NOTE

This revised edition of Sampling Yearbook Vol. 18 for 1973, previously issued in February 1975, became necessary following the receipt of additional data and amendments to existing data upon the preparation of the material for incorporation into the sampling data base. Recipients of this revised edition are requested to remove from their files and destroy the previous issue of Vol. 18.

INTERNATIONAL COMMISSION FOR THE NORTHWEST ATLANTIC FISHERIES

SAMPLING YEARBOOK

Vol. 18
for the year
1973
(Revised)

Dartmouth • Canada

PREFACE

The ICNAF Sampling Yearbook has been issued annually since 1958 and has played a fundamental role in fish stock assessments carried out by the Assessments Subcommittee. The volume of sampling data has steadily increased in recent years, and new minimum sampling requirements, recommended at the 1974 Annual Meeting, if fully implemented by member countries, would mean a considerable increase in the size of the Yearbook, probably to the extent that more than one volume per year would be necessary. Since only part of the detailed data in Sampling Yearbook is normally used by individual scientists or laboratories, STACRES felt that the need for speedy availability of sampling data to individual scientists made it desirable to circulate data on request instead of in bulky volumes which involved a great amount of work to prepare and issue, and consequently, at the 1974 Annual Meeting, recommended (i) that the publication of detailed sampling data be discontinued, (ii) that lists of commercial and research sampling data available in the Secretariat be published annually, and (iii) that the Secretariat supply detailed sampling data, upon request, to scientists and laboratories involved in the work of the Commission.

This issue of Sampling Yearbook, unlike previous issues, contains lists of sampling data for 1973 contributed by 14 of the 17 member countries of ICNAF. Iceland did not fish in the ICNAF Area in 1973, and no data were received from Italy and Romania. The lists are arranged in a series of tables by species, in which the quantity of length and age sampling data is given by country, division, fishing gear and month.

The actual sampling data for 1973, reported to the Secretariat, have been computerized to provide for the rapid retrieval of data on computer printouts to meet specific requests. Copies of such data (length frequencies, age-length keys and computed age frequencies, where applicable) will be forwarded upon request to institutes and/or individual scientists involved in the Commission's work. All requests should specify the actual data required, indicating at least the species, country and division (or subarea).

The Secretariat is grateful to those scientists who have contributed sampling data and who have continued to support the Commission's need for more adequate sampling of the Northwest Atlantic fisheries, with a view to providing better assessments of the stocks.
V. M. Hodder

Assistant Executive Secretary

NOTE: This revised edition of Sampling Yearbook Vol. 18 for the year 1973 (previousty issued in February 1975) became necessary following the receipt of additional data and amendments to existing data upon preparing the material for incorporation into the sampling data base.

CONTENTS

Preface 3
Map of Northwest Atlantic showing ICNAF Statistical Areas 4
Part 1. Notes on Sampling Data 7

1. Introduction 7
2. Summary of Data Relevant to Commercial Fisheries 7
3. Summary of Research Vessel Data 8
4. Length Groups Applicable to the Various Species 9
5. Notes on Sampling Data (national) 9
Part 2. List of Sampling Data for Commercial Fisheries, 1973 15
6. Introduction
15
15
7. Abbreviations Used 15
Table 1. Atlantic cod 16
Table 2. Haddock 19
Table 3. Atlantic redfish 20
Table 4. Silver hake 22
Table 5. Red hake 23
Table 6. Pollock 24
Table 7. American plaice 25
Table 8. Witch flounder 25
Table 9. Yellowtail flounder 26
Table 10. Greenland halibut 27
Table 11. Winter flounder 27
Table 12. Roundnose grenadier 27
Table 13. Scup 28
Table 14. White hake 28
Table 15. Atlantic herring 28
Table 16. Atlantic mackerel 30
Table 17. Atlantic butterfish 31
Table 18. Alewife 31
Table 19. Atlantic argentine 31
Table 20. Black seabass 32
Table 21. Capelin 32
Table 22. Long-finned squid (Loligo) 32
Table 23. Short-finned squid (Illex) 33
Table 24. Sea scallops 34
Part 3. Sampling Data from Research Vessel Surveys, 1973 35
Atlantic cod (Canada-Q, France-SP, Fed. Rep. Germany, German Dem. Rep 35
Atlantic redfish (Canda-Q, Denmark-G, France-SP, UK) 35
Silver hake (France-SP) 36
American plaice (Canada-Q, Denmark-G, France-SP, UK) 36
Yellowtail flounder (Canada-Q, France-SP) 37
Greenland halibut (Denmark-G) 37
Greenland cod (Denmark-G) 38
Wolffishes (Denmark-G) 38
Atlantic herring (France-SP) 38
Atlantic mackerel (France-SP, Fed. Rep. Gemany 38
\ddots

PART 1
 Notes on Sampling Data

1. Introduction

The notes on sampling data contributed by the reporting countries usually contain information relating to methods of collection and presentation of the length and age frequencies and agelength keys. Some countries update their notes annually with each submission of data, but others do not comply with this requirement. The available information is summarized in Section 5 below. Additional details on sampling schemes used by most of the countries involved in the collection of sampling data in the Northwest Atlantic are documented in ICNAF Sum. Doc. 74/35, with 7 addenda. Sections 2 and 3 below contain a summary of data reported by country, species and division for commercial and research samples respectively.
2. Summary of Data Relevant to Commercial Fisheries

The following is a list of species and divisions for which commercially-oriented sampling data (see Part 2) were received from various countries for 1973:

Country	Species	Divisions
Bulgaria	Atlantic mackerel	- 5Zw, 6A
Canada (M)	Atlantic cod Haddock Atlantic redfish Pollock American plaice Witch flounder Yellowtail flounder Winter flounder White hake Atlantic herring	- 4T, 4Vn, 4Vs, 4W, 4X, 5Ze - 4W, 4X, 5Ze - 3Ps, 4R, 4S, 4T, 4Vn, 4Vs, 4W, 4X - 4W, 4X, $5 Z$ - 3N, 30, 3Ps, $4 \mathrm{~T}, 4 \mathrm{Vn}, 4 \mathrm{Vs}$ - 4Vs, 4W - 4W - 4T, 4X - 4W - 4Vn, 4W
Canada (N)	Atlantic cod Haddock Atlantic redfish American plaice Witch flounder Yellowtail flounder Greenland halibut	- 2G, 2H, 2J, 3K, 3L, 3Ps, 4R - 3L - 3Pn, 3Ps, 4R, 4S - 3K, 3L, 3N, 30, 3Ps - 3K, 30 - 3K, 3L, 3 N - 3K
Denmark (G)	Atlantic cod Greenland halibut	$\begin{aligned} & -1 C, 1 D, 1 E, 1 F, 3 K \\ & -S A 0,1 D \end{aligned}$
Fed. Rep. Germany	Atlantic cod Atlantic herring	$\begin{aligned} & -E G, 1 C, 1 D, 1 E, 1 F, 3 K \\ & -4 T, 4 X, 5 Y, 5 Z e, 5 Z W, 6 A \end{aligned}$
German Dem. Rep.	Atlantic cod Roundnose grenadier Atlantic herring Atlantic mackerel	- 3K, 3L - 1C, 2G - $5 \mathrm{Y}, 5 \mathrm{Ze}, 6 \mathrm{~A}$ - 5NK, 6NK
Japan	Red hake Atlantic mackerel Atlantic butterfish Squid - Laligo	- 5Ze - 5Ze - 5Ze, 5Zw, 6A, 6B - 5Ze, 6A, 6B
Norway	Capelin	- 3L

Country	Species	Divisions
Poland	Atlantic cod Atlantic redfish American plaice Witch flounder Atlantic herring Atlantic mackerel Squid - Loligo Squid - Illex	- 2J, 3K, 3L - 2J, 3K, 3M - 3L - 3K - $5 Z$ - 5Z, 6NK - 5Ze, 6A, 6B - 4X, 5Ze, 6A, 6B
Portuga 1	Atlantic cod	- 1B, 1C, 1D, 3L, 3N, 30
Spain	Atlantic cod	- 1B, 1C, 1D, 3L, 3N, 30, 3Ps, 4Vn, 4Vs, 5Ze
USSR	Atlantic cod Haddock Atlantic redfish Silver hake Red hake Pollock American plaice Yellowtail flounder Greenland halibut Atlantic herring Atlantic mackerel Alewife Atlantic argentine Squid - Loligo Squid - Illex	- 2J, 3K, 3L, 4V, 4W - 4W, 5Ze - 3K, 3M, 4W, 4X - 4W, 4X, 5Ze, 5Zw, 6 - 4W, 5Ze, 5ZW, 6 - 4W, 4X - 1C, 3L - 4Vs, 4W, 5Ze - 2 J - 4W, 4X, 5Z, 6NK - 4VWX, 5Z, 6NK - 4W, 5Z, 6NK - 4V, 4W, 4X - 5Z, 6NK - 4V, 5Z, 6NK
UK	Atlantic cod	- 10, 1E, 1F, 3K, 3L, 3M
USA	Atlantic cod Haddock Atlantic redfish Silver hake Red hake Pollock American plaice Witch flounder Yellowtail flounder Scup Atlantic herring Atlantic mackerel Atlantic butterfish Black seabass Squid - Loligo Squid - Illex Sea scallops	$\begin{aligned} & -5 Z e, 5 Z W \\ & -4 X, 5 Y, 5 Z e \\ & -4 R, 4 V \mathrm{~S}, 4 \mathrm{~W}, 4 X, 5 Y, 5 Z e \\ & -5 Y, 5 Z e, 5 Z W, 6 A \\ & -5 Z W, 6 A \\ & -5 Y, 5 Z e \\ & -5 Z e \\ & -5 Y, 5 Z e \\ & -5 Y, 5 Z\left(E 69^{\circ}\right), 5 Z\left(W 69^{\circ}\right) \\ & -5 Z W, 6 C \\ & -4 X, 5 Y(N), 5 Y(S), 5 Z e, 6 B \\ & -5 Z W, 6 A \\ & -5 Z W \\ & -6 C \\ & -5 Z W, 6 A, 6 C \\ & -5 Y, 5 Z e \\ & -5 Y, 5 Z e, 5 Z W, 6 N K \end{aligned}$

