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Introduction

Bottom trawl surveys provide a major source of fisheries independent information on abundance, spe-
cies composition and basic biological data for the groundfish communities in the NAFO area (Doubleday,
1981). Most of these surveys use a stratified random design with strata boundaries defined by depth
ranges, species-specific distributions and management areas.

The statistical properties of quantities commonly estimated from stratified random trawl surveys such
as mean number caught and total numbers in the population are derived from finite population or design-
based theory (Cochran, 1977; Smith, 1990; Thompson, 1992). These statistical properties do not require
that the observations or estimates made from the observations follow any particular frequency distribu-
tion. All properties such as bias and standard errors are developed assuming repeated sampling from a
finite population of sample units (e.g. trawl sites) and therefore are functions solely of the survey design.

The design basis for survey estimates has not always been appreciated, especially by those who
criticize the use of these estimates for survey data. There is a mistaken belief by many (e.g. Simard et al.,
1992; Ecker and Heltshe, 1994) that the assumption of spatial independence is required for these esti-
mates, especially the variance estimates, to be appropriate. The following example reproduced from Smith
and Robert (1997) illustrates the design basis for deriving properties of estimates from finite populations.
Consider a survey site which can be characterized as a 40 × 40 grid giving a population of 1600 possible
trawl stations. For this site I have generated two very different populations. In the first case a highly skewed
distribution without spatial structure was used to provide simulated catch values for each trawl site. In the
second case the "catches" were given a strong spatial structure by using a spherical variogram (sill = 4,
range =10) and Gaussian noise to generate the data. Random samples of size 10 and 30 were taken from
the population of 1 600 trawl sites. Means and their standard errors were calculated for the simulated
catches from each of the two populations. For an exact numerical evaluation of the bias and standard
error of the mean all possible combinations of sample size 10 and 30 would need to be used. The number
of combinations for sample size 10 exceeds 1028 and therefore an approximation of randomly choosing
5 000 samples was used for each population and sample size. The population means and standard errors
in design-based theory are defined here as the mean and standard errors for the 1 600 population values.
Comparisons of the sample values derived from the 5 000 replications with the population values in Table
1 show that the underlying distribution and "spatial" structure of the data have no effect on the unbiasedness
of the mean or the accuracy of its standard error.

Typically, means, totals and their respective variances from survey data have been calculated using
the survey design but when these data have been analysed for other purposes, model-based methods
(e.g. regression, ANOVA) which ignore the complex sampling structure are generally used. The stochastic
basis for an analysis method assuming independently and identically distributed observations will not be
appropriate when the survey design implies different sampling probabilities over strata. Problems associ-
ated with applying standard model-based methods to survey data and methods for incorporating the de-
sign into the analysis are discussed in Skinner et al. (1989).

There is also a very practical reason for emphasizing the survey design in the analysis of the survey
data. The stratified mean or total abundance is used to track changes in a fish stock. Given that these
estimates have the design built into them, it only makes sense that this design also appear in the methods
that we use to analyse the survey data for other purposes so that findings are comparable with the very
abundance index we are trying to say something about.

The fact that the problems with ignoring survey design have only received attention recently means
that there is a paucity of methods for the analysis of survey data which incorporate the survey design. This
section of the course presents not only the standard descriptive estimates such as means and variances
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TABLE 1. Results of the simulation comparing estimates and population
values from two finite populations of N = 1 600 sampling units Smith
and Robert (1997). The first population was generated as 1 600
random numbers from a Weibull distribution (shape = 30, scale =
1) multiplied by 1 600 Bernoulli random variables with P (z = 1) =
0.75. The second population was constructed as a normally
distributed random field on a 40 × 40 grid with a spherical variogram
function (sill = 4, range = 10 units). Each finite population was
resampled 5 000 times (without replacement) for sample sizes of
10 and 30.

Weibull Model Spherical Model

n = 10 n = 30 n = 10 n=30

Population Quantities

Y 28.92 28.92 0.00 0.00
 SE (Y) 9.04 5.18 0.62 0.36

Sample Estimates
Mean  y 28.84 28.97 0.00 0.00
Mean  se y 9.05 5.19 0.62 0.36

but also introduces design-based analytic methods for survey data. These latter methods aid the researcher
in evaluating the survey design, exploring for patterns in the survey data and investigating associations
between the survey catches for a particular species and ancillary variables such as near-bottom tempera-
ture or depth. The unifying theme in all of the above is the incorporation of the survey design into the
analysis methods.

This presentation is structured so that the basic theory for each of the methods is described followed
by examples. These examples were analyzed using an S-PLUS library (Statistical Sciences, 1995) written
by the author. Information on this library is presented in Appendix A and B.

Estimation/Analysis

All of the data contained here are from Canadian groundfish surveys which use stratified random
designs. Histories of surveys in the NAFO area, including the Canadian surveys are given by Doubleday
(1981), while Halliday and Koeller (1981) discuss surveys on the Scotian Shelf. The sample unit for the
survey is defined as the area over the bottom covered by a trawl of a specific width towed at 3.5 knots for
a distance of 1.75 nautical miles. The positions of these sample units or sets are selected randomly before
the cruise for each stratum. An example of a stratification scheme is that used for the Scotian Shelf  (Fig.
1). These strata are primarily based on depth boundaries of 91, 183 and 366 m (originally 50, 100 and 200
fathoms) with further delineation of the strata boundaries reflecting species/stock distributions or man-
agement areas (Doubleday, 1981; Halliday and Koeller, 1981).

Means and Variances

The following definitions will be needed for quantities associated with the trawl surveys in any one
year.

 n h = the number of hauls or sets sampled in stratum h (h = 1, ..., L),

n =   Σh = 1
L n h, the total number of sets sampled.

 N h = the total number of possible sets in stratum h,

N =   Σh = 1
L N h, the total number of possible sets in the survey area.

 f h =  n h / N h, the sampling fraction in stratum h.
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Fig. 1. Stratification map for the Scotian Shelf surveys conducted in July (1970–present). Stratum boundaries
are based primarily on depth ranges (originally measured in fathoms). The numbers on the map identify
the individual strata.

 Wh =  N h / N, the proportion of the area in stratum h.

 y hi = the number of fish caught in set i and stratum h,

 y h =   Σ i = 1

n h y hi / n h, the estimated mean abundance in stratum h,

and

 s h
2 =   Σh = 1

L (y hi – y h)2 / (n h – 1), the estimated variance in stratum h.

