INTERNATIONAL COMMISSION FOR THE NORTHWEST ATLANTIC FISHERIES

SAMPLING YEARBOOK

Vol. 21
for the year
1976

Dartmouth - Canada

PREFACE

The ICNAF Sampling Yearbook has been issued annually since 1958 and has played a fundamental role in fish stock assessments carried out by the Assessments Subcommittee of STACRES. With the recent introduction of more rigorous sampling requirements and the greatly increased coverage of species and areas, the volume of sampling data has increased steadily with time. Consequently, the publication of the traditional volume of length and age frequencies and age-length keys was discontinued after Vol. 17 for 1972 and replaced by an annual listing of commercial and research sampling data contributed by member countries.

This issue of Sampling Yearbook is set out in four parts: Part 1 describes the ICNAF sampling requirements; Part 2 contains a list of countries which reported data for 1976; Part 3 contains, in a series of tables arranged by species, lists of available 1976 sampling data pertaining to commercial fisheries; and Part 4 contains a list of research sampling data for 1976.

All available conmercially-oriented sampling data for 1973 onwards have been computerized to provide for the rapid retrieval of data on computer printouts to meet specific requests. Copies of length frequencies, age-length keys and computed age frequencies (where applicable) will be forwarded upon request to institutions and/or individual scientists involved in the Commission's work. All requests should specify the actual sampling data required, indicating at least the species, country and division.

The Secretariat is grateful to those countries who have contributed sampling data and to those scientists who have continued to support the Commission's need for more adequate sampling of the Northwest Atlantic fisheries with a view to providing better assessments of the stocks.

CONTENTS

Preface 3
Map of North Atlantic showing the ICNAF Statistical Areas 4
Part 1. ICNAF Sampling Program 7

1. Introduction 7
2. Minimum Sampling Requirements 7
3. Source of Sampling Data 7
4. Sampling of Catches versus Landings 8
5. Length Sampling Data 8
6. Age Sampling Data 9
7. Length Conversions 9
8. Weight Conversions 9
9. Sampling by Sex 10
10. Length Intervals and Sexing Criteria 10
11. ICNAF Sampling Forms (Rev. 01/77) 11
Part 2. Summary of Sampling Data, 1976 15
12. Introduction 15
13. Summary of Data Relevant to Conmercial Fisheries 15
14. Summary of Research Vessel Data 17
Part 3. List of Sampling Data for Commercial Fisheries, 1976 19
15. Introduction 19
16. Abbreviations Used 19
Table 1. Atlantic cod 20
Table 2. Haddock 22
Table 3. Atlantic redfish 23
Table 4. Silver hake 26
Table 5. Red hake 27
Table 6. Pollock 28
Table 7. American plaice 28
Table 8. Witch flounder 30
Table 9. Yellowtail flounder 31
Table 10. Greenland halibut 32
Table 11. Winter flounder 32
Table 12. Summer flounder 33
Table 13. Windowpane flounder 33
Table 14. Roundnose grenadier 33
Table 15. Scup 34
Table 16. Striped wolffish 34
Table 17. Atlantic herring 34
Table 18. Atlantic mackerel 36
Table 19. Atlantic menhaden 37
Table 20. Atlantic butterfish 38
Table 21. Alewife 38
Table 22. Atlantic argentine 38
Table 23. Capelin 39
Table 24. Short-finned squid (Illex) 39
Table 25. Long-finned squid (Loligo) 40
Table 26. Squids (NS) 41
Table 27. Sea scallops 41
Table 28. Northern deepwater prawn (Pandalus borealis) 42
Part 4. Sampling Data from Research Vessel Surveys, 1976 (Table 29) 43
Atlantic cod (Cuba, DEN (G), FRA (SP), FRG, GDR) 43
Haddock (Cuba, USSR) 44
Atlantic redfish (DEN (G), FRA (SP)) 44
Silver hake (Cuba, USSR) 44
American plaice (Cuba, DEN (G), FRA (SP)) 44
Greenland halibut (DEN (G)) 45
Greenland cod (DEN (G)) 45
Polar cod (DEN (G)) 45
Roundnose grenadier (DEN (G)) 45
Spotted wolffish (DEN (G)) 45
Striped wolffish (DEN (G)) 46
Atlantic herring (GDR) 46
Atlantic mackerel (GDR) 46

PART 1

ICNAF Sampling Program

1. Introduction

In "A Fishery Research Program for the Northwest Atlantic", adopted by the Commission at its 1953 Annual Meeting (ICNAF Annu. Proc., Vol. 3, page 23), the need for catch sampling is emphasized as follows: "In order to recognize the effect of fishing, it is necessary to record the lengths of the fish in adequate samples of catches, showing fish discarded and fish retained. This is considered essential for all the fisheries for the important species by all the participating countries throughout the Convention Area. The total range of fish caught can be sampled only at sea by specially trained observers. The sea sampling of the sizes retained should be supplemented by sampling of landings ashore."

At its 1956 Annual Meeting, the Commission approved the following recommendation of the Standing Committee on Research and Statistics (STACRES): "For each species sampled, each country should report to the Secretariat the sizes, ages, weights and sexes of the fish sampled by place and time of capture. The Commission should publish these statistics" (ICNAF Annu. Proc., Vol. 6, page 11). The first issue of Sampling Yearbook was published in 1958, containing sampling data for the years 1955 and 1956. This was the beginning of the ICNAF sampling program.

During the years since the inception of the program, there have been many recommendations for improvements in relation to both the quantity and quality of the required data, and the need for full participation by member countries. In Volume 19 of ICNAF Sampling Yearbook, a first attempt was made to outline the present sampling requirements. The outline, along with proposed changes, was reviewed and endorsed by the Sampling and Statistics Subcommittee of STACRES in 1976 (ICNAF Redbook 1976, page 130).
2. Minimum Sampling Requirements

At its 1974 Annual Meeting, STACRES reviewed several aspects of the sampling program. In reiterating the necessity for all member countries to adequately sample their commercial fisheries for length and age composition of catches, the minimum sampling requirement was revised to read as follows:
"That the ICNAF sampling requirement should be specified at one sample per 1,000 tons of fish caught for each division, quarter of year, and gear. As an approximate guideline, such samples should consist of 200 fish from the entire length range for length composition and one fish per centimeter length group for age composition."

Sampling data must be "in sufficient quantity and detail to enable the calculation of the length and age composition of the commercial catches by stock area on a monthly basis" (ICNAF Redbook 1973, page 54). However, it is emphasized that the sampling data must be reported by division (or subdivision, where applicable) and not by stock area, in order to achieve uniformity in reporting and subsequent data-processing. Furthermore, in cases where the data for a species are required to be reported by sex, it is necessary that twice the number of specimens be collected for length and ageing in order to produce usable age-length keys.

The reported length frequency data should reflect the length composition of the catches made in each division (or subdivision) and month. Sampling should be more frequent when catches are high, and appropriate weighting should be applied to the individual samples to ensure that the monthly length frequencies represent the monthly catches.
3. Source of Sampling Data

In the past, sampling data have usually been classified as research, exploratory or commercial, depending on the type of fishing operations being undertaken at the time when the samples were collected. There has often been some confusion over the use of the terms, particularly in regard to the applicability of the various types of sampling data for assessment work, and some clarification is necessary.
a) Research. These samples are taken on true research vessels, operating independently of the commercial fishing fleet and using true research vessel fishing gear (e.g. otter trawl, with codend meshes considerably different from those in commercial trawls, or with codends lined or covered with small-meshed material irrespective of the mesh size of the codend). Because these
samples are not representative of commercial operations, they cannot be applied to the nominal catches, but are often of value for predicting future recruitment. Research samples are usually the outcome of survey programs to generate abundance and recruitment indices.
b) Commercial. Samples taken from the catches of exploratory and/or commercial fishing vessels using gear normally used for comenercial fishing (in accordance with ICNAF trawl regulations, where applicable) should be classified as commercial samples. Such sampling implies that the escapement from the codend is not restricted by codend liners or topside covers or chafers and that the samples are representative of the commercial catches. These samples represent the commercial removals from the stocks and are essential for stock assessments.