3. Summary of Research Vessel Sampling Data

The following is a list of species and divisions for which research vessel sampling data (see Part 3) were received from various countries for 1973:

Country	Species	Divisions
Canada (Q)	Atlantic cod	-4 S
	Atlantic redfish	-4 S
	American plaice	-4 S
	Yellowtail flounder	-4 S

Country	Species	Divisions
Denmark (G)	Atlantic redfish American plaice Greenland halibut Greenland cod Wolffishes	- 1A, 1B, 1C, 1D, IF - 1A, 1C, 1D, $1 F$ - 1A, 1B, 1D, 1E, $1 F$ - 1A, $1 D$ - 1A
France (SP)	Atlantic cod Atlantic redfish Silver hake American plaice Yellowtail flounder Atlantic herring Atlantic mackerel	- $3 \mathrm{~N}, 30,3 \mathrm{Pn}, 3 \mathrm{Ps}, 4 \mathrm{R}, 4 \mathrm{~T}, 4 \mathrm{Vn}, 4 \mathrm{Vs}, 5 \mathrm{Ze}$ - $30,3 \mathrm{Pn}, 3 \mathrm{Ps}, 4 \mathrm{R}, 4 \mathrm{Vn}, 4 \mathrm{Vs}, 4 \mathrm{~W}, 4 \mathrm{X}, 5 \mathrm{Ze}$ - 4W, 4X, 5Ze - 3Ps, 4R, 4Vn, 5Ze - 3L, 3N, 30, 3Ps, 4S, 4Vs, 4W, 5Ze - 4R, 4T, 4W, 5Ze - 4W, 4X, 5Ze
Fed. Rep. Germany	Atlantic cod Atlantic mackerel	$\begin{aligned} & -1 \mathrm{C}, 10,1 \mathrm{~F}, 2 \mathrm{GH}, 2 \mathrm{~J}, 3 \mathrm{~K} \\ & -5 Z \mathrm{e}, 6 \mathrm{~A}, 6 \mathrm{~B}, 6 \mathrm{C} \end{aligned}$
German Dem. Rep.	Atlantic cod	- 2J
UK	Atlantic redfish American plaice	$\begin{aligned} & -1 C, 1 D, 1 E \\ & -1 C, 10,1 F \end{aligned}$

4. Length Groups Applicable to the Various Species

At the 1974 Annual Meeting, the Statistics and Sampling Subcommittee reviewed the length groups to be used for the presentation of length frequencies for most of the species sampled in the ICNAF Area, and specified the species for which the data should be provided by sex, as follows:

Cod	3 cm
Pollock	3 cm
Cusk	3 cm
White hake	3 cm
Wolffish (catfish)	3 cm
Roundnose greandier	3 cm by sex
Haddock	2 cm
Red hake	2 cm
Greenland cod (G. ogac)	2 cm
Silver hake	2 cm by sex
American plaice	2 cm by sex
Witch	2 cm by sex
Greenland halibut	2 cm by sex
Yellowtail (SA 3 and 4)	2 cm by sex
Herring	1 cm
Mackerel	1 cm
Butterfish	1 cm
Redfish	1 cm by sex
Yellowtail (SA 5 and 6)	1 cm by sex
Squids (by species)	1 cm
Capelin	$\frac{1}{2} \mathrm{~cm}$ or 1 cm by sex
Other species not listed	1 cm

5. Notes on Sampling Data

a) Bulgaria

Mackerel length and age data were submitted for 1973. Length measurements were made of the fork length to the nearest millimeter and grouped into $1-\mathrm{cm}$ intervals, i.e. 30 cm includes lengths in the $30.0-30.9 \mathrm{~cm}$ range. Ages were determined from otoliths.

Data were submitted by L. Ivanov

Canada (Maritimes and Quebec)
Commercial landings in the provinces of New Brunswick, Nova Scotia and Prince Edward Island are sampled by the staff of the Biological Station, St. Andrews, N. B., in cooperation with the Conservation and Protection Branch and Fisheries Information Branch, all of which are agencies of the Fisheries and Marine Service, Environment Canada. Sampling data reported for the province of Quebec were collected by the Marine Research Institute of Quebec.

Landings of cod and haddock are normally culled by market category. Cod are divided into large (steak) and medium (market) categories at about 10 pounds fresh gutted weight. Small (scrod) cod and haddock are mainly less than $2 \frac{1}{2}$ pounds gutted weight. Small round haddock are sometimes landed in a separate market category. These market categories are usually sampled approximately in proportion to the relative numbers of each in the trip landing. When the final weightout is available, the length frequency of the landing is determined by applying weighting factors to each category. Other species reported are not usually culled by market category. Length frequencies by sexes are usually given for redfish, American plaice, yellowtail, witch and winter flounder.

Fork length measurements for groundfish are recorded to the nearest centimeter and for mackerel to the $\frac{1}{2} \mathrm{~cm}$ below. For herring the greatest total length (from the snout to the longest caudal fin rays, when the caudal fin is drawn in line with the body) is measured to the $\frac{1}{2} \mathrm{~cm}$ below. For both herring and mackerel, the length frequencies are reported to the centimeter below, i.e. fish reported as 10 cm include those in the $10.0-10.9 \mathrm{~cm}$ range. Mean lengths reported for herring and mackerel are adjusted upward by 0.5 cm . For groundfish the length frequencies are reported in $1-\mathrm{cm}, 2-\mathrm{cm}$, or $3-\mathrm{cm}$ length groups as required.

Mesh sizes indicated are the manufacturers' specifications and hence are approximations to the actual mesh size. Hook size is given by number, No. $6 / 0$ being the smallest used commercially and No. 14 being the largest hook used on longliners in Quebec.

Length and age data are normally reported in the form of age-length tables. When the age data are inadequate to apply to the corresponding length frequencies, age-length keys and length frequencies are reported separately. Ageing materials are not collected for redfish, and, although occasional samples of such species as cusk and white hake otoliths are collected, these are not aged on a routine basis.

Data were submitted by R. G. Halliday, D. N. Fitzgerald, D. S. Miller, and J. P. LussiaaBerdou.
c) Canada (Newfoundland)
i) Groundfish

Length frequencies are based on samples obtained from landings of the commercial groundfish fishery. Research samples from Labrador are taken on commercial gears operated from a small research vessel.

Measurements are recorded to the nearest centimeter for fork length of cod, haddock and redfish, and for total length of flounders (American plaice, witch, yellowtail and Greenland halibut). The measurements are made on shore before appreciable culling has occurred in the processing plants. Samples of landings after discard indicate that some of the catch may have been thrown away at sea prior to landing, whereas samples of landings before discard indicate that no fish was thrown away before landing. The sample frequencies are converted to numbers per mille, but are otherwise unadjusted except for the usual grouping into $2-\mathrm{cm}$ and $3-\mathrm{cm}$ length groups as required for certain species.

The age-length keys, used to calculate the monthly age frequencies from the length frequencies, usually represent combined quarterly stratified otolith samples for the offshore fishery. However, for some of the inshore gears (i.e. longline, handline, codtrap, gillnets) during the summer period, the age-length keys are derived from a large composite sample collected from all gears combined for a given division and time period. Also, during the peak June-July season the age-length keys have been reported by JuneJuly fishing season rather than by quarter. These points are noted at the bottom of the length and age tables.

The various inshore gears used in coastal waters are operated on boats less than 50 GRT. All otter trawl samples pertain to offshore fisheries.

Length and age data for 1973 are reported for cod, haddock, American plaice, witch,
yellowtail and Greenland halibut. Length data only are reported for redfish. The following table lists the redfish otoliths for which age data have not been reported:

Species	Div.	Gear	Month	No. of pairs of otoliths
Redfish	3Ps	MT	Mar	30
	$3 P n$	MT	Mar	71
			Apr	44
		Sep	103	
	$4 R$	MT	Apr	41
			May	193
			Jun	52
			Jul	39
			Aug	135
			Nov	146
		OT	Dec	52
		DRS	MT	Oct

All mean weights are in grams and mean lengths in centimeters. Where sample weights were available, mean weights were calculated using these; otherwise the mean weights were estimated from average lengths and length-weight relationships.

Data were submitted by A. T. Pinhorn, R. Wells, T. K. Pitt, and L. S. Parsons.
ii)

Herring
Length frequencies for 1973 are based mainly on the sampling of commercial landings from inshore waters using purse seines (about 595 meters long and 82 meters deep with $30-\mathrm{mm}$ mesh, but a few samples were obtained from beach seine catches.