Quantities such as  N h are usually defined to be constant over a survey series except when new trawl
nets are introduced or new definitions of swept area are derived from research on trawl dynamics and fish
behaviour.

The example data set used here consist of catches of haddock from the July 1988 ground fish survey
of the eastern Scotian Shelf (strata 40–66; Fig. 1). A summary of the information on the number of haddock
caught for this cruise by stratum is presented in Table 2. This survey is typical of many in the Western
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TABLE 2. Summary of quantities used in calculating the stratified mean and
variance for the number of haddock caught in the 1988 Eastern
Scotian Shelf Survey. The sample size, mean and standard deviation
for  each st ratum are g iven by   n h, yh and s h, respect ive ly.  The
proportion of the total survey area in each stratum is given in the
column headed by  Wh.

Strata (h)  n h  Wh  y h  s h

40 6 0.0294 0.34 0.84
41 4 0.0318 7.40 5.50
42 7 0.0457 0.77 0.86
43 4 0.0419 0.26 0.51
44 4 0.1247 1.29 2.57
45 4 0.0325 0.00 0.00
46 3 0.0156 0.00 0.00
47 6 0.0513 24.67 45.03
48 5 0.0460 0.00 0.00
49 2 0.0046 17.73 11.32
50 3 0.0122 75.72 85.38
51 2 0.0047 2.06 2.91
52 2 0.0110 55.70 77.40
53 2 0.0082 0.00 0.00
54 2 0.0159 45.80 44.40
55 7 0.0674 94.90 59.60
56 6 0.0303 985.90 2212.80
57 2 0.0258 18.00 25.50
58 3 0.0209 77.90 118.90
59 6 0.1000 24.90 48.80
60 3 0.0427 18.60 17.20
61 2 0.0367 0.00 0.00
62 4 0.0672 2.70  4.80
63 2 0.0096 89.70 26.30
64 5  0.0412 109.30 110.50
65 8 0.0757 63.90 65.60
66 2 0.0072 1.50 2.20

North Atlantic by having many strata and few sets per stratum (2–8). Additionally, the haddock appear to
be abundant in just a few of the strata with the largest catches (and variance) coming from just one stra-
tum (56).

The stratified mean abundance and its associated variance (Cochran, 1977; Thompson, 1992) are
estimated as, respectively,

(1)
and

  
Var (y) =

N h
N2 (N h – n h)

s h
2

n h
Σ

h = 1

L
(2)

The square root of the variance of an estimate is referred to as the standard error of that estimate.

There are two important aspects of equation 2 that may not be readily apparent from the formula. In
the first place, the variance that is being measured here concerns the effectiveness of estimating the
mean catch over all  N h units,  Yh, with the sample mean. That is, the expected value over all strata of

 (y h – Yh)2  for all distinct samples of size  n h repeatedly chosen from the  N h  possible sample units within
each stratum. This formulation is unaffected by any spatial structure that may exist for the species being
captured, although temporal stability of the fish distribution is implicitly assumed. Secondly, this estimate
gives the variance of the sample mean as a predictor of what may be expected to be caught in those sites
where trawls were not made (see for e.g. Smith, 1990). The more sample units that are observed, the

  y st = Wh y hΣ
h = 1

L
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smaller  (N h – n h)  will be and the better the sample mean will be as a predictor of fish catch for those trawl
set sites that were not sampled.

The stratified mean of 56.151 haddock per tow was one of the highest in the series to date (Zwanenburg
et al., MS 1995) but this estimate also had one of the highest standard errors (27.733). Total abundance Y
is estimated by assuming that the stratified mean will predict the catch made at each of the N total pos-
sible trawl sites. Therefore, Y  is estimated as  Ny st with variance  N2 Var (y). In the case of the haddock
dataset, the estimated total abundance (in numbers) was 149 772 466 haddock with variance  (73972677)2.

Sampling texts generally suggest using parametric confidence intervals for the mean which are con-
structed by assuming that under repeated sampling the  y st have a normal or Student’s t distribution
(Cochran, 1977, p. 95–96). Due to the stratified design, the overall or effective degrees of freedom for the
Student's-t multiplier are estimated as,

  
df e =

g hΣ
h = 1

L
s h

2 2

gh
2 s h

4

n h – 1Σ
h = 1

L
(3)

where  g h = N h (N h – n h) / n h. This method is valid even if the variances differ between strata. However, the
method does require the very strong assumption of the  y hi being normally distributed so that the indi-
vidual terms of the sum in the denominator are estimates of the variance of  s h

2.  This assumption is rarely
met in practice.

The large amount of variability resulted in the effective degrees of freedom for the haddock example
being quite small (5.2409) despite the fact that a total of 106 trawl sets were made. The large standard
error and small degrees of freedom resulted in an extremely wide confidence interval with limits –14.164
and 126.466. The parametric confidence interval is constructed assuming that the stratified mean will
have a symmetric distribution. Therefore, the very large upper limit resulted in the lower limit being less
than zero.

Evaluating the Design

The precision of any statistical estimate is proportional to the amount of information that we have on
the process that we are measuring. In the case of simple random sampling those estimates of the mean
based on larger sample sizes will tend to have greater precision than those based on smaller sample
sizes. In this case the amount of information available is measured by sample size.

For complex survey designs, information is also contained in the design variables (e.g. strata). There-
fore, the precision of the stratified mean or efficiency of the stratified design is evaluated by comparing it
to a situation where there are no strata, that is, simple random sampling.

Gavaris and Smith (1987) and Smith and Gavaris (1993a) evaluated stratified random trawl surveys by
taking the difference between the variance of the mean from the stratified random design with that assum-
ing a simple random sample for the same data. A positive difference between the two variances indicates
that the stratified design resulted in a smaller variance for the mean and hence the stratification contained
useful information about the process being measured.

The difference between the two variances is estimated by:

  
Var (y srs) – Var (y st) = Σh = 1

L 1
n –

Wh
n h

Whs h
2 + N – n

n (N – 1) Σh = 1
L Wh(y h – y st)

2 – Σh = 1
L Wh (1 – Wh)

s h
2

n h

Gavaris and Smith (1987) expressed the difference as a percentage of the simple random sampling
variance which is estimated by,

  
Var (y srs) = Σh = 1

L 1
n – 1

N
Wh s h

2 + N – n
n (N – 1) Σh = 1

L Wh y h – y st
2 – Σh = 1

L Wh (1 – Wh)
s h

2

n h
(5)

(4)
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The difference between the two variances in equation 4 can be decomposed into two components.
The first term on the right is termed the allocation component and measures the contribution of the scheme
for allocating the number of trawl sets to each stratum. This term will be positive, zero or negative depend-
ing upon whether the numbers of sets were allocated in proportion to the stratum variance, stratum size or
in an arbitrary manner.