In cases where samples are taken from the catches of research and/or exploratory vessels using commercial-type gears (e.g. trawls in which mesh selection is in accordance with the ICNAF mesh regulations), and where the fishing was carried out in association with commercial fishing operations, the data should be reported as "research vessel" data, with a note on the sampling form indicating the applicability of the data to commercial fishing (ICNAF Redbook 1977, page 67).
4. Sampling of Catches versus Landings

Commercial samples may be taken at sea from catches before any discarding has occurred (the term "discarding", as used here, implies fish thrown overboard and not included in the nominal catches, as opposed to fish used for fishmeal and included in the nominal catch), from catches after discarding, from landed catches at the dock or processing plant prior to discarding, or from landed catches after discarding. Thus commercial samples should be designated by type as follows:
a) Catch. The samples should be designated as catch samples, if it is fairly certain or definitely known that no discarding has occurred prior to sampling, whether the samples are taken from the catches at sea or taken from the landed catch at the. dock or in the processing plant.
b) Landing. The samples should be designated as landing samples, whether they are taken at sea or in port, if it is known that discarding of small fish has occurred prior to sampling.
c) Discards. Every effort should be made to obtain representative samples of discarded fish, particularly in cases where the samples reported normally reflect the landings.

In some countries the only opportunity for sampling is of landings of fish that have been sorted into market categories (i.e. large, medium, and small). Samples taken in this way must be properly weighted (by the catch or landing for each category) and combined into a representative sample of the catch (or landings) prior to submission to ICNAF.
5. Length Sampling Data

Length measurements should always be taken of fish which are randomly sampled from the actual catches (or landings) and which are in the natural condition (round fresh fish). If the fish are measured in any other condition (e.g. gutted or dressed), necessitating the use of conversion factors, the appropriate conversion of the length measurements to those representative of "whole fresh" fish should be made before the length frequencies are reported to ICNAF.

At the 1975 Annual Meeting, there was some discussion on the proper length to be measured for the various species, i.e. fork length and total length (ICNAF Redbook 1975, page 79). In the light of evidence brought forward that the method of measuring differs among countries for the different species, it was strongly emphasized that information on measuring methods be reported by countries in their annual sampling notes. In order to ensure that the measuring method is recorded for all samples, it was recormended that provision be made on the standard sampling forms for countries to report the type of length measurement appropriate to the sampling data reported on the form. The revised forms (for soliciting 1975 and subsequent sampling data) provide for the recording of the various types of length measurements as follows:

Fork length - from the tip of the snout to the apex of the V forming the fork of the tail, for species with forked tails.

Total length - from the tip of the snout to the tip of the longest lobe of the tail when the lobe is extended posteriorly in line with the body. This is sometimes referred to as greatest total length. For fishes with non-forked tails, only total length is appropriate.

Other (to be specified) - for example, mantle length for squids, upper valve greatest diameter for scallops, carapace length for shrimps, etc.

In addition to indicating the type of length measurement (as noted above), it is very important that countries provide the method of recording the measurements as follows:

Nearest cm (rounded) - measurements are recorded to the nearest centimeter (i.e. fish in the length range 29.5-30.4 cm are actually recorded as 30 cm).

Cm below (truncated) - measurements are recorded to the centimeter below (i.e. fish in the length range $30.0-30.9 \mathrm{~cm}$ are recorded as 30 cm).

Other (to be specified) - for example, capelin are to be measured in half-cm units, and should be recorded to the nearest half-cm or half-cm below.

6. Age Sampling Data

In order to assess the status of fish stocks by means of analytical models such as "Virtual Population" or "Cohort" analyses, realistic estimates of the age compositions of the catches are essential. The usual procedure is to collect substantial length composition data as being representative of the commercial catches of a species in a particular area over a given period of time. These data are supplemented by additional material for ageing, from which age-length keys are constructed. The representative length compositions are converted to age compositions by the application of the agelength keys to the length frequencies. These age composition estimates are then weighted by the catches to estimate the removals at age from the stock.

While the samples for length composition represent the basic sampling units, and these must be composed of fish randomly selected from the catches (or landings), samples taken to provide material for ageing may consist of fish which are randomly selected from the catches or which are selected by a stratified procedure:
a) Random sampling for age means that the sample is a random subsample of the length composition or it may be a separate small random sample of the catch taken specifically for ageing, with no attempt made to select fish by length groups.
b) Supplemented random sampling for age implies that the basic age sample was taken as in (a), but some effort is made to supplement the basic sample with fish in the upper and lower parts of the length frequency distribution in order to broaden the length spectrum of the age-length key.
c) Stratified sampling for age implies that a certain number of fish are selected from each length group represented in the catch length composition, and that the fish are selected at random within each length group.

Random age samples are the least effective of the three types, in that the number of specimens in each sample is usually only a fraction of the number of fish in the length sample, and consequently the entire range of the length groups represented by the catch length composition will rarely be covered. Thus ages cannot be properly assigned to those length groups in the length frequency where there are no ages in the corresponding length groups of the age-length key.

In contrast, stratified age samples are the most effective in that the length groups in the length frequency sample are usually also represented in the age-length key. This type of sample is also the most efficient in that the least number of fish are required to be taken for age determination.

7. Length Conversions

If the length measurements of fish taken for ageing are collected from specimens in the "round fresh" condition, the length groups in the length composition sample and those in the age-length key are directly comparable. If, on the other hand, the length composition sample consists of fish measured in the "round fresh" condition and the length measurements of the fish in the age sample are taken after the fish have been in frozen storage for a period of time, and, assuming that some shrinkage has occurred prior to measuring the frozen specimens, then the length intervals of the actual length composition data and of the age-length key are not directly comparable. The application of such an age-length key to the length composition data results in age compositions that are biased toward the higher age-groups. A very small shrinkage factor (say 3%) can result in serious bias in the calculated age compositions. It is therefore extremely important that the length measurements of fish from frozen age samples be adjusted by appropriate conversion factors to make them representative of "round fresh" fish, if the actual length samples are measured when the fish are "round fresh".

8. Weight Conversions

As in catch statistics, the weights reported in sampling data are required to be round fresh weights. Any correction factors that may be required to convert gutted or otherwise dressed fish (including freezing) may be found in "Conversion Factors: North Atlantic Species, 1970. FAO Bull. Fish. Stat. No. $25^{\prime \prime}$.

The proper application of length frequency data to obtain the length composition of the catch requires that the average weight of fish in the sample be given. This value is readily obtained if the sample weight is recorded at the time the sample is collected. If length sampling is carried out at sea where weighing may be difficult or impossible, the average weight of the reported length frequency should be calculated by applying an appropriate length-weight relationship.

Calculating the mean weight from length-weight regressions must be done with consideration for the possible bias in incorrect appplication. It is not correct to obtain the mean weight by applying the mean length of fish in the sample to a length-weight regression based on measurements of individual fish. The result will be an underestimate of the mean weight and a consequent overestimate of the number of fish in the catch. The non-linearity of the length-weight regression must be taken into account and this is done by applying a vector of weights-at-length to the length frequency.

