Problems with Bottom Photography as a Method for Estimating Biomass of Shrimp (Pandalus borealis) off West Greenland

by

Dan M. Carlsson and Per Kanneworff Grønlands Fiskeriundersøgelser, Tagensvej 135, DK-2200 København N., Danmark

Abstract

Bottom photography equipment was used in NAFO Subarea 1 off West Greenland from 1977 to 1985 as a means of determining shrimp (*Pandalus borealis*) abundance. The method was expected to have many advantages over standard sampling by trawl gear. The biomass estimates obtained by means of photography were higher than the fishable biomass determined from trawl surveys. Mathematical models used were found to need further refinement for describing density variations. As a result of poor agreement between the sampling methods, the photographic method was discontinued until further analyses might show suitable correction factors.

Key words: Abundance, biomass, photography, sampling, shrimp

Introduction

The commercial fishery for shrimp (*Pandalus borealis*) off West Greenland started on a small scale in 1935, and expanded rapidly from around 1950. Until 1969, the fishery was carried out in inshore areas only. The offshore fishery started in 1970, and since then its importance has been steadily increasing.

The state of the stock has been assessed annually by ICNAF/NAFO since 1976 (NAFO, 1980; 1992), primarily based on catch and effort information from logbooks. A trawl survey in 1976 provided an estimate of the stock biomass in part of the offshore distribution of the shrimp.

In an effort to obtain estimates for the absolute density of shrimp, a photographic sampling system was developed in 1976 (Kanneworff, 1979). Bottom photographs covering a known area were analyzed with regard to the number of shrimp in different size categories. During the period 1977-85 regular sampling on shrimp abundance was carried out in parts of NAFO Subarea1 by means of the bottom photography equipment. In this paper, the history and the various problems involved in this sampling method are discussed. The biomass estimates obtained from part of the commercial fishery are evaluated in relation to catch per unit effort (CPUE) indices, and number and size distribution of shrimp in trawl samples obtained from the photographic sampling sites.

Materials and Methods

The photographic method

Throughout the period of assessment of the Greenland shrimp stocks, catch and effort data together with analyses of biological samples have been used to examine the distribution and state of the stocks. This assessment method is still the main basis for scientific advice on management of the Greenland stocks (NAFO, 1992). In 1975, a new sampling method based on bottom photography was introduced in West Greenland to obtain further data on the density of shrimp (Kanneworff, 1978; 1979). The expected advantages of this method over sampling methods based on trawl gear were:

- 1. A fairly quick method for obtaining density indices from the large areas of shrimp distribution.
- 2. A more direct observation method without mesh selection problems offering density estimates in absolute terms.
- 3. Sampling could also be carried out in areas with rough bottom unfit for trawling.
- 4. Detection of smaller shrimp than those retained by trawling gear, offering possibility of an early information on changes in recruitment.

Some disadvantages and limiting factors in the use of this technique were also anticipated or experienced later:

- 1. Although a detection of smaller individuals than retained by the trawl would be possible, this sampling had also a minimum detectable size depending of the optical system and the type of film used.
- The sampling would be very sensitive to suspended bottom material. This has proven to be a problem at certain sampling sites. Reduced visibility close to the bottom increases the minimum detectable size of the shrimp to an unknown level and causes severe difficulties in estimating the numbers and mean weights in the affected size groups.
- 3. Using a short exposure distance from the bottom (in order to get optimal light conditions) sampling would be sensitive to the movements of the ship. Thus, working with a fairly small vessel (167 GRT), the sampling would be limited to good weather conditions with winds below 10 m/sec and only light swell.
- 4. It was not possible to determine optimal sample size (i.e. number of photographs per station) during the sample operation. Both shrimp density and distributional pattern, as well as eventual problems connected with items 2 and 3 above, were unknown until after development and reading of the films.
- 5. This technique would only detect shrimp actually situated on the bottom. To estimate the total stock in a certain area would require knowledge about diel and long term vertical migrations, so that suitable correction factors could be applied. Sampling in the free water masses by means of photography was not regarded as a useful method to gather information on the size of the stock, partly because of the immense volumes of water and partly because the sampled volume would not be sufficiently well defined.
- 6. For an optimal sampling procedure the patchiness of the shrimp on the bottom should be known beforehand, so that a suitable sampling unit (i.e. exposure distance) and a sufficient number of photographs per sampling site could be chosen.
- 7. The individual length of shrimp was measured on the photographs, but it proved difficult to determine the actual size of individuals for allocation into appropriate size category. This was due to: (a) different enlargements in different parts of the photographs, because technical reasons made it necessary to work with a wideangle lens and with the camera tilted 10° from