The second term, the strata component determines whether the variance between strata is larger than
that within strata. The larger this difference, the larger the amount of information that the strata boundaries
contain with respect to the distribution of the fish.

In the case of the haddock data the efficiency was positive with the variance of the stratified mean
being 47.2% smaller than the variance of the simple random sample mean. Most of this difference came
from the allocation component (44.7%). A look at the stratum details in Table 2 shows that many of the
more variable strata did receive the larger sample sizes and allocation was probably close to being pro-
portional to the strata variances (also referred to as optimal or Neyman allocation).

The strata component (2.5%) was quite small indicating that the strata boundaries contained very little
information about the distribution of haddock. Smith (MS 1991) found that in general the stratified design
was efficient for haddock in the 1980–90 groundfish trawl surveys of the eastern Scotian Shelf. In addition,
the allocation component was almost always much larger than the generally small strata component.

Smith and Gavaris (1993a) report on redesigning the March eastern Scotian Shelf survey for cod using
historical spatial distributions to design the strata boundaries. Evaluation of  this new survey design after
five years of use indicated that the new design was more efficient than the previous design. However, most
of the gain came from the allocation scheme and not the stratification scheme, despite using the cod
distribution to design the stratification. The new design consisted of fewer strata than the old design (11
versus 24) allowing for more flexibility in the set allocation scheme.

How does the improvement in the precision using modifications to the survey design comparing to just
increasing the sample size? Doubling the sample size for the haddock example assuming all other things
being equal would result in decreasing the original standard error by 29%. However, if we knew a priori
which strata accounted for what proportion of the total variance and assigned the stratum sample sizes
accordingly, then again assuming all other things equal, the standard error would be reduced by 67%
(using equation 5.27 in Cochran, 1977). That is, a much larger gain without the increasing the cost of the
survey itself but requiring much more information about the distribution of the population.

With the exception of the efficiency estimates, all of the calculations presented so far are standard for
stratified surveys in the NAFO areas. The main focus of these calculations is to estimate quantities from
the survey for assessing abundance trends and for further application such as in tuning sequential popu-
lation analysis. The efficiency estimates are more in the spirit of evaluating the survey design. In the next
subsection methods are presented for exploring the survey data which incorporate the survey design.

Exploratory Functions

While no particular statistical distribution need be assumed for survey data, the empirical cumulative
frequency distribution of the observations may be of interest in that the resulting curve may thought of, in
the predictive sense, as giving some indication of where the observations from the unsampled trawl sites
might lie (Jones and Bradbury, 1993). In standard applications where there are n observations and simple
random sampling, each observation is assigned a probability of 1/n when constructing the empirical cu-
mulative distribution function (cdf). However, for stratified random designs the probability depends upon
what stratum the observation is in and therefore the cdf is calculated as (Chambers and Dunstan, 1986),

  
F(t) =

Wh
n h

I (y hi)Σ
i = 1

n h

Σ
h = 1

L
(6)

where

  I (y hi) =
1 when y hi ≤ t;
0 otherwise

and the t are the  y hi  in increasing order.
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The cdf for the haddock data shows a highly skewed distribution with a large proportion of zeros
(greater than 40% of the observations) and a very long right-hand tail (Fig. 2). This right-hand tail points
out an extremely large catch of 5 496 haddock. In fact, this is the largest catch of haddock ever in the
history of this survey to the present day. This catch was made in stratum 56 where the largest mean and
variance also occurred. The next largest catch of 309 haddock was made in the same stratum. The fact
that no sets had between 309 and 5 496 haddock in them raises doubts about the usefulness of assuming
a smooth curve such as suggested in Fig. 2 to predict possible catches in the unsampled areas. Instead,
it looks like we could be dealing with a mixture here with most catches being in the 0 to 309 range and
possibly a very small number of schools up in the 5 400 range. Smith (1997) used non-parametric density
estimates to compare the effects of different hypothetical mixture distributions on the resultant estimates
of the mean, standard error and confidence intervals.

Fig. 2. Empirical cumulative distribution plots for numbers of haddock caught from each
tow in eastern Scotian Shelf (July 1988). Note that the maximum observation for
the eastern Scotian Shelf survey was 5 496 haddock.

What impact will this large set have on the estimates? Recall from equation 1 that each observation
contributes  (W h y hi) / n h to the stratified mean. Hence this factor expressed as a proportion of the  y st
could be considered a measure of the influence of any one observation on the stratified mean. If any of the

 (Wh y hi / n h) / y st are unusually large, this will indicate that the respective  y hi are influential on the magni-
tude o f  the s t ra t i f ied mean.  I f  none o f  the observat ions are  par t icu lar ly  in f luent ia l  then the

 (Wh y hi / n h) /y st should be roughly equal. The quickest way to get an appreciation of the distribution of the
 Wh y hi / n h / y st with respect to the  y hi  is to construct a simple scatter plot of the former versus the latter.

Such an "influence" plot (Fig. 3) for the haddock data1 highlights the large catch of 5 496 which is shown
to account for 49% of the stratified mean. The strata labels for the five most influential sets are indicated
on the plot. Removing or replacing the largest catch with the next largest catch (Smith, 1981) or a function
of the remaining observations (Moyer and Geissler, 1991) could result in a less variable estimate of the
mean but this estimate of the mean will have unknown bias.

Bootstrap Confidence Intervals

Confidence intervals based on applying the Central Limit Theorem to the distribution of means from
design-based theory are not always very useful, depending upon the range of sample sizes and observa-

1 The  y hi are cube-root transformed when plotted to scale the plot.
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Fig. 3. Influence plot for the number of haddock from eastern Scotian Shelf survey, July
1988. The five most influential sets are identified by their respective stratum label.

tions (Smith, MS 1988; Smith, 1997). The haddock example presented in the previous section shows how
poorly such confidence intervals can do when sample sizes are small and variances are large within strata.