Measurements are total lengths tabulated to the $\frac{1}{2}$ centimeter below, e.g. all fish whose actual total lengths fall within the $30.0-30.9 \mathrm{~cm}$ range are recorded as 30 cm . Mean lengths are calculated directly from the length frequencies as recorded in centimeter length groups.

In addition to the length frequencies, random samples of about 50 fish each are collected for age and growth studies. These are reported in the form of age-length keys with spring- and autumn-spawning types recorded separately. Ages are determined from otolith readings and refer to age-groups, and spawning types are determined from the maturity condition of the gonad in conjunction with the otolith structure.

In Subdiv. 3Ps and also in Div. 4R there are two or more distinct herring stocks, and consequently the length and age data are reported by stock area. Footnotes to the various tables of herring data for Div. $3 P$ and $4 R$ indicate the areas to which the length and age samples pertain.

Data were submitted by R. Chaulk.
d) Denmark (Faroes)

No sampling data reported for 1973.
e) Denmark (Greenland)

Sampling data (commercial and research) were submitted for cod, redfish, American plaice, Greenland halibut, wolffish and Greenland cod.

All length measurements are total length to the centimeter below. Weights are given for whole, round fish. Samples other than those obtained on research vessels are supplied by local fishermen or obtained from the landings of trawlers. However, the method of having local fishermen supply samples on their own initiative is gradually being discontinued and
the sampling of landings from the trawler fleet, which form a steadily increasing part of the total nominal catch by Denmark (G), is carried out by staff of the Research Institute.

The catches of trawlers are stored on board in boxes of $40-60 \mathrm{~kg}$ each, as head-on, gutted fish. Samples are taken, as the fish are being landed, by selecting at random a certain number of boxes. All fish in the boxes are measured, and a stratified sample of otoliths taken, normally 10 fish in each cm group where possible. Information on the total landed weight of each species by the vessel is obtained from the factory, and information on discards is obtained by interviewing the captain or other vessel personnel. The ship's log provides information on the areas fished during the trip.

In addition to the species for which sampling data are reported to the Secretariat, samples of capelin, Mallotus villosus, were obtained in Div. 1B, 1C and 10, and samples of queen crab, Chionoecetes opilio, in $1 \mathrm{~A}, \mathrm{IB}$ and 10.

Data were submitted by Sv. Aa. Horsted.
f) France (St. Pierre and Miquelon)

A substantial quantity of length and age data from research vessel cruises in Subarea 3, 4 and 5, and some commercial sampling data for yellowtail in Div. 3LN, were reported for 1973. The species sampled include cod, redfish, silver hake, American plaice, yellowtail, herring and mackerel.

The sampling data submitted did not contain notes on the methods used, but some information on sampling is contained in ICNAF Sum. Doc. 74/35, Addendum 6.

Data were submitted by J. P. Berthomé, D. Briand, Ph. Decamps, J. P. Minet and J. C. Pouland.
g) France (Metropolitan)

No sampling data reported for 1973.
h) Federal Republic of Germany

Commercial sampling data were reported for cod from East Greenland, Subarea 1 and Div. 3K, and for herring and mackerel from Subarea 5. Also a quantity of cod sampling data from groundfish surveys of the R/V Anton Dohrn were submitted.
Length measurements are made of the total length (to end of tail lobes) and recorded to the centimeter below. More detailed information on FRG sampling methods is given in ICNAF Sum. Doc. 74/35, page 11 and Addendum 7.

Data were submitted by J. Messtorff and A. Schumacher.
i) German Democratic Republic

Sampling data were submitted for cod, roundnose grenadier, herring and mackerel for 1973. No notes on the sampling methods used were included, but details of the GDR sampling schemes are given in ICNAF Sum. Doc. 74/35, Addendum 4.

Data were submitted by W. Ranke.
j) Icetand

No sampling data reported for 1973.
k) Italy

No sampling data reported for 1973.

1) Japan

Sampling data were reported for butterfish, squids, mackerel and red hake. The samples are collected from commercial catches of trawlers and measured on deck before discarding.

Length measurements are made of the fork length to the nearest centimeter for fish with a forked caudal fin and the total length for others. The mantle length is measured for squid.

Data were submitted by I. Ikeda.
m) Norway

Sampling data were submitted for capelin in Subarea 3, but no notes on the sampling methods used were included.

Data were submitted by \emptyset. Ulltang.
n) Poland

Sampling data were reported for cod, redfish, American plaice, witch, mackerel and squids for 1973, but notes on methods were not given. However, as noted in previous issues of the Yearbook, length measurements are made of total length on a measuring board with the scale offset by 0.5 cm to permit measuring to the nearest centimeter. More details of sampling methods are given in ICNAF Sum. Doc. 74/35, Addendum 1.

Data were submitted by J. Janesz, A. Kosior, E. Stanek, M. Lipinski and S. Ueinski.
o) Portugal

Sampling data were reported for cod taken on gillnet vessels fishing in Subareas 1 and 3 in 1973. No notes on sampling data were submitted, but a description of the sampling scheme is given in ICNAF Sum. Doc. 74/35. In previous issues of the Sampling Yearbook, it is noted that length measurements are made of total length and recorded to the nearest centimeter.

Data were submitted by M. Lima-Dias.
p) Romania

No sampling data reported for 1973.
q) Spain

No notes on sampling methods were submitted with the 1973 sampling data for cod. However, as noted in previous issues of the Yearbook, length measurements are made of total length (to end of tail lobes) and are recorded to the centimeter below. More details on the sampling scheme are given in ICNAF Sum. Doc. $74 / 35$, Addendum 5.

Data were submitted by M. G. Larraneta, J. Rucaboda and E. C. Lopez-Veiga.
r) Union of Soviet Socialist Republics

Sampling data for 1973 were reported for cod, haddock, redfish, silver hake, red hake, pollock, American plaice, yellowtail, Greenland halibut, herring, mackerel, alewife, argentine and squid, but no notes on sampling methods were included. However as noted in previous issues of the Yearbook, length measurements are made of total length and recorded to the nearest centimeter. Details of the USSR sampling procedures are given in ICNAF Sum. Doc. 74/35, Addendum 2.

Data were submitted by V. I. Isakov, K. G. Konstantinov, A. S. Noskov, V. A. Rikhter, A. P. Senina and R. P. Volkova.
s) United Kingdom

Sampling data for 1973 were reported for cod, redfish and American plaice.
Measurements are made of the total length to the centimeter below and grouped into the length intervals required for the various species.

Samples designated as landings are of head-on gutted cod sampled after the vessels have returned to port. Samples designated as catches are of round fish sampled on board a research vessel during its voyage and include fish which might have been discarded during commercial fishing. Mean weights are those of whole fish.

Stratification was used in the sampling of fish for otoliths from commercial landings, but for research vessel data the otolith samples were random sub-samples of those measured.

Data were submitted by B. C. Bedford and C. L. Whiting.
t) United States of America

Sampling data for 1973 were reported for cod, haddock, redfish, silver hake, red hake, pollock, American plaice, yellowtail (by ICNAF division and also by management area), witch, scup, herring, mackerel, butterfish, black sea bass, sea scallops and squids. No notes on sampling methods were included with the data, but details on sampling schemes are given in ICNAF Sum. Doc. 74/35.

As noted in previous issues of the Yearbook, length measurements are made of the fork length to the nearest centimeter and grouped into the required length intervals for reporting. Measurements are made to the nearest millimeter for scale and otolith samples.

Data were submitted by E. G. Heyerdahl, R. K. Mayo, A. M. Tibbetts and G. T. Waring.

PART 2
 List of Sampling Data for Commercial Fisheries, 1973

1. Introduction

The tables in this section of the Yearbook contain information on all available commercial length and age sampling data for 1973, submitted by 14 of the 17 member countries of ICNAF. Most of the data were derived directly from commercial catches or landings, as indicated by the abbreviations "CC" or "CL" in the coumn headed "Type of sample". However, some samples reported as "research" have been included, where the type of gear used or the gear size reported indicated that they were relevant to commercial fishing operations, and these are designated as "RC" or "RL" in the "Type of sample" column. Sampling data pertaining to pure research vessel operations (survey data not connected with commercial fisheries) are listed in Part 3 of this issue.

In all cases where the data were available by sex, the number of fish of each sex measured and/ or aged are listed in the appropriate columns by two numbers, the first being the number of males and the second being the number of females (e.g. 476/565). Entries in the last column under the heading "No. aged" imply that quarterly age-length keys are available and also that "per mille" age frequencies by month have been calculated and can be provided on computer printouts together with the monthly length frequencies.
2. Gear Abbreviations Used

The following abbreviations are used to designate the "gear" in Tables 1 to 24 of this section and also in the listing of research samples in Table 25.

	GEAR
OTB	Bottom otter trawl (side and stern)
OTM	- Midwater otter trawl (side and stern)
PTB	- Bottom pair trawl (2 boats)
PTM	- Midwater pair trawl (2 boats)
SN	- Seine net (Danish and Scottish seines)
SB	- Beach seines
PS	- Purse seines
GN	- Gillnets (set and drift)
LL	- Longlines (set)
LHP	- Handlines and pole-lines
FPN	- Uncovered pound nets
FWR	- Weirs, barriers, fences, etc.
DRB	- Boat dredges
NS	- Gear not specified

Table 1. Atlantic cod length and age sampling data for 1973.