9. Sampling by Sex

Differences in growth rate and maximum length between the male and female of many species (e.g. flatfishes, hakes, redfish, capelin) require that the sex of the sampled fish be determined. Failure to discriminate sex in these species results in unrealistic age distributions. There are two ways to proceed, the first of which is recommended when feasible:
a) Each sex should be treated as an independent sampling unit; that is, length frequency data and ageing data are collected for male and female as if they were separate species. However, the sex ratio must be reflected in the length frequency total for each sex, so that the "per mille" frequency of male and female combined total 1000 . The mean length and the mean weight should always be given for each sex and not just for sexes combined.
b) In cases where sex is difficult to recognize while collecting length frequency data, the alternative is to determine the sex when the individual fish constituting the age samples are being examined. In this case, it is important that the selection of fish at each length interval be random with respect to sex, in order to ensure that the sex ratio of fish at each length interval in the sample reflects the true sex ratio of the corresponding length in the catch. The resulting age-length keys (male and female separate) should upon application to the length frequency (male and female combined) result in age frequencies of males and females that are representative of the age compositions of the catches by sex.
10. Length Intervals and Sexing Criteria

At the 1974 Annual Meeting, the Statistics and Sampling Subcommittee reviewed the length groups to be used for the reporting of length frequencies and age-length keys, for most of the species sampled in the ICNAF Area, and specified the particular species for which it is essential that the data be provided by sex (males and females separately). The following list also includes changes agreed to at the 1975 Annual Meeting:

Species	Length Group
Atlantic cod (Gadus morhua)	3 cm
Pollock (=Saithe) (Pollachius virens)	3 cm
Cusk (Brosme brosme)	3 cm
White hake (Urophycis tenuis)	3 cm
Wolffishes (Anarhichas sp.)	3 cm
Roundnose grenadier (Macrourus rupestris)	3 cm (by sex)
Haddock (Melanogrammus aeglefinus)	2 cm
Greenland cod (Gadus ogac)	2 cm
Red hake (unophycis chuss)	2 cm
American plaice (Hippoglossoides platessoides)	2 cm (by sex)
Witch flounder (Glyptocephalus cynoglossus)	2 cm (by sex)
Yellowtail flounder (SA 3-4) (Limanda ferruginea)	2 cm (by sex)
Greenland halibut (Reinhardtius hippoglossoides)	2 cm (by sex)
Winter flounder (Pseudopleuronectes americanus)	2 cm (by sex)
Summer flounder (Paralichthys dentatus)	2 cm (by sex)
Redfish (Sebastes sp.)	1 cm (by sex)
Silver hake (Merluccius bilinearis) ${ }^{1}$	1 cm (by sex)
Yellowtail flounder (SA 5-6) (Limanda ferruginea)	1 cm (by sex)
Windowpane flounder (Scophthalmus Aquosus)	1 cm (by sex)
Atlantic herring (Clupea harengus)	1 cm
Atlantic mackerel (Scomber scombrus) ${ }^{2}$	1 cm
Atlantic butterfish (Peprilus triacanthus)	1 cm

Species	Length Group
Alewife (Alosa pseudoharengus)	1 cm
Atlantic argentine (Argentina silus)	1 cm
Squids (Illex and Loligo)	1 cm
Capelin (Mallotus villosus)	
Sea scallops (Placopecten magellanicus)	$\frac{1}{2} \mathrm{~cm}$
Northern deepwater prawn (Pandalus borealis)	1 mm (by sex)
Other species not listed above should initial	

1 At the 1975 Annual Meeting, it was recommended that silver hake be reported by 1 -cm length groups and also by sex, instead of by $2-\mathrm{cm}$ length groups as in the past. Length frequencies not reported by sex must be supported by age-length keys for males and females separately.
2 At the 1975 Annual Meeting, it was recommended that length frequencies and age-length keys reported for mackerel be based on measuring the fork length to the centimeter below.
11. ICNAF Sampling Forms (Rev. 01/77)

The completeness of the ICNAF data base, with regard to sampling data for the major commercial fisheries in the Northwest Atlantic, depends entirely on the extent to which member countries of ICNAF sample the catches of their fishing fleets and report these statistics to the Secretariat. As the ICNAF Sampling Program has gradually evolved over the years since its introduction in the early 1950's, various types of forms have been adopted for use by member countries in reporting their sampling data to the Secretariat. More recently, with the need for standardization to facilitate computer-processing of the data, the basic information required has been consolidated into two forms, referred to as ICNAF Sampling Form 1 and Sampling Form 2.
a) Sampling Form 1 is designed for use in reporting sampling data for species for which both length and age data are available. For each quarter of the year and for each gear, division (or subdivision) and species, a separate sheet must be used. Three columns are provided for recording the "per mille" length frequencies by month within a quarter; it is very important that the applicable length group used be indicated. The main body of the sheet is for the age-length key for the quarter, expressed as the actual numbers of fish sampled for age (not on a "per mille" basis). The bottom section of the form is for providing the "per mille" age composition in each of the three months. The box in the lower right part of the form (number of age samples making up the age-length key) must be completed.
b) Sampling Form 2 is designed for use in reporting length compositions when no age data are available. The layout is similar to Sampling Form 1 except that more columns are provided for recording length frequencies.

For species which are required to be reported by sex, if both length and age data are available for male and female separately, use separate sheets of Sampling Form 1 for reporting the data for each sex. However, the sex ratio must be reflected in the length frequency total for each sex, so that the "per mille" frequency of male and female combined total 1000 . For example, if a length frequency consisted of 200 fish, of which 90 were male and 110 were female, then the frequencies recorded on the sampling sheets should total 450 for male and 550 for female, after applying the appropriate conversion factor.

If age-length keys are not normally available for certain species (e.g. squids), the monthly length frequencies (per mille) may be reported on Sampling Form2. In the case of species required to be reported by sex, the frequencies for male and female should be recorded in adjacent columns of the same sheet and reflect the sex ratio as indicated in the preceding paragraph.
The details required below each length frequency on both Sampling Forms 1 and 2 must be as complete as possible. The "number of samples" (both length and age) and the "number of fish measured" must always be given, as these are used to assess the adequacy of sampling in relation to the minimum sampling requirements. While the mean length of fish in each length frequency can readily be calculated, the "mean weight of fish" in the length frequency is particularly important, as this is used as a weighting factor to estimate the length and age composition of the catch. This weight must, of course, be expressed as "round fresh" weight, as opposed to gutted or otherwise dressed weights. Information on "gear size" and "depth range" is often very useful in evaluating how applicable the sampling data reported are to commercial fishing operations.

INTERNATIONAL COMMISSION FOR THE HORTHWEST ATLANTIC FISHERIES AGE/LENGTH TABLE FOR SPECIES REPORTED IN 1-CM, 2-CM OR 3-CM LENGTH GROUPS

Year:	Country:		Species:		
Quarter :	Division (or Subdivision):	Gear: ${ }^{\text {S }}$		Sex (where applicable):	
Research, Explorat or Commercial Fish	tory ing:	Catches or Landings:		Structure used for Ageing:	
Check method of measuring fish ($\sqrt{ }$)	Fork length Total length \square	Mantle Other \qquad	To nearest cm To cm below.	$\square \\|_{\text {by: }}$	

AGE COMPOSITION (PER MILLE)

Sampling Form 1 (Rev. 01/77)

International commission for the northwest atlantic fisheries

NOTE: If reporting frequencies by sex, use groups of 3 columns above headed 'Male', 'Females', and 'Total'.