The bootstrap technique developed by Efron (1982) offers an alternative approach to constructing
confidence intervals. Bootstrap methods have been used in a number of fisheries survey applications
(e.g. Kimura and Balsiger, 1985; Sigler and Fujioka, 1988; Robotham and Castillo, 1990; Pelletier and
Gros, 1991; Buckland et al., 1992; Stanley, 1992; Smith and Gavaris, 1993b) as a means of substituting
computational power for theoretical analysis in situations where complex survey designs have been used.
The bootstrap offers a natural way of modelling survey estimates given that its basis is very similar to that
of the randomization basis for finite population theory. The basic idea of the bootstrap is to treat the origi-
nal sample of size  as the target population and the original estimated statistic (e.g. mean, ratio) as the
population parameter to be estimated. Repeated sampling with replacement of size  from the original data
set is used to create a large number of new pseudo-samples. Estimates of the parameter of interest are
made for each of the pseudo-samples and the empirical distribution of these resultant estimates are used
to characterize the distribution of the original statistic. Bias is evaluated with respect to the difference
between the average of all of the bootstrap estimates and the original estimate. In cases where it is known
that the original statistic and its standard error are unbiased, the bootstrap estimate and its standard error
estimate must also be so.

The bootstrap method was originally introduced for the simple random sampling case where all sample
units had an equal probability of being chosen. In complex survey designs, such as stratified random
designs, the sample units have the same probability of being chosen within any one stratum but different
strata may have very different sampling intensities. Therefore, modifications need to be made to the boot-
strap procedure to reflect the survey design (Rao and Wu, 1988; Kovar et al., 1988; Smith and Gavaris,
1993b; Smith, 1997).

An obvious modification is to simply independently resample  n h observations with replacement from
each of the h strata. This method, referred to here as the Naïve method, has been shown to result in
biased estimates of the variance of the stratified mean (Rao and Wu, 1988; Smith, 1997). Two other meth-
ods have been proposed to eliminate this kind of bias. The Rescale method introduced by Rao and Wu
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(1988) resamples  m h (m h < n h) observations and then rescales the resulting observations to obtain the
correct variance. Rao and Wu (1988) suggested setting  m h = n h – 3, based upon comparing the bootstrap
third moment with the unbiased estimate of the third moment of  y st. In a recent study, Kovar et al. (1988)
compared the merits of setting  m h = n h – 3 to m h = n h – 1 and found that their results favoured the latter
over the former. Smith and Gavaris (1993b) reported similar results for a limited example.

While the rescaling method has been found to provide more unbiased estimates of the variance than
the Naïve method, it has the disadvantage of being a more computer-intensive method.

The Bootstrap-with-replacement (BWR) method is a special case of the mirror-match method intro-
duced by Sitter (1992). The BWR is similar to the Naïve method with the addition of a randomization step
for choosing either  n h or  n h – 1 resamples within each stratum. Smith (1997) compared all three methods
on trawl survey data and found that the BWR and Rescale methods performed equally well in generating
bootstrap estimates with variances very close to the stratified variance of the mean.

Smith (1997) found that for the case of the haddock survey used here, at least 750 replications were
required before the variance estimates converged to their expected values for either BWR or Rescale
methods. Reference levels for bootstrap resample sizes have been given as 20 to 50 for estimating stan-
dard errors (p. 273, Efron and Tibshirani, 1993), however the results in Smith (1997) indicate that much
higher levels are required when dealing with complex survey designs.

Bootstrap estimates of the stratified mean and variance from the haddock data using each of the three
resampling methods are presented in Table 3. A total of 1 000 replications was used for each estimate.
While the bootstrap estimates of the stratified mean provided unbiased estimates of the observed strati-
fied mean, note that the variance estimate for the Naïve method resulted in a biased estimate as adver-
tised.

Bootstrap confidence intervals do not require a distributional assumption for their construction and
thus can be used to evaluate the standard normal theory intervals. If the bootstrap estimates exhibit the
correct variance then it is assumed that the confidence intervals calculated from the bootstrap estimates

TABLE 3. Summary of results from calculating the stratified mean, median of the bootstrap distribution,
variance and 95% confidence intervals for the number of haddock caught in the 1988 eastern
Scotian Shelf survey (from Smith, 1997). The confidence intervals for the Original method were
calculated assuming a Student's-t distribution (St). Confidence intervals for the bootstrap mean
were calculated using the percentile (PC), bias-corrected (BC) and bias-corrected accelerated

 BC a methods. The Length column refers to the length of the confidence intervals. The Shape
column refers to a measure of symmetry (symmetric: Shape = 0) given by Efron (1992). Note that
the expected values for the variance of the Naïve bootstrap for the eastern Scotian Shelf was
640.30.

95% Confidence Interval

Method  Mean  Median  Variance  Type  Lower  Upper  Length  Shape

Original 56.15 * 769.1 St:  -14.20 126.50 140.70 0.00
Naïve Bootstrap 56.19  54.89 646.4 PC:  23.69 112.20 88.51  0.61

BC: 24.64 115.71 91.08  0.56

 BC a: 25.88 139.62 113.70 0.94
Rescale Bootstrap
       m h = n h – 1 56.54 58.93 768.6 PC:  21.94  124.82 102.88 0.58

BC: 20.35  99.84  79.49 1.40

 BC a: 22.26 127.12 104.90 1.87
BWR Bootstrap  56.41 58.21 769.7 PC:  22.36 125.46 103.10 0.63

BC: 20.96 102.79  81.84 1.09

 BC a:  22.83 128.28 105.40 1.45

* by definition equivalent to the mean for the Student-t distribution.
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will also be correct.

Three of the more common bootstrap confidence interval methods are the percentile method (PC), the
bias-corrected method (BC), and the bias-corrected and accelerated method (BCa) (Efron and Tibshirani,
1993).

The PC method assumes that the frequency distribution of the bootstrap estimates fully describes the
distribution function of some estimator   θ, G(s) = Prob θ ≤ s . That is,

  G(s) = I iΣ
i = 1

B
/ B,

where

  
I i =

1, if θ i
* ≤ s;

0, otherwise.

and  θ i
* denotes the i th bootstrap estimate of θ (e.g. stratified mean) and B  (i = 1, ..., B) denotes the num-

ber of bootstrap replications. Upper and lower α confidence intervals are calculated as   G– 1 (1 – α / 2), and
  G– 1 (α / 2), respectively.