Country	ICNAF	Gear	Month	Type of sample	$\frac{\text { Leng }}{\text { No. }}$	h samples		samples
Canada (M)	4 T	ОТВ	Apr	CL	2	630		
			May	CL	2	400	6	236
			Jun	CL	2	401		
			Oct	CL	2	407		
			Nov	CL	2	400	5	179
			Dec	CL		300		
		SN	Jun	CL	,	200	1	47
			Aug	CL	1	200		
			Sep	CL	1	200	2	62
		GN	Jun	CL	3	538	3	122
			Jul	CL	2	332		
			Aug	CL	3	571	7	297
			Sep	CL	2	400		
		LL	JuT	CL	1	200	3	81
	4 Vn	отв	Jan	CL	3	884	3	143
			Apr	CL	1	330	2	79
			May	CL	1	347	2	79
		OTM	Apr	CL	1	317	1	59
		LL	Sep	CL	3	882	3	154
	4Vs	OTB	Feb	CL	1	312	2	116
			Mar	CL	1	248	2	
			Apr	CL	1	320	1	49
	4W	Отв	Jan	CL	1	252		
			Mar	CL	2	686	3	146
			Apr	CL	1	390	1	61
			Oct	CL	1	318		
			Nov	CL	,	344	2	87
	4x	ОТв	Feb	CL	1	249	1	51
			May	CL	1	378	,	59
			Sep	CL	,	93	1	32
			Dec	CL	1	123	1	41
		LL	May	CL	1	170	2	112
			Jun	CL	1	217	,	172
			Dec	CL	1	188	1	48
		LHP	Oct	CL	1	89	1	33
	5ze	отв	Aug	CL	1	269	1	51
Canada (N)	2G	LHP	Aug	CC	2	134	2	134
	2 H	LHP	Aug	CC	4	347	4	227
	2 J	GN	Aug	CL	9	2017	14	$704{ }^{1}$
		FPN	Aug	CL	5	3142	14	$704{ }^{1}$
	3K	GN	Jul	CL	19	3844	16	719^{2}
		LHP	Jul	CL .	1	208	16	719^{2}
		FPN	Jul	CL	10	3326	16	719^{2}
	3L	отв	Feb	CL .	1	778	1	111
		GN	Jun	CL	12	3028	21	1614^{3}
		LHP	Jun	CL	4	1844	21	16143
		FPN	Jun	CL	14	7300	21	$1614{ }^{3}$
	3Ps	ОТВ	Feb	CL	1	1047	1	201
			Nov	CL	1	1243	1	201
		GN	Jun	CL	23	3017	26	563^{4}

Table 1. Atlantic cod (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Canada (N)	3Ps	LL	Jun	CL	1	343	26	$563{ }^{4}$
			Sep	CL	4	3081	4	493
		FPN	Jun	CL	16	5682	26	$563{ }^{4}$
	4 R	OTB	Ju1	CL	1	296	-	-
		GN	Jul	CL	11	2939	5	606^{5}
		FPN	Ju1	CL	2	1576	5	6065
Denmark (G)	1 C	0TB	Jan Feb	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{CC} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} 832 \\ 1075 \end{array}$	2	715
	1 D	OTB	Mar Apr Nov	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 877 \\ & 941 \\ & 992 \end{aligned}$	1	$\begin{aligned} & 211 \\ & 253 \\ & 370 \end{aligned}$
		FPN	Aug	CC	2	693	1	192
	IE	OTB	$\begin{aligned} & \text { Jul } \\ & \text { Oct } \end{aligned}$	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 763 \\ & 912 \end{aligned}$	$\overline{7}$	$42 \overline{2}$
	1F	GN	Oct	CC	1	198	1	198
	3K	OTB	May	CL	2	1128	1	252
Fed. Rep. Germany	EG	OTB	Jan Feb Mar Apr May	$\begin{aligned} & C L \\ & C L \\ & C L \\ & C L \\ & C L \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 4 \\ & 3 \\ & 1 \end{aligned}$	$\begin{array}{r} 1429 \\ 1271 \\ 1699 \\ 1328 \\ 339 \end{array}$	10 4	$\begin{array}{r} 1925 \\ 769 \end{array}$
	1C	OTB	Jun	CC	1	225	1	212
	1D	ОTB	Mar	CC	3	1698	2	438
	IE	0TB	$\begin{aligned} & \text { Mar } \\ & \text { Apr } \end{aligned}$	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{array}{r} 980 \\ 2785 \end{array}$	3	226
	IF	OTB	$\begin{aligned} & \text { Mar } \\ & \text { Dec } \end{aligned}$	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 8 \\ & 1 \end{aligned}$	$\begin{array}{r} 5896 \\ 465 \end{array}$	4 1	$\begin{aligned} & 673 \\ & 154 \end{aligned}$
	3K	OTB	Apr	CC	-	6217	4	947
German Dem. Rep.	3K	OTB	Jan Feb Mar	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	$\begin{array}{r} 6 \\ 10 \\ 4 \end{array}$	$\begin{array}{r} 1437 \\ 2121 \\ 506 \end{array}$	10	997
	3L	OTB	Feb Apr	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{array}{r} 1398 \\ 554 \end{array}$	2	$\begin{aligned} & 204 \\ & 104 \end{aligned}$
Poland	2 J	OTB	Jan Mar	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 8 \\ & 2 \end{aligned}$	$\begin{aligned} & 3211 \\ & 1039 \end{aligned}$	-	-
	3K	OTB	Feb	CC	5	6841	5	801
	3L	OTB	Jan Feb	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 3 \\ & 7 \end{aligned}$	$\begin{aligned} & 1267 \\ & 7695 \end{aligned}$	7	1006
Portugal	1B	GN	Ju1	CC	8	2338	-	-
	1 C	GN	$\begin{gathered} \text { Jun } \\ \text { JuI } \end{gathered}$	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{array}{r} 100 \\ 1688 \end{array}$	-	
	10	GN	Jun	CC	12	3599	5	501
	3L	GN	$\begin{aligned} & \text { Jul } \\ & \text { Sep } \end{aligned}$	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 652 \\ & 200 \end{aligned}$	4	402
	3N	GN	Aug Sep	$\begin{aligned} & C C \\ & C C \end{aligned}$	10 4	$\begin{array}{r} 3111 \\ 571 \end{array}$	6	454
	30	GN	May Aug	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & 2012 \\ & 2570 \end{aligned}$	4	355

Table 1. Atlantic cod (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Spain	1B	PTB	Sep	CC	1	353	1	67
	1 C	PTB	Aug Sep Oct Nov	$\begin{aligned} & C C \\ & C C \\ & C C \\ & C C \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \\ & 3 \\ & 8 \end{aligned}$	$\begin{array}{r} 308 \\ 2490 \\ 1374 \\ 3268 \end{array}$	-	356 616
	10	PTB	Aug Sep Oct Nov	$\begin{aligned} & C C \\ & C C \\ & C C \\ & C C \end{aligned}$	$\begin{array}{r} 2 \\ 10 \\ 9 \\ 6 \end{array}$	$\begin{array}{r} 749 \\ 3007 \\ 3816 \\ 2336 \end{array}$	-	466 795
	3L	PTB	Apr May	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{CC} \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 1777 \\ & 1578 \end{aligned}$	-	290
	3N	PTB	May Jun JuI	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 1917 \\ 1742 \\ 726 \end{array}$	-	422 38
	30	PTB	Jun	CC	4	1621	-	196
	3Ps	PTB	Apr Dec	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 893 \\ 2029 \end{array}$	-	$\begin{array}{r} 75 \\ 235 \end{array}$
	4Vn	PTB	Feb Dec	$C C$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 823 \\ & 771 \end{aligned}$	-	$\begin{aligned} & 72 \\ & 94 \end{aligned}$
	4Vs	PTB	Feb Mar	$\begin{aligned} & \text { CC } \\ & \text { CC } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 1614 \\ & 1605 \end{aligned}$	-	273
	5Ze	PTB	Feb	CC	7	1492	-	172
USSR	2J	OTB	Jan	RC	13	2621	-	$902{ }^{6}$
	3K	OTB	Jan Feb Apr	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 60 \\ & 32 \\ & 28 \end{aligned}$	$\begin{array}{r} 12039 \\ 6407 \\ 5626 \end{array}$	-	$\begin{aligned} & 902^{6} \\ & 315 \end{aligned}$
	3 L	OTB	Jan Feb	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 49 \\ & 50 \end{aligned}$	$\begin{aligned} & 9852 \\ & 9894 \end{aligned}$	-	556
	4V	OTB	Aug	CC	13	2558	-	-
	4W	OTB	$\begin{aligned} & \text { Jun } \\ & \text { Jul } \end{aligned}$	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{CC} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	-	-
UK	10	OTB	Nov	RC	7	318	7	247
	1E	OTB	Jan May	CL	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 168 \\ & 170 \end{aligned}$	1	28
	IF	OTB	Jan Nov	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & 205 \\ & 887 \end{aligned}$	1	$\begin{array}{r} 22 \\ 327 \end{array}$
	3 K	OTB	$\begin{aligned} & \text { Apr } \\ & \text { Jun } \\ & \text { Jul } \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 247 \\ & 462 \\ & 621 \end{aligned}$	2	1047 25
	3L	OTB	Jun	CL	1	249	2	1047
	3M	OTB	Jun	CL	1	499	1	31
USA	5Ze	OTB	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	$\begin{aligned} & C L \\ & C L \end{aligned}$	3 3 3 4 6 5 4 4 7 5 9	397 453 389 643 797 706 616 452 790 625 1362 280	- - -	-

Table 1. Atlantic cod (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
USA	5Zw	OTB	Jan	CL	1	104	-	-
			Dec	CL	1	144	-	-

1	Same key used for GN and FPN.	5	Same key used for GN and FPN.
2	Same key used for GN, LHP and FPN.	6	Same key used for 2J and 3K.
3	Same key used for GN, LHP and FPN.	7	Same key used for 3K and 3L.
4	Same key used for GN, LL and FPN.		