Sampling Form 2 (Rev. 01/77)

PART 2

Summary of Sampling Data, 1976

1. Introduction

Sampling data reported to the Secretariat should be accompanied by notes on sampling procedures. These notes should contain descriptions of how the length and age samples are collected so that any limitations on the use of the data can be recognized and the correct interpretations applied. Information on the use of conversion factors and the method of determining the mean weight of fish in the samples is essential for the proper application of the data to stock assessment problems. However, in nearly all cases, the sampling data were not accompanied by suitable descriptions of the procedures used, other than those recorded on the reporting forms, such as the method of measuring (fork length, total length, etc.), the recorded measurement (nearest cm , cm below, etc.), and the type of sample (research or commercial). Such parameters, when given, form part of the sample descriptor in the sampling data base. The "Notes on Sampling Data" (e.g. see ICNAF Samp. Yearb. Vol. 20, pages 17-20) are not repeated in this volume, since no new information have been provided.
2. Summary of Data Relevant to Commercial Fisheries

The following is a list of species by divisions for which commercially-oriented sampling data (see Part 3) were received from the various countries for 1976:

Country	Species	Divisions
Bulgaria	Silver hake Atlantic mackerel Capelin	$\begin{aligned} & -4 W \\ & -5 Z W, 6 A, 6 B, 6 C \\ & -30 \end{aligned}$
Canada (M)	Atlantic cod Haddock Atlantic redfish Pollock American plaice Witch flounder Yellowtail flounder Winter flounder Atlantic herring Atlantic mackerel	- 4R, 4S, 4T, 4Vn, 4Vs, 4W, 4X, 5Ze - 4W, 4X, 5Ze - 2J, 3L, 3M, 3N, 3Pn, 3Ps, 3P, 4R, 4S, 4T 4Vs, 4W, 4X - 4Vs, 4W, 4X, 5Ze - 4R, 4S, 4T, 4Vn, 4Vs, 5Ze - 4R, 4S, 4T, 4Vn, 4Vs, 4W - 5Ze - 4T, 4X, 5Ze - 4Vn, 4W, 4X - $4 \mathrm{~T}, 4 \mathrm{Vn}, 4 \mathrm{X}$
Canada (N)	Atlantic cod Atlantic redfish American plaice Witch flounder Yellowtail flounder Greenland halibut Atlantic mackerel Capelin	- 2J, 3K, 3L, $30,3 \mathrm{Ps}, 4 \mathrm{R}, 4 \mathrm{~S}$ - 2J, 3K, 3L, 3M, 3N, 30, 3Pn, 3Ps, 4R, 4S, 4Vn - $2 \mathrm{~J}, 3 \mathrm{~K}, 3 \mathrm{~L}, 3 \mathrm{~N}, 30$, $3 \mathrm{Ps}, 4 \mathrm{~T}, 4 \mathrm{Vs}$ - $2 \mathrm{~J}, 3 \mathrm{~K}, 3 \mathrm{~L}, 3 \mathrm{~N}, 30,3 \mathrm{Ps}, 4 \mathrm{R}, 4 \mathrm{~T}$ - 3L, 3N, 30 - 2J, 3K, 3L - 3K, 3L, 4R - 2J, 3K, 3L, 3N, 3Ps, 4T
Cuba	Atlantic mackerel Atlantic argentine Squid-Illex	$\begin{aligned} & -5 Z e \\ & -4 W \\ & -4 W \end{aligned}$
Denmark (G)	Atlantic cod Atlantic redfish American plaice Striped wolffish Shrimp (Pandalus borealis)	- 1C, 1D, 1E, EG - 1D, 1E - 10 - 1C - 1A, 1B, 1C, 1D, 1E
France (SP)	Atlantic cod Atlantic herring Squid-Illex	$\begin{aligned} & -4 \mathrm{R} \\ & -4 \mathrm{R}, 4 \mathrm{Vn}, 4 \mathrm{Vs}, 4 \mathrm{~W} \\ & -3 \mathrm{Ps} \end{aligned}$

Country	Species	Division
Fed. Rep. Germany	Atlantic cod Atlantic herring	$\begin{aligned} & -2 \mathrm{~J}, 3 \mathrm{~K} \\ & -5 \mathrm{Ze} \end{aligned}$
German Dem. Rep.	Greenland halibut Roundnose grenadier Atlantic herring Atlantic mackerel	- 1C - 1C, 2H, 3K, 3L - 5Ze - 5Ze, 6A, 6B
Japan	Atlantic herring Atlantic butterfish Capelin Squid-Illex Squid-Loligo	- 4 X - 5Ze, 5Zw, 6A, 6B - 3N, 30 - 4V, 4W, 5Ze, 6A, 6B - 5Ze, 5Zw, 6A, 6B
Norway	```Capelin Shrimp (Pandalus borealis)```	$\begin{aligned} & -3 N \\ & -1 B \end{aligned}$
Poland	Atlantic cod Atlantic redfish Witch flounder Greenland halibut Atlantic herring Atlantic mackerel Squid-Illex Squid-Loligo	$\begin{aligned} & -3 \mathrm{~K}, 3 \mathrm{~L} \\ & -2 \mathrm{~J}, 3 \mathrm{~K}, 3 \mathrm{~L} \\ & -3 \mathrm{~K} \\ & -3 \mathrm{~K} \\ & -5 \mathrm{Ze}, 6 \mathrm{~B} \\ & -5 \mathrm{Ze}, 5 \mathrm{~W}, 6 \mathrm{~A}, 6 \mathrm{~B}, 6 \mathrm{C} \\ & -5 \mathrm{Ze}, 5 \mathrm{Z}, 6 \mathrm{~A} \\ & -5 \mathrm{Z}, 6 \mathrm{~A} \end{aligned}$
Portugal	Atlantic cod	- 3L, 3M
Romania	Silver hake Red hake Atlantic mackerel Atlantic menhaden	- 6A - 6A - 5Ze, 5Zw, 6A - 6B
USSR	Atlantic cod Haddock Atlantic redfish Silver hake Red hake Greenland halibut Roundnose grenadier Atlantic herring Atlantic mackerel Attantic butterfish Alewife Atiantic argentine Squid-Illex Squid-Loligo	- 2J, 3K, 3L, 3N - 4W - 2J, 3K, 3L, 3M, 30, 4W - 4W, 4X, 5Ze, 5Zw, 6 - 5Ze - 0, 2 G - 0, 1C, 2G - 4W, 5Ze - 4VWX,5,6 - 5Ze - 4X, 5Ze, 5Zw, 6 - 4W, 4X - 4W, 4VWX, 5Ze - 5
USA	Atlantic cod Haddock Atlantic redfish Silver hake Red hake Pollock American plaice Witch flounder Yellowtail flounder Winter flounder Sumner flounder Windowpane flounder Scup Atlantic herring Atlantic mackerel Atlantic butterfish Squid-Illex Squid-Loligo	- 5Ze - 4X, 5Y, 5Ze - 4W, 4X, 5Y, 5Ze - 5Y, 5Ze, 5Zw, 6 - 5Zw, 6A - 5Y, 5Ze - 5Y, 5Ze - 5Y, 5Ze - 5Z(E69 $), 5 Z\left(W 69^{\circ}\right)$ - 5Y, 5Ze, 5Zw, 6 - 5Ze, 5Zw, 6 - 5Ze - 6 - $5 \mathrm{Y}, 5 \mathrm{Z}+6$ - 5 Y - $5 Z w, 6 A$ - 5Y, 5Ze - 5Zw, 6A

Country	Species	Division
USA (cont'd)	Squids(NS)	$-6 A$
	Sea scallops	$-5 Y, 5 Z e, 6$

3. Summary of Research Vessel Sampling Data

The following summary of research vessel sampling data available at the Secretariat is a listing by country, species and division of samples tabulated by species in Part 4 (Table 29). As far as it can be ascertained, these samples pertain to pure research vessel operations, i.e. survey data not connected with commercial fishing operations.

