and relatively small relative ranges (less than 20%). 
However, estimates of yield were biased downwards by as much as 40% (the figures for 
alosids were worse). 

The simulation methods used here certainly underestimate the actual bias and 
variability that would be expected in using these data for yield-per-recruit modeling: 
only the variability in the growth data as collected was considered, without considering 
other sources of error and variability, such as gear selection and other non-random 
sampling or systematic ageing errors. Although the methods described here could 
readily be used to examine the effects of systematic errors, only variability was looked 
at because variability but not error could be estimated from the data at hand. Although it 
was found that random variability caused only negative biases in Fo.1, there is no reason 
to believe that systematic errors cause only negative biases. Negative bias implies a 
more conservative management scheme; conversely, positive bias in the estimate 
would suggest less conservative management. Another reason that the detection and 
correction of systematic errors is particularly important is that the bias caused by 
systematic errors is not generally reduced by increased sampling intensity. 

The simulation approach developed here is flexible and could be modified to 
investigate the effects of systematic errors, random variability or a combination of the 
two; the uncertainty could follow any empirical or theoretical distribution. Because the 
method is not limited to a particular population dynamics model, it could be used to 
examine other management goals, such as maintaining a particular level of eggs-per
recruit or spawning stock per recruit. FO.1 was chosen for this study as a representative 
measure in common use. However, it might not be appropriate, in for example a species 
exhibiting large discontinuous mortality. In such a case, a numerical simulation model 
might be used to incorporate the discontinuous mortality. In short, any model that uses 
growth parameters could be analyzed by the methods shown here. Where systematic 
errors in ageing are better understood, such as after age validation studies, these 
methods could be used to arrive at a better understanding of the uncertainties involved 
in the application of a growth-based management scheme. 
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