Table 2. Haddock length and age sampling data for 1973.

	ICNAF			Type of	Leng	th samples		samples
Country	Div.	Gear	Month	sample	No.	No. meas.	No.	No. aged
Canada (M)	4W	OTB	Mar	CL	6	1420	6	225
			May	CL	1	210	1	34
			Sep	CL	1	201	1	40
		L.L	Apr	CL	2	496	2	69
			Oct	CL	1	156	1	31
	4X	OTB	Jan	CL	3	785		
			Feb	CL	4	875	11	360
			Mar	CL	4	1573		
			Apr	CL	3	721	4	119
			May	CL	1	176	4	119
			Aug	CL	1	256	1	27
			Sep	CL	1	315	1	27
			Oct	CL	2	815	3	78
			Nov	CL	2	462	3	78
		LL	Jan	CL	1	120	2	69
			Feb	CL	2	315	2	69
			May	CL	2	360	2	60
			Jul	CL	1	228	3	91
			Sep	CL	2	359	3	91
			Nov	CL	1	199	1	33
	5Ze	OTB	Aug	CL	1	333	2	72
			Sep	CL	1	256	2	72
			Oct	CL	1	432	1	38
Canada (N)	3 L	FPN	Jun	CL	1	102	1	102
USSR	4W	OTB	Feb	CC	1	200	-	-
			Mar	CC	2	400	-	
			Apr	CC	1	200	-	-
			Jun	CC	1	227	-	-
	5Ze	OTB	Apr	CC	1	200		
			May	CC	4	800	-	-
			Jun	CC	1	200		
			Sep	CC	1	200	-	-
USA	4X	OTB	Feb		1	78		
			Mar	CL	2	216	3	60
			Apr	CL	3	247	3	61
	$5 Y$	OTB	Mar	CL	1	99	1	28
			Nov	CL	2	205	2	40

Table 2. Haddock (continued)

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
USA	5Ze	OTB	Jan	Cl	5	607		
			Feb	CL	6	522	14	287
			Mar	CL	3	263		
			Apr	CL	5	499		
			May	CL	10	1037	21	428
			Jun	CL	6	596		
			Jul	CL	8	516		
			Sep	CL	5	417	11	295
			Oct	CL	5	525		
			Nov	CL	3	309	9	200
			Dec	CL	5	456		

Table 3. Atlantic redfish length and age sampling data for 1973.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (M)	3 Ps	OTM	Mar	CL	2	122/297		
	4R	OTB	$\begin{aligned} & \text { Jul } \\ & \text { Sep } \end{aligned}$	$\begin{aligned} & C L \\ & C L \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 143 / 124 \\ & 161 / 268 \end{aligned}$		
		OTM	Apr May Jun Aug Oct Nov Dec	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$ CL CL	$\begin{aligned} & 4 \\ & 2 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 494 / 580 \\ & 297 / 316 \\ & 103 / 97 \\ & 107 / 134 \\ & 207 / 241 \\ & 232 / 329 \\ & 294 / 204 \end{aligned}$		
	4S	OTB	Jul Aug Oct	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 110 / 90 \\ & 118 / 166 \\ & 241 / 359 \end{aligned}$		
		OTM	Jan Apr May Jun Aug Sep 0ct Nov Dec	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 2 \\ & 5 \\ & 1 \\ & 3 \\ & 6 \\ & 6 \end{aligned}$	$\begin{gathered} 97 / 143 \\ 112 / 97 \\ 342 / 325 \\ 197 / 203 \\ 434 / 571 \\ 129 / 124 \\ 274 / 350 \\ 666 / 615 \\ 318 / 328 \end{gathered}$		
	$4 T$	OTB	Aug	CL	1	133/138		
		OTM	Jun	CL	1	132/116		
	4 Vn	OTB	Aug	CL	1	46/162		
	4Vs	OTB	Sep	CL	1	126/133		
	4W	OTB	Mar Jun Jul Aug Oct Nov	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{array}{r} 121 / 111 \\ 143 / 112 \\ 97 / 126 \\ 97 / 188 \\ 121 / 146 \\ 287 / 384 \end{array}$		
	4X	OTB	May	CL	2	318/237		

Table 3. Atlantic redfish (continued)

Country	ICNAF Div	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (N)	3 Pn	OTM	Apr	CL	1	212/269		
			Sep	CL	2	577/456		
	$3 \mathrm{P}_{5}$	OTM	Mar	CL	2	409/595		
	4R	OTB	Apr	CL	1	211/269		
			Dec	CL	1	334/260		
		OTM	Apr	CL	1	214/237		
			May	CL	4	987/1067		
			Jun	CL	1	357/165		
			Jul	CL	1	319/99		
			Aug	CL	3	862/522		
			Oct	CL	3	702/751		
			Nov	CL	1	337/175		
			Dec	CL	2	550/455		
	4S	OTM	Jun	CL	1	287/205		
			Oct	CL	1	280/241		
Poland	2 J	OTB	Jan	RC	1	331		
			Mar	RC	1	443		
	3 K	OTB	Feb	RC	1	466		
			Mar	RC	1	418		
	3M	OTB	Jan	RC	1	344		
			Mar	RC	2	832		
USSR	3K	OTB	Jan	RC	-	935/1143	-	134/173
	3M	OTB	Feb	RC	-	646/675		
			Mar	RC	-	5705/5696	-	253/290
			Apr	RC	-	755/716	-	-
	4W	OTB				1400		
			May	$C \mathrm{C}$		806		
			Jun	CC	4	853		
			Jul	CC	1	200		
			Aug	CC	57	11400		
			Sep	CC	3	600		
			Oct	CC	5	1000		
			Nov	CC	6	1200		
	4X	OTB				200		
			May	CC	1	200		
			Sep	CC	60	12000		
USA	4R	OTB						
			Aug	CL	3	$154 / 146$		
			Sep	CL	4	192/208		
			Dec	CL	1	57/43		
	4Vs	OTB	Apr	CL	1	56/44		
			May	CL	1	52/48		
	4W	OTB	Jan	CL	6	270/330		
			Feb	CL	9	425/485		
			Mar	CL	3	130/170		
			Apr	CL	2	77/122		
			May	CL	1	45/55		
			Jun	CL	2	115/85		
			Jul	CL	1	73/43		
			Aug	CL	2	83/177		
			Sep	CL	2	119/81		
			Oct	CL	5	280/224		
			Nov	CL	4	218/182		
			Dec	CL	5	203/297		

Table 3. At Tantic redfish (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
USA	4X	OTB	Jan	CL	1	45/55		
			Feb	CL	2	84/116		
			Mar	CL	8	320/480		
			Apr	CL	1	63/37		
			May	CL	5	258/243		
			Jun	CL	8	456/348		
			Jul	CL	3	175/125		
			Sep	CL	1	37/63		
			Oct	CL	6	325/275		
			Nov	CL	3	165/137		
			Dec	CL	4	196/204		
	$5 Y$	OTB			6			
	SV		Feb	CL	1	$48 / 53$		
			Mar	CL	3	124/176		
			Apr	CL	9	403/507		
			May	CL	6	297/296		
			Jun	CL	6	219/381		
			Jul	CL	5	190/312		
			Aug	CL	5	226/274		
			Sep	CL	1	67/38		
			Nov	CL	2	82/118		
			Dec	CL	1	49/50		
	5Ze	OTB		CL	4	210/190		
			Apr	CL	5	304/232		
			May	CL	2	107/92		
			Jun	CL	3	143/160		
			Ju1	CL	1	62/35		
			Aug	CL	2	119/82		

Table 4. Silver hake length and age sampling data for 1973.

	ICNAF			Type of	Len	h samples		samples
Country	Div.	Gear	Month	sample	No.	No. meas.	No.	No. aged
USSR	4W	OTB	Feb	CC	1	200		
			Mar	CC	113	22600	-	125/194
			Apr	CC	68	13514		
			May	CC	46	9101	-	67/153
			Jun	CC	175	35060		
			Jul	CC	74	14768		
			Aug	CC	138	27641	-	81/171
			Sep	CC	18	3600		
			Oct	CC	124	24800	-	67/139
			Nov	CC	44	8800	-	67/139
	$4 x$	OTB	Mar				-	57/66
			May	CC	1	200	-	48/70
			Jun	CC	3	600	-	48/70
			Sep	CC	84	16807	-	124/141
			Oct	CC	5	1000		
			Dec	CC	18	3600	-	114/183
	5Ze	OTB	Jan	CC	6	1200		
			Feb	CC	21	4200	-	270/214
			Mar	CC	8	1600		
			Apr	CC	16	3212		
			May	CC	15	3000	-	88/135
			Jun	CC	14	2800		