Country	Species	Division
Cuba	Atlantic cod Haddock Silver hake American plaice	$\begin{aligned} & -4 W \\ & -4 W \\ & -4 W, 4 X \\ & -4 V s \end{aligned}$
Denmark (G)	Atlantic cod Atlantic redfish American plaice Greenland halibut Greenland cod Polar cod Roundnose grenadier Spotted wolffish Striped wolffish	$\begin{aligned} & -1 D, 1 E \\ & -1 A, 1 B, 1 C, 1 D, 1 E \\ & -1 A, 1 B, 1 C, 1 D, 1 E \\ & -1 A, 1 B, 1 C, 1 D, 1 E \\ & -1 B, 1 D \\ & -1 A, 1 B \\ & -1 B \\ & -1 A \\ & -1 B \end{aligned}$
France (SP)	Atlantic cod Atlantic redfish American plaice	$\begin{aligned} & -2 \mathrm{~J}, 3 \mathrm{~K}, 3 \mathrm{~L}, 3 \mathrm{Pn}, 4 \mathrm{Vn}, 4 \mathrm{Vs} \\ & -3 \mathrm{~K}, 3 \mathrm{Pn}, 3 \mathrm{Ps} \\ & -3 \mathrm{~L} \end{aligned}$
Fed. Rep. Germany	Atlantic cod	- 1C, 1D, 1E, 1F, 2G, 2J, 3K
German Dem. Rep.	Atlantic cod Atlantic herring Atlantic mackerel	$\begin{aligned} & -2 J, 3 K, 3 L \\ & -4 X, 5 Y, 5 Z e, 5 Z w \\ & -5 Z e, 5 Z w \end{aligned}$
USSR	Haddock Silver hake	$\begin{aligned} & -5 Z e \\ & -4 W, 5 Z e \end{aligned}$

PART 3

List of Sampling Data for Commercial Fisheries, 1976

1. Introduction

The publication of detailed sampling data in the Sampling Yearbook was discontinued following the issue of Vol. 17 for the year 1972. Instead, as recommended by STACRES at the 1974 Annual Meeting (ICNAF Redbook 1974, page 70), the Yearbook starting with Vol. 18 contains lists of available data, the details of which are made available upon request to scientists and/or research institutes involved in the Commission's work.

Tables 1 to 28 in this volume contain lists of available length and age sampling data by species, arranged by country, division, gear and month. Nearly all of these data were reported as commercial samples. However, some samples reported as "research" have been included, where the type of gear used or the gear size reported indicated that they were relevant to commercial fishing operations. Where sampling data have been reported by sex, the table entries under "Number measured" and "Number aged" indicate the numbers of males and females sampled.

Sampling data relevant to pure research vessel operations (survey data not connected with commercial fisheries) are listed in Part 4 of this issue.
2. Abbreviations Used

The following abbreviations are used to designate the "gear" and "type of sample" in Tables 1 to 28 of Part 3, and also in the listing of research samples in Part 4:

GEAR

OTB - Bottom otter trawl (side and stern)
OTM - Midwater otter traw1 (side and stern)
PTB - Bottom pair trawl (2 boats)
PTM - Midwater pair traw1 (2 boats)
SN - Seine net (Danish and Scottish seines)
SB - Beach seines
PS - Purse seines
GN - Gillnets (set and drift)
LL - Longlines (set)
LHP - Handlines and pole-1ines
FPN - Uncovered pound nets
FWR - Weirs, barriers, fences, etc.
DRB - Boat dredges
NS

TYPE OF SAMPLE
CC - Commercial catch
CL - Commercial landing
RC - Research catch
RL - Research landing

Table 1. Atlantic cod length and age sampling data for 1976.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Canada (M)	4R	OTB	Apr	CL	1	356		
			May	CL	3	952	6	298
			Jun	CL	2	400		
			Ju1	CL	1	320	1	64
			Oct	CL	1	381	1	62
	4 S	OTB	Apr	CL	1	222		
			May	CL	4	800	8	316
			Jun	CL	3	600		
			Aug	CL	1	200	1	37
		SN	Jun	CL	1	200	1	36
	4 T	OTB	Jan	CL			1	48
			Apr	$C L$	1	287		
			May	CL	8	2129	13	568
			Jun	CL	4	800		
			Oct	CL	1	78	1	23
		SN						
			Jun	$C L$	3	600	5	185
			Ju1	CL	7	1451		
			Aug	CL	8	1617	18	600
			Sep	CL	3	600		
		GIN	Jut	CL	4	732		
			Aug	CL	3	480	7	281
		LL	Aug	CL	1	200	1	33
		LHP	Jun	CL	2	400	2	95
			Jul	CL	4	788	8	326
			Aug	CL	4	800	8	326
	4 Vn	OTB	Jan	CL	9	2937		
			Feb	CL	3	1042	16	741
			Mar	CL	4	1286		
			Apr	CL	1	268	1	48
			Dec	CL	3	785	3	149
		GN	Jul	CL	1	200	1	43
	4Vs	OTB						
			Mar	CL	1	356	2	102
	4W	LL	Mar	CL	1	234	1	60
			Jun	CL	1	230	1	35
			Jul	CL	1	300	1	43
			Oct	CL	1	251	1	32
	4 X	OTB	Jan	CL	1	395	1	61
			May	CL	1	271	1	57
			Aug	CL	3	546	3	172
			Oct	CL	1	258	1	66
		GN	Aug	CL	1	95	1	38
		LL	Nov	CL	1	282		
			Dec	CL	1	257	2	124
	5Ze	OTB	Jul	CL	1	222	2	101
			Aug	CL	1	239	2	101
		LL	Jun	CL	1	69	1	36
Canada (N)	2 J	OTB	Oct	CL	1	305	1	296
		GN	Aug	CL	22	3631	12	$978{ }^{1}$
		LHP	Aug	CL	7	651	12	$978{ }^{1}$
		FPN	Jul Aug	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	2 9	$\begin{array}{r} 267 \\ 2526 \end{array}$	12	$978{ }^{1}$

Table 1. Atlantic cod (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Canada (N)	3K	OTB	Apr	CL	1	530		
			May	CL	4	888	5	455
			Nov	CL	1	160	1	148
		GN	Jun	CL	9	1016		
			Jul	CL	7	672	12	590^{2}
			Aug	CL	4	433		
		LHP	Jun	CL	2	173	12	590^{2}
			Jul	CL	3	698	12	
			Sep	CL	7	1884	11	4643
		FPN	Jun	CL	2	304	12	590^{2}
			Jul	CL	10	2811	12	
			Sep	CL	6	2211		
	3L	OTB	Jun	CL	3	1016	3	425
			Oct	CL	1	183	2	132
			Nov	CL	1	515	2	132
		GN	Jun	CL	2	576	38	$1374{ }^{4}$
			Ju1	CL	14	3399		
		LHP	Jul	CL	2	747	38	$1374{ }^{4}$
		FPN	$\begin{aligned} & \text { Jun } \\ & \text { Jul } \end{aligned}$	$\begin{aligned} & C L \\ & C L \end{aligned}$	$\begin{array}{r} 5 \\ 15 \end{array}$	$\begin{aligned} & 7366 \end{aligned}$	38	$1374{ }^{4}$
	30	OTB	May	CL	2	465	3	304
			Jun	CL	1	504		
			Sep	CL	1	392	1	43
	3 Ps	OTB	Jun	CL	2	926	2	
			Aug	CL	2	1243	2	197
			Nov	CL	2	952	2	234
		GN	Jun	CL	7	2337	20	529.5
			Jul	CL	2	744		
		LL	Sep	CL	7	3318	7	468
		FPN	Jun	CL	10	2603	20	$529{ }^{5}$
			Jul	CL	1	361	20	529
	4R	OTB	Jan	CL	1	716	-	-
			Feb	CL	3	746		
			May	CL	5	3377		371
			Jun	CL	11	3510		37
			Nov	CL	3	1417		-
		OTM	Feb	CL	1	548	-	-
		GN	Jun	CL	15	3409	-	390
	4S	OTB	Nov	CL	1	428	-	-
Denmark (G)	$1 C^{6}$	OTB	Jan	CL	1	960	1	362
			Mar	CL	1	1307	1	362
	10	OTB	Mar 7	CL	1	1057	1	345
			Jun 8	CL	2	1997	1	$497{ }^{9}$
			Sep	CL	1	912	1	182
			Dec	CL	1	967	1	218
		GN	May	CL	2	206	1	$497{ }^{9}$
		FPN	Jun	CC	2	1290	3	634
			Jul	CL	1	1127	1	219
	1E	OTB	Aug	CL	4	2603	2	673
			Oct	CL	1	1271	1	225
	$E G^{10}$	OTB	Jun	CL	1	1051	1	479