The BC method (Efron, 1981) introduces a correction to the PC method to account for differences
between θ and the median of the frequency distribution. The α upper and lower confidence intervals for

this bias-corrected method are obtained as   G– 1 Φ z (1 – α / 2) + 2z 0 ,   G– 1 Φ z (α / 2) + 2z 0 , respectively;
where Φ is the standard normal distribution function,  z t is the t-th percentile of the standard normal distri-

bution and 
  

z o = Φ– 1 G– 1 # θ i
* <θ
B

 (where  #  refers to a count of how many times the condition within

the braces is true). The term  z 0  will be equal to zero when the bootstrap estimate and the median of the
 θ i

*  are equal; the bias-corrected and percentile methods are equivalent in this case.

Finally, the normal approximation often used in constructing confidence intervals assumes that the
mean is independent of the variance. However, in many cases and certainly for trawl survey catch data
this assumption doesn't appear to hold. A further correction factor, a, referred to as the acceleration is
introduced as a measure of the rate of change of the standard error of θ  with respect to the true parameter
value θ measured on a normalized scale. The α upper and lower confidence intervals for the  BC a method
are given as, respectively,

  G– 1 Φ z 0 +
z 0 + z (1 – α / 2)

1 – a (z 0 + z (1 – α / 2))

and

  G– 1 Φ z 0 +
z 0 + z (α / 2)

1 – a (z 0 + z (α / 2))
.

Note that setting both  z 0 and a to zero would result in the formula for the percentile confidence inter-
vals. The acceleration is estimated here using the jackknife-based estimate (page 186, Efron and Tibshirani,
1993) modified for stratified random surveys by Smith (1997).

The 95% upper and lower limits are provided in Table 3 for the each of the three confidence interval
methods and three resampling methods. The haddock data exhibited considerable skew in their distribu-
tion (Fig. 2). Citing general findings in the literature Cochran (1977) suggested that   1 – α confidence inter-
vals for the mean based on the normal assumption will behave as follows when the original data have a
skewed distribution. First the area covered between the upper and lower limits will be less than   1 – α.
Additionally, the probability of the mean being less than the lower limit will be less than   α / 2  while the
probability of being greater than the upper limit will be greater than   α / 2.  If the bootstrap limits are to be
an improvement then their respective upper and lower limits should be greater than those from the Stu-
dent-t distribution. The  BCa limits appear to be more reasonable than those given by the Student-t method
and correct the Student-t limits in the expected way. However, simulation results reported by Smith (1997)
suggest that BCa method may over-correct when used with the resampling methods presented here.
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associations for a particular range of temperatures or salinities or both (Scott, 1982; Smith et al., 1991;
Sinclair, 1992; D'Amours, 1993; Page et al., 1994; Perry and Smith, 1994; Smith et al., 1994). There is also
ample evidence that the amount of water impinging on the bottom that exhibits the seemingly preferred
characteristics can fluctuate over time and may therefore affect the availability or catchability of the spe-
cies being surveyed to the trawl (Smith et al., 1991; Page et al., 1994; Smith et al., 1994; Smith and Page,
1994). Unsuitable conditions in the water near the bottom may keep fish off-bottom and unavailable to the
trawl, or affect the catchability of the fish through metabolic considerations (Swain and Kramer, 1995) or
fish swimming speed/trawl towing speed interactions (Smith and Page, 1996). In addition to these studies
Perry et al. (1994) provide evidence for associations between bottom type and fish distribution.

In this section the catch-weighted cumulative distribution function method is presented to explore for
associations between fish catch and concurrently measured environmental variables (Smith, 1990; Perry
and Smith, 1994). The first step in the method involves characterizing the general frequency distribution of
environmental variable,  x hi  (e.g. near-bottom temperature) as observed during the survey by construct-
ing its empirical cumulative frequency distribution. This is done using the same approach in equation 6 for
fish catch, i.e.,

  
G(t) =

Wh
n h

I (x hi)Σ
i = 1

n h

Σ
h = 1

L
(7)

where

  I x hi =
1 when x hi ≤ t
0 otherwise

Next, we determine what proportion of the stratified mean was associated with each of the points of

 G(t).

  
K(t) =

Wh
n h

y hi
y st

I (Σ
i = 1

n h

Σ
h = 1

L
x hi) (8)

If large proportions of the stratified mean are associated with a narrow range of environmental condi-
tions, then this suggests a strong association between the distribution of the fish species and those con-
ditions. In this case  G(t) and  K(t) would show strong differences between each other. On the other hand if
the proportions of the stratified mean were randomly distributed with respect to the entire range of the
environmental conditions then we could assume that there was no association and  G(t) and  K(t) would be
almost identical.

The empirical cumulative distribution function  G(t) and the catch-weighted function  K(t)  are given in
Fig. 5, with the Habitat line referring to the cumulative distribution function for temperature. Haddock
seem to have a definite aversion to cold water. Note that while approximately 50% of the water sampled
had near-bottom temperatures less than or equal to 4°C, less than 18% of the stratified mean was found at
these temperatures. Most of the haddock were found at temperatures warmer 4°C, with the large catch of
5 496 haddock (recall that this catch accounted for 49% of the mean) being associated with a temperature
of 10.98°C.

How strong is the association between haddock and temperature? Could the differences that we ob-
serve in Fig. 5 be due to random chance? Perry and Smith (1994) developed a test statistic similar to the
Kolmogorov-Smirnov test statistic to measure the difference between  G(t)  and  K(t). That is, calculate the
maximum vertical difference between the two curves as,

  max G(t) – F(t) = max Σ
i

Σ
h

Wh
n h

y hi – y st
y st

I x hi (9)

Given the complex sample design it is unlikely that tabled values for the Kolmogorov-Smirnov test
would be appropriate here. Instead, Perry and Smith (1994) designed a randomization test to evaluate the
significance of the difference between the two curves as measured by equation 9.

The maximum vertical distance between the two curves was 0.4899. The randomization test using
4 000 replications to create the null hypothesis distribution suggests that a difference this large is fairly
significant (p = 0.055).
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6. Haddock show a strong association with warm temperatures and the large catch in stratum 56 was
associated with the highest temperature observed in the survey. If we had information on the ex-
tent of this warm water, we could evaluate how large the high abundance area was. Given the
extent of this area, the large catch could be reweighted both at the stratified mean and bootstrap
stage. Unfortunately, temperature observations are only available where trawl sets were made in
the surveys of Div. 4VW.

One major implication of item 6 is that the area of very warm water may actually be less extensive than
implied by the 1/6 weighting given to the large catch in the present survey. Therefore, any reweighting for
the true extent of the warm water would probably result in giving less weight to the large catch which in
turn would result in a lower stratified mean and could change our perception of the status of this stock in
1988.