vertical, and (b) measurements on the reading screen could only be carried out very roughly, which made it difficult to compare photographic samples with biological samples.

- 8. Reading of the films involved some interpretation problems. Thus, a fairly long period of training proved to be necessary to avoid individual bias between readers.
- 9. Working with instruments from a smaller vessel in offshore areas very often led to functional problems. Even though the equipment was built very robust some malfunctions due to rough handling were encountered from time to time. It was not always possible to detect certain technical failures during the sampling procedure or even during the cruise. Therefore, when the films were developed and read after the cruise, many sites were found to have been very poorly sampled.

Historical view

In 1976, a stratified trawl survey was carried out in part of the Davis Strait (Horsted, 1978), and the minimum fishable biomass was estimated on the basis of 'swept area' method to be about 55 000 tons. During the first 2 years of offshore photographic sampling (1977-78) the measured densities of shrimp and the calculated biomasses per unit area were used directly as stratum indices in the same stratum system as used in the trawl survey, in order to compare the two methods (Kanneworff, MS 1978; MS 1979). Having obtained a better knowledge of the region during the first years of operation, most of the strata used in the trawl survey were found to be too large to be treated as unit areas with uniform conditions for the shrimp population. Therefore, a new stratification system was introduced in 1978 (Carlsson and Kanneworff, MS 1979; Doubleday, 1981), and this has been used as the basis for all the photographic sampling since then.

The sampling scheme covered the areas between 66°00'N and 69°30'N in water depths from 100 to 600 m (parts of Div. 0A, 1A, 1B and 1C), totalling 56 406 km². The planned station grid for the surveys was the same throughout the years, but the success of sampling varied much from year to year with an almost complete coverage in the last three years only (Fig. 1).

Results and Discussions

The biomass estimates obtained by means of photography (Kanneworff, MS 1979) were much higher than the estimate for the fishable biomass from the trawl survey in 1976, and furthermore showed an increasing trend in the years 1977–79

Fig. 1. Map of sampling stations in 1977-85. The shaded areas in the circles denote years in which sampling has been carried out, and the 'exploded' parts of the circles show years in which small shrimp (groups 1 and 2) have been dominating.

(Fig. 2) in contrast to a rather steep decrease in CPUE-indices for the same area and period (NAFO, 1980). Some doubt was therefore raised as to whether the photographic figures could be used directly as density indices.

Following an earlier attempt to use a simple mathematical model based on analysis of variance (Kanneworff, 1978), a multiplicative shrimp distribution model was introduced (Jørgensen and Kanneworff, MS 1980). By means of this model, biomass indices for the strata as measured by the photographic sampling were analyzed for their dependency on a series of variables. The model was updated following each year's survey (Kanneworff, MS 1981; MS 1983; MS 1984; MS 1985; MS 1986): an optimal combination of variables was determined, estimates of those variables were found, and a calculation of total biomass for all strata within the region surveyed (66°00'N-69°30'N in depths between 100 and 600 m) was carried out.

After a series of years with sampling, it was thought that an examination of the year-to-year variation in shrimp density could be carried out including a major part of the sampling sites (Kanneworff, MS) 1986). This study showed that the size groups in which the shrimp were sorted had clearly different patterns of distribution, and that analyses of the variations in density necessarily had to be carried out for each group separately. However, analyses with separate groups did not increase the goodness of fit for the models tested, and it was thus concluded that other measures should be taken to refine this type of model for describing shrimp density variations.