Table 4. Silver hake (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
USSR	5Ze	OTB	Jul	CC	55	10972		
			Aug	CC	17	3410	-	205/252
			Sep	CC	2	400		
			Oct	CC	9	1800		
			Nov	CC	19	3790	-	89/125
			Dec	CC	22	4363		
	5Zw	OTB	Feb	CC	1	206	-	-
			May	CC	1	200		
			Jun	CC	5	1000	-	27/68
			Jul	CC	1	200	-	-
	6NK	OTB	Feb	CC	2	510		95/144
			Mar	CC	17	3402	-	95/144
			May	CC	1	200	-	84/85
			Sep	CC	2	400	-	115/193
			Oct	CC	6	1200		
			Nov	CC	17	3400	-	97/188
			Dec	CC	3	578		
USA	$5 Y$	OTB	Feb	CL	2	104/118		
			May	CL	1	41/57		
			Jun	CL	5	265/240		
			Ju1	CL	5	291/217		
			Aug	CL	5	355/161		
			Sep	CL	5	347/171		
			Nov	CL	3	113/204		
			Dec	CL	2	99/77		
	5Ze	OTB	Jun	CL	1	56/53		
			Jul	CL	5	223/289		
			Aug	CL	7	376/356		
			Sep	CL	2	110/92		
	5Zw	OTB	Jan	CL	8	103		
			Feb	CL	6	31		
			Mar	CL	4	11		
			Apr	CL	3	22		
			May	CL	3	60		
			Jun	CL	6	77		
			Jul	CL	2	39		
			Aug	CL	1	110		
	6A	OTB	May	CL	5	100		

Table 5. Red hake length and age sampling data for 1973.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Japan	5Ze	OTB	Feb	CC	1	199	-	-
USSR	4W	OTB	Jun	CC	3	677	-	-
	5Ze	OTB	Jan Feb	CC	2	392 800	3	305
			Mar	CC	9	1800		
			Apr	CC	2	400		
			May	CC	13	2600	6	590
			Jun	CC	6	1277		

Table 5. Red hake (continued)

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
USSR	5Ze	OTB	Jul	CC	28	5698		
			Aug	CC	1	100	2	179
			Sep	CC	10	1900		
			Oct	CC	32	6389		
			Nov	CC	2	400	3	387
			Dec	CC	7	1400		
	5ZW	OTB	Mar	CC	3	600	-	-
			Jun	CC	2	400	-	-
			Jul	CC	1	200		
			Aug	CC	1	100	2	245
	6NK	OTB						
	,	OTB	Mar	CC	10	2001	3	257
			May	CC	3		2	188
USA	5ZW	OTB				642		
			Feb	CC	6	59		
			Apr	CC	5	95		
			May	CC	3	152		
			Jun	CC	3	398		
			Jul	CC	2	63		
	6A	OTB	May	CC	5	338		

Table 6. Pollock length and age sampling data for 1973.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (M)	4W	OTB	Oct	CL	2	470		
			Nov	CL	4	843	7	276
			Dec	CL	1	251		
	4X	OTB	Feb	CL	1	152	3	127
			Mar	CL	2	432	3	127
			May	CL	2	309	4	
			Jun	CL	2	418	4	150
			Aug	CL	1	232	1	45
			Sep	CL	1	212	1	45
			Oct	CL	1	192	2	61
							2	61
	52	OTB	Oct	CL	2	493	2	66
USSR	4W	OTB	Apr	CC	3	600		
			Aug	CC	1	100		
	4X	OTB	Mar	CC	1	200		
USA	5 Y	OTB	Jan	CL	1	118		
	5Ze	OTB	Jan	CL	1	113		
			Feb	CL	1	118		
			Jul	CL	1	100		
			Sep	CL	1	103		
			Oct	CL	1	104		
			Dec	CL	1	102		

Table 7. American plaice length and age sampling data for 1973.

Country	ICNAFDiv.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Canada (M)	3 N	OTB	May	CL	1	93/107		
	30	OTB	Sep Oct	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	1	$\begin{gathered} 57 / 143 \\ 102 / 98 \end{gathered}$		
	3Ps	OTB	Aug Nov	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} 152 / 281 \\ 43 / 160 \end{array}$		
	4 T	OTB	Oct	CL	1	27/173		
		SN	May Jul Aug	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 35 / 165 \\ & 53 / 147 \\ & 44 / 156 \end{aligned}$		
	4 Vn	OTB	Apr Dec	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	1	$\begin{aligned} & 53 / 46 \\ & 90 / 111 \end{aligned}$		
	4Vs	OTB	Feb Dec	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	1	$\begin{aligned} & 87 / 113 \\ & 105 / 95 \end{aligned}$		
Canada (N)	3K	GN	Jul	CL	12	652/1158	9	99/159
	3L	OTB	Feb Jun Sep Nov	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{array}{r} 19 \\ 1 \\ 2 \\ 2 \end{array}$	$\begin{gathered} 1240 / 1851 \\ 337 / 667 \\ 411 / 671 \\ 473 / 836 \end{gathered}$	13 1 3 3	$\begin{gathered} 108 / 180 \\ 80 / 119 \\ 144 / 233^{1} \\ 144 / 233^{1} \end{gathered}$
	3 N	OTB	Feb May	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{array}{r} 12 \\ 3 \end{array}$	$\begin{aligned} & 567 / 877 \\ & 579 / 844 \end{aligned}$	10 2	$\begin{gathered} 50 / 73 \\ 110 / 185 \end{gathered}$
	30	OTB	Sep	CL	2	1166/1346	2	149/209
	3Ps	OTB	Feb Mar	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 384 / 660 \\ 27 / 43 \end{gathered}$	2	99/166
Poland	3L	OTB	Mar	CC	2	1977	1	182
USSR	IC	OTB	Feb Mar Apr	$\begin{aligned} & \text { RC } \\ & \text { RC } \\ & \text { RC } \end{aligned}$	$\begin{aligned} & 13 \\ & 32 \\ & 33 \end{aligned}$	$\begin{array}{r} 136 / 1201 \\ 1054 / 2162 \\ 1281 / 2067 \end{array}$		
	3L	OTB	Feb	RC	13	573/691		
USA	5Ze	OTB	$\begin{aligned} & \text { Jun } \\ & \text { Jul } \end{aligned}$	$\begin{aligned} & C L \\ & C L \end{aligned}$	1	$\begin{array}{r} 71 \\ 139 \end{array}$		

1 Same key used for Sep and Nov samples.

Table 8. Witch flounder length and age sampling data for 1973.

Country	ICNAFDiv.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Canada (M)	4Vs	OTB	Mar	CL	1	92/108	1	19/29
	4W	OTB	Feb Apr	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	1	$\begin{aligned} & 47 / 151 \\ & 69 / 133 \end{aligned}$	1	$\begin{array}{r} 21 / 22 \\ 9 / 27 \end{array}$
		SN	Apr	CL	1	123/80	1	14/19
Canada (N)	3K	OTB	Apr	CL	1	23/29	1	23/28
		GN	Jul	CL	13	662/1231	8	173/237
	30	OTB	Apr	CL	1	49/31	1	48/30

Table 8. Witch flounder (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Poland	3 K	OTB	Mar	CC	3	3206	3	139
			Apr	CC	2	2334	2	193
USA	$5 Y$	OTB	Jun	CL	1	62		
			Jul	CL	1	53		
			Sep	CL	1	103		
	5Ze	OTB	Jan	CL	1	97		
			Jun	CL	1	101		
			Jul	CL	2	128		
			Aug	CL	1	100		

Table 9. Yellowtail flounder length and age sampling data for 1973.

Table 9. Yellowtail flounder (continued)

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
USA	$5 Z\left(W 69^{\circ}\right)$	OTB	Jan	CL	11	358/371		
			Feb	CL	11	559/487	23	570/574
			Mar	CL	14	$582 / 657$		570/574
			Apr	CL	6	420/361		
			May	CL	4	401/277	13	318/325
			Jun	CL	3	164/270		
			Ju1	CL	4	184/400		
			Sep	CL	4	251/393	8	190/200
			Oct	CL	3	219/248		
			Nov	CL	5	338/507	14	348/349
			Dec	CL	7	396/537		

Table 10. Greenland halibut length and age sampling data for 1973.

Country	ICNAFDiv.	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (N)	3K	GN	Jul	CL	9	589/996		
Denmark (G)	SAO	OTB	$\begin{aligned} & \text { Jul } \\ & \text { Aug } \end{aligned}$	$\begin{aligned} & \text { CC } \\ & \text { CC } \end{aligned}$	1	$\begin{array}{r} 1197 \\ 895 \end{array}$		
	10	OTB	Mar	CL	1	753		
USSR	2 J	OTB	Jul	RC	27	1523/1242		

Table 11. Winter flounder length and age sampling data for 1973.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (M)	4 T	0TB	Sep	CL	1	39/161	1	17/19
			Oct	CL	T	80/120	1	18/25
	4X	OTB	Oct	CL	2	359	2	97

Table 12. Roundnose grenadier length and age sampling data for 1973.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
German Dem. Rep.	1 C	OTB	Dec	CC	19	7754	3	121
	2G	OTB	Nov	CC	5	2032	3	103

Table 13. Scup length and age sampling data for 1973.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
USA	5Zw	FPN	Jun	CL	1	56		
	6C	OTB	Mar	CL	2	204		

Table 14. White hake length and age sampling data for 1973.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.		No. aged
Canada (M)	4W	LL	Oct	CL	1	107	1	41