Given that trawl surveys are quite expensive, more benefit should be obtained from the data collected.
The methods presented in this chapter are offered as a took kit for estimation, exploration and evaluation
of survey data. These methods all operate on the same basis as the survey itself – design-based inference
where the survey design, not a statistical probability model, describes the probability basis for the sample
units.
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Appendix A:  S-PLUS Library

All of the analysis methods in this presentation are available from the author as an S-PLUS library. S is
an object-oriented command line language developed by researchers at AT&T (Becker et al., 1988). S-
PLUS is a superset of this language with enhanced data manipulation, analysis and graphics functions.
The purpose of this course on survey design and analysis was not to teach S-PLUS; the methods pre-
sented were either written in and/or developed using S-PLUS; because of the power and versatility of the
language. Instead the users can access the S-PLUS functions through a series of dialogue screens devel-
oped by the author2 and supported under version 3.3 for Microsoft Windows. The dialogue screens are
themselves accessible through a series of custom-made pull-down menus.

A readme file is provided with the library describing how to install the library and create a course
specific icon. To start up the "hands-on" session on survey design and analysis, double-click the cursor on
the nafocourse icon in the S-PLUS group. Once the screen has loaded, control is returned to the user when
the cursor arrow and the prompt (usually a > sign) appears. This session contains the haddock data set
used in this presentation plus some other data sets for use by the students. The analyses and estimation
methods are contained in a library (nafolib) which is loaded automatically. In addition, the Survey Tools
menu is added to the top of the S-PLUS screen between the standard Options and Windows options. Put
the cursor on the Survey Tools item and single-click on it. The pull-down menu will list four major survey
analyses items: Describe, Estimate, Bootstrap and Association (Fig. A1). Note that when the first letter
of a menu item is underlined, this indicates that the item may be directly accessed using that letter on the
keyboard instead of the cursor.

The survey data are stored as list objects with class strata data. S-PLUS list objects refer to data
objects which can contain other types of data objects such as character data, numerical data, matrices,
vectors and even other list objects. Data objects with a class designation usually have a method associ-
ated with them – this is the object-oriented aspect of the S-PLUS language. In our case, data from a
stratified random survey design contain structure corresponding to what stratum the observation (or trawl
set) was obtained from.  All of the methods contained herein use this structure and therefore the data
objects have to contain and make available this structure. That is, all methods associated with the strati-
fied random design will be appropriate for data objects with the strata data class.

The Describe menu has only one function associated with it called Names (Fig. A2). Single-click on
Names to access the associated dialogue screen. The resulting display contains a list of strata data class
objects available in the session workspace (Fig. A3). Four data sets are available for analysis. The names
of the first three identify the species (cod and haddock), year (83, 88 and 89) with "j" indicating July
surveys, management area (4VsW, 4VW and gb indicating Georges Bank). The fourth data set contains
data on four species (cod, haddock, yellowtail and silver hake) from the July 1982 survey in NAFO Div.
4VsW.

Using the cursor, single-click on haddock88j.4vw and then single-click on OK and the following will
appear on the command screen.
>

[1] "vessel" "cruise.no" "set.no" "strata" "day"
[6] "month" "year" "tow.dist" "species" "haddock"

[11] "depth" "temperature" "salinity"
>

This is a list of the items within the strata data object haddock88j.4vw. This data object contains many
different data items but almost all of the necessary information for stratified random surveys is contained
in strata, haddock and tow.dist. The item strata contains the stratum membership for each observation and
in this case haddock contains the numbers of haddock caught for each trawl set. The item tow.dist refers
to the actual distance towed for each trawl set. Recall that for these surveys a standard distance of 1.75 nm
was assumed, although the actual length of the tow may vary. The current practice is to standardize the
numbers of fish caught for the actual distance towed to that which would have been caught over 1.75 nm.

2 These dialogue screens are still under development and all comments and suggestions are welcome.
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Fig. A1: Survey Tools pull-down menu with the four major survey analyses items.

Fig. A2: Describe pull down menu with Names item shown.

Fig. A3: Dialogue screen for Names
item of the Describe menu.
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Fig. A4: Estimate pull down menu with the five major items contained therein.

The Estimate pull-down menu has five items associated with it (Fig. A4). The first three (Stratify, Print
and Summary) are used to conduct a standard stratified analysis of the survey data. The latter two items
are used for exploratory analyses of the survey data.

 The purpose of the Stratify function (Fig. A5) is to extract necessary quantities from haddock88j.4vw
and strata.4vw to produce a strata class object. Given that a strata data object can contain data on many
species, the Stratify function prepares only the data specified for the analysis for one species.

The Stratify dialogue lists strata data objects and the strata area objects. Choose one object from
each list by single-clicking on the item in the list. In the example haddock88j.4vw and strata.4vw were
chosen. The latter object contains information on the  N h for the strata in NAFO area 4VW. The radiobutton
Fish Catch has also been selected. When Fish Catch has been selected, tow distance corrections (if tow.dist
is available) are applied to each catch. Such a correction is not appropriate for hydrographic quantities
and this option should be turned off when analysing variables other than fish catches.

Fig. A5: Dialogue screen for Stratify function of the
Estimate pull-down menu.
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Enter the variable to be analysed in the Species= and the output file name in the Output file= text
fields. The latter field allows for a strata object (in this case hadd.4vw) to be passed on to the other
analysis functions. Single-click on OK and the necessary quantities are stored in hadd.4vw.

Choose the Print item from the Estimate menu and you will see two strata objects listed (Fig. A6). The
first, codage4.4vsw, was created from the cod83j.4vsw object for users to experiment with, while the sec-
ond hadd.4vw is the object created above with the Stratify function. Single click on hadd.4vw and then on
OK and the following will appear on the command screen:

>
Strata nh Wh Mean Std. Dev.