Table 1. Atlantic cod (continued)

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
France (SP)	4R	OTB	Jan Feb	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{array}{r} 32 \\ 5 \end{array}$	5216 993	5	993
Fed. Rep. Germany	2 J	OTB	Feb	CC	8	3432	4	$949{ }^{11}$
	3K	OTB	Feb	CC	4	2814	4	$949{ }^{11}$
Pol and	3 K	OTB	Feb Apr	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 7706 \\ & 1408 \end{aligned}$	5	720 -
	3 L	OTB	Mar	CC	1	627	1	100
Portugal	3L	OTB	Sep	CC	2	279	1	91
	3M	OTB	Aug Sep Oct	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{CC} \end{aligned}$ $C C$	$\begin{array}{r} 3 \\ 18 \\ 2 \end{array}$	$\begin{array}{r} 310 \\ 2148 \\ 220 \end{array}$	10 2	295 70
USSR	2 J	OTB	Jan Feb	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{CC} \end{aligned}$	$\begin{array}{r} 32 \\ 6 \end{array}$	$\begin{aligned} & 9320 \\ & 2226 \end{aligned}$	1	305
	3K	OTB	Feb	CC	34	12795	1	309
	3L	OTB	Mar	CC	5	4640	-	-
	3 N	OTB	Apr	CC	8	4327	-	-
USA	5Ze	OTB	Jan	CL	4	361		
			Feb	CL	4	419	-	-
			Mar	CL	3	319		
			Apr	CL	5	673		
			May	CL	7	925	-	-
			Jun	CL	4	551		
			Jul	CL	3	405		
			Aug	CL	2	207	-	-
			Sep	CL	3	370		
			Oct	CL	4	736		
			Nov	CL	4	472	-	-
			Dec	CL	1	105		

```
Same key used for GN, LHP and FPN.
Same key used for GN, LHP and FPN.
Same key used for LHP and FPN.
Same key used for GN, LHP and FPN.
Same key used for GN and FPN.
```

Reported from Div. $1 \mathrm{C}+1 \mathrm{D}$.
Reported from Div. $1 C+1 D+1 E$.

Table 2. Haddock length and age sampling data for 1976.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas	No.	No. aged
Canada (M)	4W	OTB	May	CL	1	450	1	35
			Aug	CL	1	- 200	1	38
			Dec	CL	1	200	1	33
		LL	Mar	CL	1	166	1	25
			Aug	CL	1	181	1	33
			Oct	CL	1	131	1	31
	4 x	OTB						
			Feb	CL	2	486	13	503
			Mar	CL	9	2074		

Table 2. Haddock (continued)

Country	ICNAF Div.	Gear	Month	Type of sample	Leng	th samples No. meas.		samples No. aged
Canada (M)	4X	OTB	Apr	CL	1	248		
			May	CL	4	1190	9	319
			Jun	CL	4	1079		
			Jul	CL	3	679		
			Aug	CL	4	847	9	297
			Sep	CL	2	515		
			Oct	CL	3	641		
			Nov	CL	2	406	6	185
			Dec	CL	1	184		
		GN	Aug	CL	1	79	1	20
			Oct	CL	1	170	1	24
		LL	Jan	CL	1	219	1	39
			May	CL	1	239	2	81
			Jun	CL	1	210	2	81
			Aug	CL	1	186	1	36
			Oct	CL	1	190	1	28
		LHP	Aug	CL	1	190	1	38
	52e	OTB	Jun	CL	4	927	4	147
			Aug	CL	1	226	3	110
			Sep	CL	2	391	3	110
			Oct	CL	1	205		
			Nov	CL	1	220	2	59
USSR	4W	Отв	Apr	CC	2	400		
			May	CC	1	200	-	-
USA	4X	OTB	Mar	CL	5	381	5	90
			Apr	CL	1	71 139	3	51
			Jun	CL	2	139	3	51
			Nov	CL	1	106	1	27
	$5 Y$	OTB	Mar	CL	1	30	1	19
			Sep	CL	1	74	1	21
			Oct	CL	1	55		
			Nov	CL	1	53	1	35
	5Ze	OTB	Jan	CL	4	294		
			Feb	CL	6	460	13	275
			Mar	CL	3	211		
			Apr	CL	6	435		
			May	CL	7	665	15	283
			Jun	CL	2	114		
			Aug	CL	1	52		
			Sep	CL	2	155	3	76
			Oct	CL	1	103	1	26

Table 3. Atlantic redfish length and age sampling data for 1976.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Canada (M)	2 J	Отв	Jul	CL	1	125/75		
			Aug	CL	1	100/100	-	-
			Nov	CL	1	94/106	-	-
	3L	OTM	Oct	CL	1	85/115	-	-

Table 3. Atlantic redfish (continued)

Table 3. Atlantic redfish (continued)

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples		
					No.	No. meas.	No.	No. aged	
Canada (N)	3L	OTM	May	CL	1	122/122	-	-	
			Jun	CL	3	849/930			
			Jul	CL	4	667/690	-	-	
			Sep	CL	2	350/448			
			Oct	CL	2	609/455			
	3 M	OTM	May	CL	1	142/134	-	-	
			Jun	CL	1	130/139			
			Jul	CL	2	450/416			
			Aug	CL	2	464/608			
			Sep	CL	1	173/172			
	3N	OTB	Sep	CL	1	277/353	-	-	
	30	OTB	May Jul	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	1	$\begin{aligned} & 516 / 534 \\ & 595 / 500 \end{aligned}$	-	-	
					3				
	3 Pn	OTB	MayJul	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	1	$\begin{array}{r} 77 / 199 \\ 278 / 239 \end{array}$	-	-	
					2				
		OTM	Mar Apr	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	1	$\begin{aligned} & 128 / 296 \\ & 611 / 1362 \end{aligned}$	-	-	
					4				
	3Ps	OTB	May Jul Aug	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$		$\begin{aligned} & 399 / 420 \\ & 507 / 450 \\ & 171 / 114 \end{aligned}$	-	-	
					3				
					1				
		OTM	Mar Apr	$\begin{array}{cl} \mathrm{CL} \\ \mathrm{Cl} \end{array}$	4	$\begin{aligned} & 538 / 1077 \\ & 281 / 157 \end{aligned}$	-	-	
					1				
	4R	OTB	Feb Apr	${ }_{\mathrm{CL}}^{\mathrm{CL}}$	1	$\begin{array}{r} 228 / 167 \\ 95 / 186 \end{array}$	-	-	
					1				
		OTM	$\begin{aligned} & \text { Jan } \\ & \text { Feb } \end{aligned}$	$\begin{aligned} & C L \\ & C L \end{aligned}$	5	$\begin{aligned} & 1385 / 487 \\ & 2155 / 705 \end{aligned}$	-	-	
					7				
	4S	OTB	Nov	CL	1	135/131	-	-	
		OTM	Jan	CL	1	306/122	-	-	
	4 Vn	OTM	Apr	CL	1 95/317		-	-	
Denmark (G)	TD	$\begin{aligned} & \text { OTB } \\ & \text { OTB } \end{aligned}$	Aug	CC	1	403	-	-	
	IE		Aug	CC	2	761	-	-	
Poland	2 J	OTB	Feb	CC	1	359/379	-	-	
	3 K	OTB	Feb Apr	$\begin{aligned} & C C \\ & C C \end{aligned}$	4	$\begin{aligned} & 866 / 1467 \\ & 738 / 932 \end{aligned}$	-	-	
					2				
	3L	OTB	Mar	CC	5	2096/2196	-	-	
USSR	2.	OTB	Jan May Jul	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 4 \\ & 7 \\ & 9 \end{aligned}$	$\begin{gathered} 595 / 567 \\ 1778 / 2212 \\ 1717 / 1479 \end{gathered}$	$\begin{array}{ll} - & - \\ 1 & 128 / 172 \\ 1 & 159 / 93 \end{array}$		
	3K	OTB	Feb	RC	10	1728/1653	-	-	
	3L	OTB	Mar	RC	17	2430/3196	-	-	
	3 M	OTB	Mar Apr	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	35	$\begin{aligned} & 567 / 466 \\ & 966 / 811 \end{aligned}$	-		
	30	OTB	Apr	RC	39	4740/5650	-	-	
	4W	OTB	Mar May	$\begin{aligned} & C C \\ & C C \end{aligned}$	2	526	-	-	
					5	1015	-	-	
USA	4W	OTB	Feb		1				
			Mar	CL	1	49/51	-	-	
			May	CL	1	61/39	-	-	
			Sep	CL	1	58/42	-	-	