Table 15. Atlantic herring length and age sampling data for 1973.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (M)	4 Vn	PS	Jan	CC	7	1651	5	487
			May	CC	2	300	3	165
			Aug	CC	1	74	1	74
			Nov	CC	18	2399	33	1457
			Dec	CC	52	7231	33	1457
	4W	PS	Jan	CC	13	1564	12	1166
			Feb	CC	3	501	12	1166
			May	CC	2	96	2	96
			Aug	CC	7	426	7	426
			Nov	CC	1	202	2	141
			Dec	CC	3	405	2	141
Fed. Rep. Germany	$4 T$	OTM	May	RC	1	212	1	102
	4X	OTB	Feb	RC	3	410	2	167
	5 Y	OTM	Aug	CC	4	2514	1	108
	5Ze	OTB	Mar	RC	30	8856	8	760
		OTM	Ju1	CC	1	80		
			Aug	CC	11	6928	20	1483
			Sep	CC	67	43232		
			Oct	CC	10	7238	2	148
	5ZW	OTB	Mar	RC	5	510	1	104
	6A	OTB	Mar	RC	4	703	1	100
German Dem. Rep.	$5 Y$	OTM	Oct	CC	3	633	1	100
	5Ze	OTB	Jan	CC	7	1417	-	-
		OTM	Aug	CC	8	1683	9	875
			Sep	$C C$	24	4812	9	875
			Oct	CC	6		2	201
	6A	OTB	Jan	CC	1	466	-	-

Table 15. Atlantic herring (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Poland	$5 Z$	OTM	Aug	CC	20	6750	21	2100
			Sep	CC	37	10152		
			Oct	CC	20	5810	12	1200
			Nov	CC	3	1168		
USSR	4W	OTB	Mar	CC	2	400	1	103
			Apr	CC	7	1726		
			Jun	CC	7	1664	7	520
			Aug	CC	3	616	1	54
			Oct	CC	1	69	1	69
	4X	OTB	Jun	CC	7	1390	1	102
			Aug	CC	20	4000	2	202
	52	OTB	Jan	CC	13	2631		
			Feb	CC	5	1201	6	606
			Mar	CC	10	2000		
			Apr	CC	6	1300		
			May	CC	30	6100	3	306
			Jun	CC	5	1013		
			Jul	CC	19	3800		
			Aug	CC	85	16990	5	506
			Sep	CC	132	36480		
			Oct	CC	21	4200		
			Nov	CC	18	3530	4	288
			Dec	CC	2	400		
	6NK	0тB	Feb	CC	7	1400	4	
			Mar	CC	22	4323	4	396
			Apr	CC	1	243		
			Jun	CC	2	500	1	100
USA	4X	NS	Jan	CL	5	180		
			Feb	CL	1	40	6	109
			Mar	CL	3	121		
			May	CL	1	35	5	
			Jun	CL	4	80	5	99
			Jul	CL	18	696		
			Aug	CL	7	305	13	270
			Sep	CL	3	91		
			Oct	CL	1	35		
			Nov	CL	3	96	4	65
	$5 \mathrm{Y}(\mathrm{N})$	NS	Feb	CL	1	20		
			Mar	CL	2	75	${ }^{3}$	106
			Jun	CL	16	406	16	259
			Jul	CL	28	1209		
			Aug	CL	24	998	72	1390
			Sep	CL	20	599		
			Oct	CL	14	632		
			Nov	CL	3	298	22	431
			Dec	CL	5	92		
	$5 Y(S)$	NS	Mar	CL	1	114	1	114
			May	CL	5	162	5	162
			Aug	CL	6	262	6	262
			Dec	CL	4	223	4	223
	5Ze	NS	Feb	CL	8	185	4	87
	6B	NS	Feb	CL	3	96	2	71

Table 16. Atlantic mackerel length and age sampling data for 1973.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.		No. aged
Bulgaria	5Zw	OTM	Jan	CL	3	1532		
			Feb	CL	2	1300	7	3936
			Mar	CL	2	1114		
			Apr	CL	1	236		
			May	CL	1	418	3	1084
			Jun	CL	1	430		
	6A	OTM	Dec	CL	3	1424	3	1045
German Dem. Rep.	5NK	OTM	Jan	CC	-	5330	2	198
			Feb	CC	-		2	198
	6NK	OTM	Jan	CC	-	2657	1	108
Japan	5 Ze	OTB	Feb	CC	1	201		
Poland	52	OTB	Feb	RC	4	1949	-	300
		OTM	May	CC	1	504	-	-
			Jul	CC	3	654		
			Aug	CC	4	1019	-	710
			Sep	CC	4	1588		
			Oct	CC	1	436	-	100
	6NK	OTB	Mar	RC	4	2067	-	294
			Oct	RC	1	123	-	-
		OTM	Jan	RC	3	886	-	201
			Apr	CC	1	441	-	99
			Dec	CC	2	484	-	181
USSR	4VWX	OTB	May	CC	5	1142		
			Jun	CC	44	8904		
			Jul	CC	9	1800		
			Aug	CC	6	1207		
			Sep	CC	23	4600		
			Oct	CC	12	2300		
	$5 Z$	OTB						
			Feb	CC	33	6540	7	315
			Mar	CC	62	12423		
			Apr	CC	51	10298		
			May	CC	42	8397	12	294
			Jun	CC	26	5190		
			Ju1	CC	39	7800		
			Aug	CC	24	4821	-	234
			Sep	CC	16	3250		
			Oct	CC	8	1600		
			Nov	CC	59	11800	-	193
			Dec	CC	21	4200		
	6NK	OTB	Jan	CC		1201		
			Mar	CC	8	1598	7	308
			Apr	CC	13	2589	12	292
			May	CC	10	2000	12	292
			Oct	CC	1	200	-	-
			Dec	CC	1	200	-	-
USA	5Zw	FPN	Jun	CL	1	54		
	6A	OTB	Mar	CL	1	64		
			Apr	CL	1	64		

Table 17. Atlantic butterfish length and age sampling data for 1973.

Table 18. Alewife length and age sampling data for 1973.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
USSR	4W	OTB	Mar	CC	10	2000	1	100
			Apr	CC	4	864	1	188
			Nov	CC	1	90	1	90
	52	OTB	Jan	CC	2	400		
			Mar	CC	1	100	2	201
			Apr	CC	6	1200		
			May	CC	2	400	3	310
			Jun	CC	11	2200		
			Ju1	CC	3	600		
			Aug	CC	37	7476	3	269
			Sep	CC	21	4100		
			Oct	CC	6	1200		
			Nov	CC	1	200	2	180
			Dec	CC	3	600		
	6NK	OTB	Feb	RC	4	800		
			Mar	RC	1	200	-	-
			Feb	CC	3	600	4	391
			May	CC	3	600	-	

Table 19. Atlantic argentine length and age sampling data for 1973.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples	Age samples
					No. No. meas.	No. No. aged
USSR	4 V	OTB	Jun	CC	1200	
	4W	0TB	Feb	CC	1200	
			Apr	CC	2400	

Table 19. Atlantic argentine (continued)

Country	ICNAFDiv.	Gear	Month	Type of sample	Length samples	Age samples
					No. No. meas.	No. No. aged
USSR	4W	OTB	May	CC	4843	
			Jun	CC	2431	
			Jul	CC	2400	
			Aug	CC	1200	
	4X	OTB	Mar	CC	102000	
			Apr	CC	2300	
			May	CC	3600	
			Jul	CC	1200	
			Sep	CC	4800	
			Oct	CC	$7 \quad 1400$	

Table 20. Black seabass length and age sampling data for 1973.

	ICNAF Div.	Gear	Month	Type of sample	Length samples No. Country	6C meas.	OTB

Table 21. Capelin length and age sampling data for 1973.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Manth	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Norway	3L	OTM	Jun	CC	43	2234/3787	11	176/263
			Ju1	CC	10	726/610	1	29/25

Table 22. Long-finned squid (Loligo) length and age sampling data for 1973.

Country	ICNAFDiv.	Gear	Month	Type of sample	Length samples	Age samples
					No. No. meas.	No. No. aged
Japan	5Ze	OTB	Feb	CC	1200	
			Dec	CC	7544	
	6A	OTB	Jan	CC	1201	
			Mar	CC	1200	
			Apr	CC	1200	
			Oct	CC	1291	
			Nov	CC	31019	
	6B	OTB	Nov	CC	1204	
Poland	5Ze	OTB	Sep	RC	7605	
			Oct	RC	32173	
	6A	OTB	Sep	RC	52300	

Table 22. Long-finned squid (Loligo) (continued)

Table 23. Short-finned squid (Illex) length and age sampling data for 1973.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Poland	4X	OTB	Sep	RC	3	1109		
	5Ze	OTB	Sep oct	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{array}{r} 1840 \\ 756 \end{array}$		
	6A	OTB	Sep	RC	5	2124		
	6B	OTB	Sep	RC	8	490		
USSR	4V	OTB	Jun Aug Sep	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	$\begin{array}{r} 14 \\ 1 \\ 5 \end{array}$	$\begin{array}{r} 2790 \\ 200 \\ 1000 \end{array}$		
	$5 Z$	OTB	Mar May Jun Jul Sep	$\begin{aligned} & C C \\ & C C \\ & C C \\ & C C \\ & C C \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \\ & 3 \\ & 5 \\ & 8 \end{aligned}$	$\begin{array}{r} 996 \\ 1400 \\ 692 \\ 917 \\ 1600 \end{array}$		
	6NK	OTB	May Nov	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 26 \\ & 14 \end{aligned}$	$\begin{aligned} & 5209 \\ & 2712 \end{aligned}$		
USA	$5 Y$	OTB	Oct Nov	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 89 \\ & 52 \end{aligned}$		
	5Ze	OTB	Jul	CC	1	50		

Table 24. Sea scallops length and age sampling data for 1973.