[1,]     40 6  0.029356     0.3431    0.8405
[2,]     41 4  0.031770     7.3953    5.4986
[3,]     42 7  0.045654     0.7745    0.8587
[4,]     43 4  0.041873     0.2574    0.5147
[5,]     44 4  0.124698     1.2868    2.5735
[6,]     45 4  0.032501     0.0000    0.0000
[7,]     46 3  0.015599     0.0000    0.0000
[8,]     47 6  0.051341    24.6678   45.0335
[9,]     48 5  0.046035     0.0000    0.0000

[10,]     49 2  0.004575    17.7288   11.3230
[11,]     50 3  0.012168    75.7218   85.3797
[12,]     51 2  0.004670     2.0588    2.9116
[13,]     52 2  0.010961    55.7491   77.3853
[14,]     53 2  0.008228     0.0000    0.0000
[15,]     54 2  0.015853    45.8088   44.4021
[16,]     55 7  0.067416    94.9112   59.6268
[17,]     56 6  0.030340   985.8548 2212.7907
[18,]     57 2  0.025765    18.0469  25.5221
[19,]     58 3  0.020907    77.8731 118.9076
[20,]     59 6  0.100012    24.8962  48.8229
[21,]     60 3  0.042699    18.6152  17.2183
[22,]     61 2  0.036663     0.0000   0.0000
[23,]     62 4  0.067226     2.7183   4.7750
[24,]     63 2  0.009595    89.6553  26.3410
[25,]     64 5  0.041206   109.2778 110.5316
[26,]     65 8  0.075708    63.9120  65.6185
[27,]     66 2  0.007180     1.5441   2.1837

>

Fig. A6: Dialogue screen for Print strata object
function of the Estimate pull-down menu.
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The column designated Strata gives the strata labels  (h = 1, ..., 27) (ranging from 40 to 66) for the 4VW
area of the eastern Scotian Shelf. The next column, nh, lists the number of trawl sets  (n h) for each of the
strata in this survey. The proportion of the area in each stratum  (Wh)  is given in the column headed by Wh.
Finally, the mean (Mean) and standard deviation (Std. Dev.) for each stratum are listed in the last two
columns. This particular presentation of the data is for information purposes only and not indicative of how
the data appear in hadd.4vw. The Print function performs some processing on the strata object.

The stratified mean, variance and many other quantities are obtained using the Summary item (Fig.
A7). This dialogue lists strata objects in addition to a slider labeled alpha=0.05 and a radiobutton labelled
Efficiency Estimates. An output name for the summary can also be specified.

The slider allows the user to choose their own level   (1 – α) for parametric confidence intervals for the
stratified mean. Choosing efficiency estimates will result in the gain in efficiency due to allocation and
strata components being calculated.

Within the Summary dialogue choose hadd.4vw and efficiency estimates. Selecting OK produces the
following output on the command screen:

>
$yst:
[1] 56.151

$se.yst:
[1] 27.733

$Yst:
[1] 149772466

$df.yst:
[1] 5.2409

$alpha:
[1] 0.05

$ci.yst:
[1] -14.164   126.466

$effic.alloc:
[1] 44.701

$effic.str:
[1] 2.4552

$descrip:
[1] "Stratified Analysis"
>

This output simply produces a listing of the Summary of object hadd.4vw. The individual elements
are:

$yst: estimate of the stratified mean.

$se.yst: estimate of standard error of mean (square root of equation 2).

$Yst: estimate of stratified total,  Ny st.

$df.yst: effective degrees of freedom as per equation 3.

$alpha: α level for confidence interval.

$ci.yst: lower and upper limits for confidence interval.
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Fig. A7: Dialogue screen for Summary strata function
of the Estimate pull-down menu.

$effic.alloc: Allocation component of estimated efficiency as a percentage of simple random
sampling variance.

$effic.str: Strata component of estimated efficiency as a percentage of simple random
sampling variance.

$descrip: Simple label for summary object.

If an output file name had been given, the individual components (e.g. stratified mean), could be
identified as objectname$yst.

The Quantile dialogue (Fig. A8) on the Estimate menu will estimate and plot the cdf  for strata ob-
jects. The fields for this dialogue offer the user the ability to enter a specific x-axis label, the option of
immediately plotting the cdf or saving the x and y coordinates to a file. Specific quantiles such as the
upper and lower quartiles, can be read right off the graph or from the file.

The Plot option will open a new graphics screen where a plot such as that presented in Fig. 2 will
appear.

The Influence dialogue (Fig. A9) will plot  Why hi / n h / y st against  y hi or save these values in an output
file. The  y hi  are cube-root transformed when plotted to scale the plot (Fig. 3). Once the graph appears on
the graphics screen, the cursor will be presented as a crosshair. Position the cursor on a point that you
wish to identify and click the left mouse button. Up to five points can be identified this way. Clicking the
right hand button will cancel the identification function and return control to the user.

The Bootstrap menu has three functions under it, Boot Strata Object, Summary and QQnorm (Fig.
A10). The dialogue screen for Boot Strata Object is presented in Fig. A10 . This function works directly on
strata objects which are identified in the Strata Objects box. The list labelled Resample Method allows
the user to choose one of three published resampling methods to conduct the bootstrap analysis with. The
slider on the right hand side of the dialogue in Fig. A11 refers to the number of bootstrap resamples that
will be made. The left hand slider labelled n-m=0 is for setting the  m h for the Rescale resampling method,
that is setting n-m=1 when  n h – m h = 1.
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Fig. A8: Dialogue screen for Quantile function of the Estimate
pull-down menu.

Fig. A9: Dialogue screen for Influence function of the Estimate
pull-down menu.

The results of the bootstrap replications can be stored in a file which will have class boot for further
analysis. The results from such a boot object can be summarized using the Summary dialogue shown in
Fig. A12. Boot objects are identified in the list on the left hand side. There are two such objects available
for immediate use, although users are encouraged to generate their own3. The first object, haddock88j.bwr

3 WARNING! Although, the bootstrap algorithm has been written as efficiently as possible it is still written in S-PLUS
code and may take a few minutes. An implementation using C code with a dynamic load will be considered for a
future version.
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Fig. A10: Bootstrap pull down menu with the three major items contained therein.

Fig. A11: Dialogue screen for Boot Strata Object function
of the Bootstrap pull-down menu.

was generated with the settings in Fig. A11, while the second was generated using the haddock89.gb
strata data object, the Rescale method and n-m = 1. Both objects contain 1 000 bootstrap resamples.

The slider marked alpha=0.05 allows the user to choose their own level   (1 – α) for bootstrap confi-
dence intervals for the stratified mean.
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The list labelled CI Method lists three of the more common bootstrap confidence interval methods, the
percentile method (PC), the bias-corrected method (BC), and the bias-corrected and accelerated method
(BCa). Choosing the haddock88j.bwr object with alpha=0.05 and CI Method = BCa results in the following
output.
>
Original Mean= 56.15
Original Variance 769.1
Number of bootstraps = 1 000
Bootstrap Mean= 56.41
Variance of Bootstrap Mean= 769.7
BCa CI's for alpha= 0.05 are 22.83 128.28
Length = 105.4
Shape= 1.452

Min. 1st Qu. Median Mean 3rd Qu. Max.
15.73 29.98 58.21 56.41 67 167.8

>
The first two lines of the summary give the original stratified mean and variance of the stratified mean.