Biomass estimates from photographic models Fig. 2. used during 1977-85 compared with CPUE-indices 1976–86 from a part of the commercial shrimp fishery. The basic years for the different photographic models are shown.

A comparison of CPUE-indices from the commercial shrimp fishery (Carlsson & Kanneworff, MS 1987) with the photographic biomass estimates from all the different models used through the years is given in Fig. 2. Apart from the 1985 model, none of the models exhibited an acceptable correlation with the CPUE-figures, but all of them reflected the main trends in CPUE, however, with some distortion.

The apparent good correlation of the figures from the 1985 model was discussed by Kanneworff (MS 1986). This model was not regarded as reliable, exhibiting too low correlation coefficients, and further, the correlation with the CPUE-figures was made difficult due to the photographic sampling period and sites not covering precisely the same time and area as the commercial fishery.

In order to obtain information on the size distribution of shrimp during the photographic surveys, trawling was performed at all stations with suitable bottom conditions to collect biological samples. These data were used for comparison of length frequency distributions with photographic data. The CPUE-figures from the research vessel were not used, as they were considered unreliable due to the size of the research vessel and variations in crew through the years. The relative compositions and the estimated individual shrimp weights from the two sampling methods have been compared and discussed by Kanneworff (MS 1981; MS 1983). This comparison was based on sorting in three size groups. A larger amount of smaller shrimp in the photographic samples is to be expected, as well as a lower average individual weight due to the mesh selection of the trawl, but some discrepancies from the expected pattern were noted, and the material showed no real consistency.

In order to gain more information on the size distribution from the photographic material, all photographs were re-analyzed (Kanneworff, MS 1985), and five size groups were identified with mean weights of 2.8, 3.9, 5.7, 8.0 and 10.0 g, respectively. When comparing the distribution of the new size groups in the photographic and the trawl material for the period 1981-85 (Table 1), it was evident that in most stations there was a tendency to have relatively larger animals in trawl samples. New information on development of commercial trawls with higher opening (from 5–10 m in the beginning of the fishery to up to 20 m in the newest models) resulted in higher catch rates (Carlsson & Kanneworff, MS 1987) and this may explain the obvious low comparability between the two sets of data (Fig. 3). Size groups 1-3 occurred more numerously in the photographic material than in the trawl samples, while in group 5 the proportion was reversed. Only size

	Station number								
Year		Gear	gr 1	Rela gr 2	ative num gr 3	bers in gr 4	gr 5	_ weight (g)	
1981	6019	Photo Trawl	690 96	651 157	1 000 448	1 000 657	380 1 000	6.0 8.6	
1981	6020	Photo Trawl	810 219	1 000 644	291 1 000	51 572	0 566	3.8 6.7	
1981	6021	Photo Trawl	52 7	86 46	1 000 536	621 1 000	138 907	6.8 8.8	
1981	6023	Photo Trawl	161 912	627 840	1 000 1 000	233 366	10 458	5.2 5.4	
1981	6024	Photo Trawl	920 977	1 000 688	387 734	167 590	42 1 000	4.1 6.4	
1981	6026	Photo Trawl	73 28	346 34	458 68	1 000 267	257 1 000	7.2 10.3	
1981	6027	Photo Trawl	1 000 636	863 409	301 1 000	92 480	13 160	3.8 5.3	
1981	6028	Photo Trawl	981 227	1 000 414	494 1 000	474 912	94 503	4.7 6.9	
1981	6029	Photo Trawl	17 48	325 686	1 000 1 000	658 651	145 681	6.6 7.1	
1981	6030	Photo Trawl	0 0	0 0	49 56	1 000 213	37 1 000	8.3 11.1	
1981	6033	Photo Trawl	1 000 36	81 120	248 518	177 1 000	9 426	3.9 7.9	
1981	6034	Photo Trawl	615 152	582 843	1 000 764	763 1 000	78 555	5.5 6.8	
1981	6037	Photo Trawl	488 1 000	1 000 525	768 866	138 300	5 67	4.5 4.6	
1982	6216	Photo Trawl	1 000 384	377 1 000	421 472	156 194	0 199	4.0 5.0	
1982	6218	Photo Trawl	16 87	327 603	1 000 1 000	599 614	145 707	6.5 7.2	
1982	6219	Photo Trawl	1 000 971	678 1 000	311 364	54 193	6 175	3.7 4.4	
1982	6222	Photo Trawl	28 86	159 268	1 000 1 000	347 677	40 601	6.2 7.4	
1982	6223	Photo	31	97	1 000	841	198	7.1	