Table 3. Atlantic redfish (continued)

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
USA	4X	OTB	Jan	CL	5	251/249		
			Feb	CL	2	96/104	-	-
			Mar	CL	2	78/122		
			Jun	CL	2	82/118	-	-
			Jul	CL	3	116/192		
			Aug	CL	7	363/361	-	-
			Sep	CL	4	211/220		
			Oct	CL	4	200/233	-	-
	$5 Y$	OTB	Feb Mar	${ }_{C L}^{C L}$	$\begin{array}{r} 1 \\ 10 \end{array}$	$\begin{gathered} 64 / 36 \\ 485 / 515 \end{gathered}$	-	-
			Mar	CL	12	$485 / 575$ $545 / 678$		
			May	CL	5	253/253	-	-
			Jun	CL	10	430/588		
			Jul	CL	10	412/598		
			Aug	CL	6	348/256	-	-
			Sep	CL	9	438/471		
			Oct	CL	4	222/172		
			Nov	CL	7	369/344	-	-
			Dec	CL	4	265/119		
	5Ze	OTB	Mar	CL	1	82/18	-	-
			Dec	CL	1	$56 / 61$	-	-

Table 4. Silver hake length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Bulgaria	4W	OTM	Jun	CC	1	230	-	-
Romania	6A	OTM	Feb	CC	1	46/54	1	46/54
USSR	4W	OTB	Feb Mar Apr May Jun Jul Aug Dec	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{array}{r} 9 \\ 67 \\ 136 \\ 166 \\ 176 \\ 129 \\ 24 \\ 28 \end{array}$	1855 13520 27293 33299 35216 25720 4800 5615	2 2 2	$\begin{gathered} 81 / 135 \\ 70 / 173 \\ 85 / 184 \end{gathered}$
		OTM	May Jun Jul	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	2 5 4	$\begin{array}{r} 400 \\ 1000 \\ 800 \end{array}$	-	-
	4X	OTB	Apr May Jun	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	40 73 1	$\begin{array}{r} 7920 \\ 14610 \\ .200 \end{array}$	13	82/210
	5Ze	OTB	Mar Apr Aug	$\begin{array}{r} \text { CC } \\ \cdot \mathrm{CC} \\ \text { CC } \end{array}$	$\begin{array}{r} 8 \\ 173 \\ 8 \end{array}$	$\begin{array}{r} 1671 \\ 34553 \\ 1600 \end{array}$	13 8	$\begin{aligned} & 108 / 182 \\ & 101 / 231 \end{aligned}$
	5ZW+6	OTB	Mar	CC	41	8417	18	104/177
		OTM	Mar	CC	4	847	-	-

Table 4. Silver hake (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
USA	5 Y	ОТВ	Jan	CL	2	90/115		
			Feb	CL	8	365/447	-	-
			Mar	CL	5	253/299		
			Apr	CL	2	106/114	-	-
			Jul	CL	1	32/68		
			Aug	CL	2	122/97	-	-
			Sep	CL	1	27/49		
			Nov	CL	2	42/147	-	-
	5Ze	OTB	Jul	CL	5	326/272		
			Aug	CL	5	226/246	-	-
			Sep	CL	4	134/244		
			Oct	CL	1	20/74	-	-
	5Zw	ОТВ	Feb	CL	2	231	-	-
			Apr	CL	2	71	-	-
			Jul	CL	5	669		
			Aug	CL	11	1746	-	-
			Sep	CL	7	1435		
			Oct	CL	10	1071		
			Nov	CL	6	305	-	-
			Dec	CL	6	607		
	6	OTB		CL	5	83		
			May	CL	1	53	-	-
			Ju1	CL	2	184	-	-
			Oct	CL	4	209		
			Nov	CL	2	30	-	-
			Dec	CL	4	470		

Table 5. Red hake length and age sampling data for 1976.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
Romania	6A	OTM	Mar	CC	1	200	-	-
USSR	5Ze	OTB	$\begin{aligned} & \text { Mar } \\ & \text { Apr } \end{aligned}$	$\begin{aligned} & C C \\ & C C \end{aligned}$	1	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	1	116
		OTB	Mar Apr May Sep Oct Dec	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{array}{r} 1 \\ 13 \\ 17 \\ 18 \\ 4 \\ 22 \end{array}$	$\begin{array}{r} 200 \\ 2600 \\ 3390 \\ 3530 \\ 808 \\ 4401 \end{array}$	10 10	151 168
USA	57w	OTB	Jan Feb Apr Jul Aug Sep Oct Nov Dec	$\begin{aligned} & C L \\ & C L \end{aligned}$	1 2 2 5 11 7 10 6 6	$\begin{array}{r} 454 \\ 200 \\ 113 \\ 486 \\ 561 \\ 459 \\ 699 \\ 1130 \\ 652 \end{array}$	-	-
	6A	0TB	Apr May Jul Oct Nov Dec	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	5 1 2 4 2 4	960 36 105 172 280 338	-	-

Table 6. Pollock length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (M)	4Vs	OTB	Sep	CL	1	269	1	29
	4W	OTB	Apr Jun	CL	1	285 430	3	136
			Jul	${ }_{\text {CL }}$	1	200		
			Sep	CL	1	270	2	91
			Oct	CL	1	289		
			Nov	CL	2	549	5	209
			Dec	CL	1	217		
	4 X	OTB	Jan	CL	1	231		
			Feb	CL	2	364	3	127
			Mar	CL	1	211		
			Apr	CL	2	339		
			May	CL	1	248	7	250
			Jun	CL	4	1147		
			Jul	CL	3	598		
			Aug	CL	2	531	7	249
			Sep	CL	2	404		
			Oct	CL	1	207		
			Nov	CL	3	634	5	186
			Dec	CL	1	177		
		GN	$\begin{aligned} & \text { Jul } \\ & \text { Aug } \end{aligned}$	$\begin{aligned} & \text { CL } \\ & \text { CL } \end{aligned}$	1	$\begin{aligned} & 247 \\ & 198 \end{aligned}$	2	63
	5Ze	OTB					2	78
			Aug	$C L$	1	325	1	31
USA	$5 Y$	OTB	Dec	CL	3	258	-	-
	5Ze	0TB		CL				
			Mar	CL	1	83	-	-
			Apr	CL	1	80	-	-