PART 3
 Sampling Data from Research Vessel Surveys, 1973

The following table contains a list of available sampling data from research vessel surveys in the ICNAF Area by certain countries in 1973. All of these data were reported as research vessel samples as indicated by the abbreviation "RC" under the heading "Type of sample". The samples were reported as taken from catches retained in small-meshed codends or codends with small-meshed liners. In the case of some species (e.g. herring and mackerel) which are normally caught commercially with small-meshed trawls, both research and commercial samples are listed in the previous section. The abbreviations for gears are defined on page 15.

Table 25. Research sampling data for 1973.

SPECIES Country	ICNAF Div.	Gear	Month	Type of sample	Length samples No. No. meas.	Age samples No. No. aged

ATLANTIC COD

Canada (Q)	4S	OTB	$\begin{aligned} & \text { Jun } \\ & \text { Jul } \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 11 \\ & 13 \end{aligned}$	$\begin{array}{r} 283 \\ 4335 \end{array}$	$\overline{4}$	401
France (SP)	3 N	OTB	Jun	RC	4	1425	-	-
	30	OTB	Jun	RC	8	1648	-	-
	3 P n	OTB	Feb Apr	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 1177 \\ 464 \end{array}$	-	-
	$3 \mathrm{Ps}^{\text {S }}$	OTB	Feb Dec	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 692 \\ & 422 \end{aligned}$	-	-
	4R	OTB	Jan Apr Nov	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 22 \\ & 11 \\ & 29 \end{aligned}$	$\begin{array}{r} 14090 \\ 3863 \\ 1938 \end{array}$	2 4 -	$\begin{aligned} & 808 \\ & 812 \end{aligned}$
	$4 T$	OTB	Apr	RC	1	959	-	-
	4 Vn	OTB	Feb	RC	12	1953	-	-
	4Vs	ОТВ	Mar Apr May	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 6 \\ & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 2668 \\ 359 \\ 306 \end{array}$	2	414
	5Ze	OTB	Sep	RC	17	991	-	-
Fed. Rep. Germany	1C	OTB	Nov	RC	3	110	3	109
	10	OTB	Dec	RC	5	1727	5	551
	1 F	OTB	Dec	RC	8	335	8	326
	2 GH	OTB	Nov	RC	10	320	10	318
	2 J	OTB	Nov	RC	17	2984	17	1272
	3 K	OTB	Nov	RC	12	1133	12	792
German Dem. Rep.	2 J	OTB	Jan	RC	9	3120	4	1196
ATLANTIC REDFISH								
Canada (Q)	4S	OTB	Jul	RC	2	323/429		
		OTM	Jul	RC	8	3243		
		MIS	$\begin{aligned} & \text { Jun } \\ & \text { Jul } \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 24 \\ & 12 \end{aligned}$	$\begin{aligned} & 9250 \\ & 4817 \end{aligned}$		

Table 25. Research (continued)

SPECIES	ICNAF	Gear	Month	Type of sample		$\frac{\text { th samples }}{\text { No. meas. }}$		samples No. aged
ATLANTIC REDFISH								
Denmark (G)	1 A	OTB	Jul	RC	6	961		
	1B	OTB	Aug	RC	1	633		
	1C	ОTB	Feb Jun	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	1	$\begin{aligned} & 111 \\ & 328 \end{aligned}$		
	10	ОTB	Feb Mar Apr Jun Oct	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 2584 \\ 136 \\ 1290 \\ 813 \\ 1205 \end{array}$		
	1F	OTB	$\begin{aligned} & \text { Sep } \\ & \text { Oct } \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{array}{r} 1112 \\ 378 \end{array}$		
France (SP)	30	OTB	$\begin{gathered} \text { May } \\ \text { Jun } \end{gathered}$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{array}{r} 2413 \\ 607 \end{array}$		
	3 Pn	OTB	Feb	RC	6	2132		
	3Ps	OTB	Feb May	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 1644 \\ & 1381 \end{aligned}$		
	4R	OTB	Jan Feb Apr Nov	$\begin{aligned} & \text { RC } \\ & \text { RC } \\ & \text { RC } \\ & \text { RC } \end{aligned}$	$\begin{array}{r} 4 \\ 2 \\ 1 \\ 18 \end{array}$	$\begin{array}{r} 1364 \\ 840 \\ 410 \\ 4059 \end{array}$		
	4 Vn	OTB	Feb	RC	2	622		
	4Vs	OTB	Feb Mar Apr May	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 2 \end{aligned}$	$\begin{array}{r} 401 \\ 281 \\ 1140 \\ 574 \end{array}$		
	4W	OTB	Feb Mar Apr	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 299 \\ & 964 \\ & 422 \end{aligned}$		
	4X	OTB	May	RC	2	708		
	5Ze	OTB	$\begin{aligned} & \text { May } \\ & \text { Sep } \\ & \text { Oct } \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 345 \\ & 430 \\ & 362 \end{aligned}$		
UK	1C	OTB	Nov	RC	1	326		
	1D	OTB	Nov	RC	7	557		
	1E	OTB	Nov Nov	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	1	$\begin{aligned} & 628 \\ & 530 \end{aligned}$		
SILVER HAKE								
France (SP)	4W	OTB	Feb Mar May	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$ RC	$\begin{aligned} & 1 \\ & 4 \\ & 6 \end{aligned}$	$\begin{array}{r} 481 \\ 1420 \\ 1603 \end{array}$		
	4X	OTB	May	RC	7	2889		
	5Ze	OTB	May Sep	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{array}{r} 2 \\ 16 \\ 12 \end{array}$	$\begin{gathered} 369 \\ 1330 / 1593 \\ 490 / 332 \end{gathered}$		
AMERICAN PLAICE								
Canada (Q)	4S	OTB	Jul	RC	3	658		

Table 25. Research (continued)

SPECIES Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
AMERICAN PLAICE								
Denmark (G)	1 A	OTB	Jut	RC	3	161		
	1C	OTB	Feb Mar Jun	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 3442 \\ 3049 \\ 667 \end{array}$		
	1D	0TB	Feb Mar Apr Jun Oct	$R C$ $R C$ $R C$ $R C$ $R C$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 3913 \\ 919 \\ 2771 \\ 430 \\ 853 \end{array}$		
	1F	OTB	Sep	RC	3	1222		
France (SP)	3Ps	OTB	Feb Dec	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{array}{r} 3 \\ 12 \end{array}$	$\begin{array}{r} 606 \\ 1191 \end{array}$		
	4R	OTB	Jan Nov	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{array}{r} 1 \\ 18 \end{array}$	$\begin{array}{r} 275 \\ 1545 \end{array}$		
	4 Vn	0TB	Feb	RC	11	1447		
	5Ze	OTB	Sep	RC	3	257		
UK	1 C	OTB	Nov	RC	1	244		
	10	OTB	Nov	RC	4	1419		
	IF	OTB	Nov	RC	5	537		
YELLOWTAIL								
Canada (Q)	4S	OTB	Jul	RC	1	229		
France (SP)	3L	OTB	May	RC	-	1173		
	3N	OTB	$\begin{aligned} & \text { May } \\ & \text { Oct } \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	-	$\begin{aligned} & 412 \\ & 539 \end{aligned}$		
	30	OTB	May	RC	2	51/17		
	3Ps	OTB	Sep Dec	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{gathered} 144 / 155 \\ 67 / 33 \end{gathered}$		
	4S	OTB	Ju1	RC	1	88/114		
	4Vs	OTB	Apr May	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{gathered} 141 / 207 \\ 71 / 74 \end{gathered}$		
	4W	OTB	Feb May	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & 15 / 53 \\ & 51 / 66 \end{aligned}$		
	5Ze	OTB	Sep	RC	9	117/49		
GREENLAND HALIBUT								
Denmark (G)	1 A	ОТВ	Ju1	RC	7	1068		
	1 B	OTB	Aug	RC	1	2252		
	1 D	ОТВ	Feb Mar Apr Oct	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	2 1 2 2	$\begin{aligned} & 432 \\ & 902 \\ & 793 \\ & 114 \end{aligned}$		
	1E	OTB	Sep	RC	1	170		
	1F	OTB	Sep	RC	3	604		

Table 25. Research (continued)

SPECIES Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
GREENLAND COD								
Denmark (G)	1A	LL	Jul	RC	3	443		
	10	OTB	Feb	RC	2	118		
WOLFFISHES								
Denmark (G)	1 A	LL	Jul	RC	3	114		
HERRING								
France (SP)	4R	OTB	Apr	RC	15	8640	-	351
	4T	OTM	Apr	RC	8	4708	-	129
	4W	OTB	Mar Apr	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	1	$\begin{aligned} & 368 \\ & 908 \end{aligned}$	-	497
	5Ze	OTB	Sep	RC	-	3676	-	209
MACKEREL								
France (SP)	4W	OTB	May	RC	1	239		
	4X	OTB	May	RC	2	443		
	5Ze	OTB	Sep $0 c t$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	2	$\begin{array}{r} 63 \\ 382 \end{array}$		
Fed. Rep. Germany	5Ze	OTB	Mar	RC	2	201		
	6A	0TB	Mar	RC	2	518		
	6B	0TB	Mar	RC	1	112		
	6C	OTB	Mar	RC	1	143		