41

173

28

723

102

99

125

148

990

307

595

1 000

1 000

1 000

844

898

744

723

903

1 000

1 000

286

484

123

676

8.6

6.9

7.7

5.3 7.5

Trawl

Photo

Trawl

Photo

Trawl

1982

1982

6224

6225

TABLE 1.Distribution of shrimp in samples from photographic and trawl samples, 1981–85. The relative numbers
given are per-thousand of the largest size group.

Table 1. (Continued).

	Station			Average weight				
Year	number	Gear	gr 1	gr 2	gr 3	gr 4	gr 5	(g)
1982	6227	Photo Trawl	258 52	174 116	1 000 480	545 653	30 1 000	6.0 8.8
1982	6228	Photo Trawl	983 14	699 89	1 000 575	305 678	10 1 000	4.6 8.8
1982	6229	Photo Trawl	1 000 109	991 184	769 1 000	236 897	37 753	4.4 7.7
1982	6232	Photo Trawl	303 76	655 1 000	1 000 344	99 134	21 56	4.9 4.9
1982	6234	Photo Trawl	36 5	332 172	1 000 951	528 951	36 1 000	6.2 8.2
1982	6235	Photo Trawl	97 4	149 53	667 259	1 000 490	179 1 000	7.2 9.5
1982	6236	Photo Trawl	685 117	957 599	1 000 1 000	351 687	39 196	4.9 6.2
1982	6237	Photo Trawl	1 000 74	553 526	488 1 000	75 634	5 314	3.9 6.6
1983	6428	Photo Trawl	0 30	73 67	1 000 1 000	809 940	73 1 000	6.9 8.4
1983	6429	Photo Trawl	106 271	622 751	1 000 1 000	324 334	27 82	5.5 5.3
1983	6430	Photo Trawl	592 435	1 000 858	327 1 000	47 543	0 105	4.0 5.3
1983	6435	Photo Trawl	34 77	288 333	1 000 1 000	202 208	14 62	5.7 5.7
1983	6437	Photo Trawl	0 0	0 0	1 000 609	250 565	0 1 000	6.5 9.1
1983	6438	Photo Trawl	500 0	0 132	1 000 1 000	0 105	0 26	4.7 5.8
1983	6440	Photo Trawl	500 1 000	1 000 706	500 579	222 421	83 278	4.7 5.1
1983	6442	Photo Trawl	229 622	1 000 1 000	310 625	35 248	1 54	4.2 4.5
1983	6443	Photo Trawl	530 1 000	1 000 127	312 52	27 29	0 14	4.0 2.6
1983	6444	Photo Trawl	85 89	893 473	1 000 1 000	141 274	17 232	5.0 6.1
1983	6445	Photo Trawl	380 246	815 241	1 000 1 000	482 716	47 478	5.3 7.0
1983	6446	Photo Trawl	228 554	1 000 737	596 1 000	88 389	18 26	4.6 4.9

Table 1. (Continued).