Next the number of bootstrap resamples is given. The mean of the bootstrap estimates of the stratified
mean, 56.41 is very close to the original estimate of 56.15. The next line gives the bootstrap estimate of
the variance of the stratified mean which is also very close to the original estimate.

The Length entry refers to the length of the confidence interval. The bootstrap confidence interval is
shorter than that from the Student-t (140.63 = 126.466 – (–14.164)). Shape is calculated as the natural log
of the ratio of the upper limit minus the median to the median minus the lower limit (Efron, 1992). There-
fore, a confidence interval which is symmetric around the median will have a shape measure of zero while
a shape greater than zero indicates distributions skewed to the right. The bootstrap confidence is highly
skewed, no doubt to accommodate the large catch of 5 496 haddock in stratum 56.

Fig. A12: Dialogue screen for Summary function of the
Bootstrap pull-down menu.
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Finally, key percentiles of the distribution of the bootstrap estimates are given. The distribution of
these bootstrap estimates can be plotted as quantile-quantile plot using the QQnorm dialogue in Fig.
A13. Choosing the haddock88j.bwr boot object (along with option to enter y -axis label) results in the plot
in Fig. 4.

The environmental association methods are accessed through the Association pull-down menu shown
in Fig. A14. The empirical cumulative distribution function  G(t)  and the catch-weighted function  K(t) are
obtained and plotted using the Association Plot dialogue (Fig. A15). This dialogue is similar to that for
Stratify (Fig. A5) in that strata data and strata area objects have to be chosen. In addition, the fish spe-
cies and environmental variable must be specified. Once the plot appears on the graphics screen the
cursor is presented as a crosshair. Choose a location for the legend to appear and click on the cursor
using the left button of the mouse. Clicking the right button cancels the legend placing action, returning
control to the user. The resulting association plot is given in Fig. 5, with the Habitat line referring to the
cumulative distribution function for temperature.

The test statistic and randomization test4 can be produced using the dialogue Association Test shown
in Fig. A16. In addition to the KS-Test (Kolmogorov-Smirnov), this dialogue also offers the option of choos-
ing a form of the Cramer-von Mises test (CVM-Test) which is defined as the sum of the absolute vertical
differences between  G(t) and  K(t). A slider is provided for choosing the number of replications for the
randomization test.

If the results of the Association Test dialogue are stored in an output file, they can be summarized by
using the Summary dialogue shown in Fig. A17. The results of this summary for the haddock data are
given below including key percentiles of the distribution of the randomized statistic under the null hypoth-
esis of no association.

>
Kolmorogorov-Smirnov Type test
Test Statistic = 0.4899

Fig. A13: Dialogue screen for QQnorm function of the Bootstrap
pull-down menu.

4 WARNING! Although, the randomization algorithm has been written as efficiently as possible it is still written in S-PLUS
code and may take a few minutes. An implementation using C code with a dynamic load will be considered for a
future version.
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Fig. A14: Association pull down menu with the three major items contained therein.

Fig. A15: Dialogue screen for Association Plot function
of the Association pull-down menu.

Randomization Test
P-level for randomization test = 0.05499 Summary of distribution
of 4000 test statistics from randomization simulation.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.228 0.309 0.372 0.373 0.439 0.59
>



Fig. A16: Dialogue screen for Association Test function of the
Association pull-down menu.

Fig. A17: Dialogue screen for
Summary  funct ion
of the Association
pull-down menu.



Appendix B:  S-PLUS Line Commands

The menus and screen dialogues presented above were developed for users unfamiliar with the S-PLUS
command language. The command for each dialogue function is given below for those users who wish to
use S-PLUS commands directly. These commands are shown with the necessary settings to give the ex-
amples presented above. More detailed help on each of these functions is available as windows help files
by double clicking on the NAFO Library help entry in the S-PLUS Help menu item.

The Names dialogue simply implements the S-PLUS native function names():

>names(haddock88j.4vw)

The Stratify dialogue implements the custom-made function stratify(). To reproduce the haddock ex-
ample enter:

>hadd.4vw<-stratify(haddock88j.4vw,strata.4vw,species=haddock)

To obtain results for a hydrographic variable such as temperature, declare species=temperature and
set hydro=T.

>temperature.4vw<-stratify(haddock88j.4vw,strata.4vw,species=temperature, hydro=T)

The object hadd.4vw has been given class strata and therefore the native functions print() and sum-
mary() can be used, i.e., >print(hadd.4vw) and summary(hadd.4vw,effic=T). The second argument in the
summary command refers to the efficiency calculations.

The S-PLUS commands to produce the Quantile and Influence5 plots are, respectively:

>quantile.strata(hadd.4vw,Plot=T)
>
>influence.strata(hadd.4vw,Plot=T)

The following commands are for the Bootstrap menu item. The first command provides 1 000 resample
(nresamp=1000) estimates of the stratified mean (stored in the object haddock88j.bwr) using the Boot-
strap-with-replacement method (BWR).

>haddock88j.bwr<-boot.strata(hadd.4vw,nresamp=1000,method = "BWR")

The summary (Summary) and quantile (QQnorm) commands are straightforward:

>summary(haddock88j.bwr, CI.method = "BCa", alpha.b = 0.05)

>quantile.boot(haddock88j.bwr, ylab = "Haddock Numbers")

The plot generated by the Association Plot dialogue requires two applications of the quantile.prefer()
command. The first (with implicit plot=T) presents the empirical cumulative distribution plot for the hydro-
graphic variable (e.g., temperature).

>quantile.prefer(haddock88j.4vw,hydro=temperature, strata.group=strata.4vw+,ylab="temperature")

The line for catch-weighted function is added to the plot as:

>lines(quantile.prefer(haddock88j.4vw, hydro=temperature,
+ strata.group=strata.4vw,species=haddock,plot=F),lty=2)

The association test and its summary are produced by the following command.

> had4vw.test<-prefer.test(haddock88j.4vw, hydro=temperature,
+ strata.group=strata.4vw,species=haddock,nreps = 500, method = “KS-Test”)

> summary (had4vw.test)

5 The points can be individually labelled using identify( ).
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