	Station number			Average				
Year		Gear	gr 1	gr 2	gr 3	gr 4	gr 5	(g)
1983	6454	Photo Trawl	764 215	651 456	1 000 1 000	193 762	21 370	4.6 6.6
1983	6455	Photo Trawl	32 8	138 148	1 000 1 000	351 727	53 489	6.3 7.6
1983	6457	Photo Trawl	154 240	769 275	1 000 1 000	368 927	38 815	5.4 7.6
1983	6458	Photo Trawl	543 265	879 94	1 000 767	246 1 000	45 951	4.9 8.0
1983	6459	Photo Trawl	379 16	348 16	1 000 92	466 582	0 1 000	5.5 10.1
1983	6460	Photo Trawl	748 0	110 19	1 000 315	577 478	18 1 000	5.4 9.9
1983	6462	Photo Trawl	0 0	57 62	1 000 391	395 573	57 1 000	6.5 9.3
1984	6713	Photo Trawl	0 93	512 394	1 000 1 000	488 653	43 220	6.0 6.5
1984	6714	Photo Trawl	0 250	0 400	1 000 1 000	333 350	0 150	6.8 5.8
1984	6716	Photo Trawl	0 0	0 100	1 000 1 000	0 167	0 0	5.7 5.8
1984	6719	Photo Trawl	1 000 1 000	311 941	71 450	6 265	3 118	3.0 4.4
1984	6720	Photo Trawl	179 270	1 000 1 000	935 902	117 202	24 54	4.8 5.0
1984	6721	Photo Trawl	1 000 644	981 970	370 1 000	53 211	34 157	3.8 4.9
1984	6722	Photo Trawl	85 31	236 361	1 000 1 000	425 840	85 490	6.2 7.3
1984	6723	Photo Trawl	175 240	100 745	1 000 1 000	100 426	100 489	5.6 6.2
1984	6724	Photo Trawl	87 75	378 251	1 000 1000	186 381	11 63	5.5 6.1
1984	6725	Photo Trawl	6 193	209 530	1 000 1 000	173 598	6 152	5.8 6.1
1984	6726	Photo Trawl	0 221	279 972	1 000 1 000	58 406	0 110	5.5 5.4
1984	6728	Photo Trawl	227 327	448 571	1 000 1 000	364 816	20 293	5.5 6.2
1984	6729	Photo Trawl	718 87	1 000 283	684 1 000	260 673	12 276	4.5 6.8

Table 1. (Continued).

	Station			Average weight				
Year	number	Gear	gr 1	gr 2	gr 3	gr 4	gr 5	(g)
1984	6733	Photo Trawl	495 13	287 179	1 000 576	396 748	69 1 000	5.4 8.8
1984	6734	Photo Trawl	17 5	131 37	1 000 384	623 1 000	114 674	6.8 8.7
1984	6737	Photo Trawl	1 000 16	108 65	203 350	159 508	9 1 000	3.8 9.5
1984	6738	Photo Trawl	1 000 117	327 458	328 1 000	62 400	0 135	3.7 6.0
1984	6740	Photo Trawl	631 970	1 000 940	863 1 000	35 251	0 40	4.3 4.4
1984	6749	Photo Trawl	495 1 000	1 000 594	131 436	0 54	0 3	3.8 3.7
1985	1	Photo Trawl	13 88	244 396	1 000 1 000	179 858	6 175	5.7 6.6
1985	5	Photo Trawl	0 3	73 55	1 000 1 000	683 618	110 249	6.9 7.1
1985	7	Photo Trawl	0 949	1 000 1 000	0 620	0 139	0 165	4.3 4.6
1985	8	Photo Trawl	1 000 63	236 470	218 1 000	31 727	0 352	3.4 6.8
1985	9	Photo Trawl	29 11	29 52	1 000 736	514 1 000	51 271	6.7 7.6
1985	10	Photo Trawl	0 0	213 9	1 000 568	449 1 000	125 967	6.5 9.3
1985	12	Photo Trawl	17 0	486 112	1 000 878	348 822	17 1 000	5.7 8.7
1985	13	Photo Trawl	399 111	1 000 284	925 839	424 1 000	32 379	5.1 7.2
1985	14	Photo Trawl	1 000 3	565 74	707 853	136 1 000	13 274	4.2 7.6
1985	19	Photo Trawl	32 8	561 155	1 000 1 000	145 530	10 364	5.3 7.3
1985	21	Photo Trawl	0 0	121 69	1 000 720	220 799	11 1 000	6.0 8.7
1985	23	Photo Trawl	619 23	1 000 412	489 1000	51 347	3 125	4.1 6.1

group 4 exhibited a fair correlation between the two data sets, however, with considerable variations. One of the possible reasons for the obvious underestimation of the number of large shrimp in the photographic material could be that this part of the population tends to swim more actively in the free water masses than do the smaller shrimp.

Fig. 3. Shrimp number per 1 000 m² in trawl samples *versus* photographic samples 1981–85. The solid line shows the 1:1 ratio between the two datasets.

Conclusions

Comparison of the biomass estimates and information on abundance of different size groups obtained by means of bottom photography with data on CPUE from the commercial fishery and the size distributions from biological samples have shown poor agreement between the photographic data and data from other sources. It was therefore decided that sampling by the photographic method should be discontinued until further analysis, including also a study of diel migration of the shrimp, shows that suitable correction factors could be applied to the photographic data.

References

- DOUBLEDAY, W. G. (ed.). 1981. Manual of Groundfish Surveys in the Northwestern Atlantic. *NAFO Sci. Coun. Studies*, **2**: 7–55.
- CARLSSON, D. M., and P. KANNEWORFF. MS 1979. Areas of basic strata in West Greenland, ICNAF/NAFO Subarea 1. *ICNAF Res. Doc.*, No. 11, Serial No. N022, 7 p.

MS 1987. The shrimp fishery in NAFO Subarea 1 in 1985 and 1986. *NAFO SCR Doc.*, No. 8, Serial No. N1267, 32 p.

HORSTED, Sv. Aa. 1978. A trawl survey of the offshore shrimp grounds in ICNAF Division 1B and an estimate

of the shrimp biomass. ICNAF Sel. Pap., 4: 23-30.

- JØRGENSEN, A. G., and P. KANNEWORFF. MS 1980. Biomass of shrimp (*Pandalus borealis*)in NAFO Subarea 1 in 1977–80 estimated by means of bottom photography. *NAFO SCR Doc.*, No. 169, Serial No. N256, 14 p.
- KANNEWORFF, P. 1978. Estimated density of shrimp, Pandalus borealis, in Greenland waters and calculation of biomass on the offshore grounds based on bottom photography. *ICNAF Sel. Pap.*, **4**: 61–65.

MS 1978. Density of shrimp (*Pandalus borealis*) in 1978 in ICNAF Subarea 1 based on bottom photography. *ICNAF Res. Doc.*, No. 89, Serial No. 5305, 6 p.

1979. Density of shrimp (*Pandalus borealis*) in Greenland waters observed by means of bottom photography. *ICES Rapp. Proc. Verb.*, **175**: 134–138.

MS 1979. Stock biomass in 1979 of shrimp (*Pandalus borealis*) in NAFO Subarea 1 estimated by means of bottom photography. *NAFO SCR Doc.*, No. 9, Serial No. N020, 6 p.

MS 1981. Biomass of shrimp (*Pandalus borealis*) in NAFO Subarea 1 in 1977–81, estimated by means

of bottom photography. *NAFO SCR Doc.*, No. 155, Serial No. N463, 19 p.

MS 1983. Biomass of shrimp (*Pandalus borealis*) in NAFO Subarea 1 in 1977–82 estimated by means of bottom photography. *NAFO SCR Doc.*, No. 1, Serial No. N639, 24 p.

MS 1984. Biomass of shrimp (*Pandalus borealis*) in NAFO SA 1 in 1978–83 estimated by means of bottom photography. *NAFO SCR Doc.*, No. 6, Serial No. N775, 24 p.

MS 1985. Biomass of shrimp (*Pandalus borealis*) in NAFO Subarea 1 in 1981–84, estimated by means of bottom photography. *NAFO SCR Doc.*, No. 8, Serial No. N942, 18 p.

MS 1986. Biomass of shrimp (*Pandalus borealis*) in NAFO SA 1 in 1981–85 estimated by means of bottom photography. *NAFO SCR Doc.*, No. 3, Serial No. N1101, 42 p.

NAFO. 1980. Reports of Scientific Council. NAFO Sci. Coun. Rep., 189 p.

1992. Reports of Scientific Council. NAFO Sci. Coun. Rep., 211 p.