Table 7. American plaice length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Canada (M)	4R	OTB	Jan	CL	1	7/74	1	7/44
	4 S	OTB	May	CL	1	9/191	1	9/62
	4 T	ОТВ	Apr May Jun	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{array}{r} 2 \\ 11 \\ 1 \end{array}$	$\begin{gathered} 98 / 306 \\ 449 / 1729 \\ 30 / 170 \end{gathered}$	14	160/424
		SN	May Jun	${ }_{\text {CL }} \mathrm{CL}$	$\begin{array}{r} 4 \\ 13 \end{array}$	$\begin{aligned} & 214 / 586 \\ & 571 / 2029 \end{aligned}$	17	214/443
			Jul	CL	5	193/807		
			Aug	CL	8	355/7311	14	154/375
			Sep	CL	1	12/188		
			Oct	CL	1	63/137	1	12/22
	4 Vn	OTB	Feb Mar	CL	1	$78 / 122$ $112 / 293$	2	35/48
			Apr	CL	1	79/120	1	13/25
			Oct	CL	1	90/94	2	49/65
			Nov	CL	1	96/104	2	49/65

Table 7. American plaice (continued)

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (M)	4 Vn	SN	Jun		3	392/138	3	84/39
			$\begin{aligned} & \text { Jul } \\ & \text { Aug } \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	2 3	$\begin{aligned} & 365 / 35 \\ & 497 / 103 \end{aligned}$	5	163/42
	4Vs	OTB	$\begin{aligned} & \text { Jan } \\ & \text { Ju1 } \end{aligned}$	CL	1	72/128	1	15/28
				CL	1	76/124	1	16/24
	5Ze	OTB	Sep	CL	1	22/72	1	14/37
Canada (N)	2 J	OTB	Oct	CL	1	680/1079	1	196/341
	3 K	OTB	Nov	CL	1	279/704	1	86/187
		GN	Ju1	Cl	2	57/525	2	139/238
	3L	OTB	Mar	CL	4	1073/1750	4	216/368
			May	CL	3	752/751		
			Jun	CL	4	502/1606	7	247/425
			Jul	CL	2	350/355		
			Aug	CL	2	352/447	7	221/351
			Sep	CL	3	454/732		
			Oct	CL	3	253/394		
			Nov	CL	2	298/465	4	126/212
	3 N	OTB	Feb	CL	3	513/661	3	138/191
			Apr	CL	3	241/561		
			May	CL	1	301/443	5	167/339
			Jun	CL	1	74/694		
			Jul	CL	2	298/306		
			Aug	CL	3	379/325	8	304/428
			Sep	CL	3	399/597		
				CL	2	414/584	2	117/179
	30	OTB	Feb	CL	2	244/640		
			Mar	CL	1	61/255	3	125/264
			Apr	CL	1	29/121		
			May	CL	2	434/435	3	119/183
			Aug	CL	2	367/595	2	95/134
	3Ps	OTB	Feb	CL	1	157/199		
			Mar	CL	2	298/426	3	113/167
			Apr	CL	1	84/163		
			Jun	CL	2	212/377	3	113/163
			Aug	CL	1	201/361	1	84/117
			Oct	CL	1	86/122		
			Nov	CL	1	152/188	4	173/267
			Dec	CL	2	299/513		
	4 T	OTB	Apr	CL	1	128/172	1	15/21
	4Vs	OTB	Jan	CL	1	320/166	1	19/26
Denmark (G)	10	OTB	Aug	CC	1	278	-	-
USA	$5 Y$	OTB	Apr	CL	2	136		
			Jun	CL	3	207	-	-
			Sep	CL	1	79	-	-
	5Ze	OTB	Apr	CL	3	202		
			May	CL	2	166	-	-
			Jun	CL	2	192		
			Nov	CL	1	62	-	-

Table 8. Witch flounder length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (M)	4R	OTB	Jan	CL	1	121/79	1	32/31
	4 S	OTB	Feb Mar	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 179 / 205 \\ & 182 / 220 \end{aligned}$	4	92/93
			Apr	CL	1	114/99	3	51/77
			May	CL	2	137/263	3	$51 / 77$
	4 T	ОTB	Apr May	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 146 / 54 \\ & 294 / 291 \end{aligned}$	4	87/98
		SN	Jun	CL	1	53/147	1	10/20
	4 Vn	OTB	Apr Nov	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	1	$\begin{gathered} 80 / 120 \\ 121 / 79 \end{gathered}$	1	$\begin{aligned} & 16 / 16 \\ & 28 / 26 \end{aligned}$
		SN	Jun	CL	3	440/160	3	74/44
			Jul Aug	${ }_{\text {CL }}$	4	$\begin{aligned} & 664 / 136 \\ & 356 / 44 \end{aligned}$	6	160/63
	4Vs	SN	AUg	CL	1	134/66	1	25/16
	4W	SN		CL	1	150/50	1	12/12
			Nov	CL	1	76/124	1	13/17
Canada (N)	2 J	OTB	Oct	CL	1	93/98	1	57/68
	3 K	OTB	Sep	CL	1	230/79	1	33/33
			Nov Dec	${ }_{\mathrm{CL}}^{\mathrm{CL}}$	1	$\begin{aligned} & 239 / 205 \\ & 117 / 66 \end{aligned}$	2	213/200
		GN	$\begin{aligned} & \text { Jul } \\ & \text { Aug } \end{aligned}$	$\begin{array}{cl} \mathrm{CL} \end{array}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 306 / 857 \\ & 191 / 814 \end{aligned}$	11	155/207
	3L	OTB	Aug Sep	CL	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 140 / 225 \\ & 663 / 260 \end{aligned}$	3	147/133
		GN	May	CL	1	16/56	1	16/57
			Jul Aug	CL	2	$\begin{aligned} & 95 / 304 \\ & 91 / 124 \end{aligned}$	3	71/117
	3 N	OTB	Mar	CL	1	346/443	1	81/100
			Apr	CL	1	179/177	1	19/22
			Sep	CL	1	225/231	1	38/44
			Oct	CL	1	240/268	2	
			Nov	CL	1	163/170	2	103/81
	30	OTB	Feb	CL	2	631/667	3	206/234
			Mar	CL	1	159/201	3	206/234
			Apr	CL	1	113/160	2	51/78
			Jun	CL	1	150/400	2	$51 / 78$
			Oct	CL	1	$79 / 169$	3	91/108
			Nov	CL	2	356/297		91/108
	3 Ps	ОТВ	Jun	CL	1	663/491	1	170/173
	4R	отв	Feb	CL	3	825/1062	3	239/299
	4 T	ОтВ	Apr	CL	1	193/239	1	14/24
Poland	3 K	ОТВ	Feb Apr	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{CC} \end{aligned}$	2	$\begin{gathered} 647 / 817 \\ 1324 / 1793 \end{gathered}$	2	$\begin{aligned} & 107 / 112 \\ & 113 / 171 \end{aligned}$
USA	$5 Y$	ОТВ	Apr	CL	1	65		
			May	CL	1	57	-	-
			Jun	CL	1	58		
			Jul	CL	2	124		
			Aug	CL	2	110	-	-
			Sep	CL	1	60		
	5Ze	ОТВ	Mar	CL	4	131	-	-
			Apr	CL	2	160	-	-

Table 9. Yellowtail flounder length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (M)	5Ze	OTB	Sep	CL	1	64/28	-	-
Canada (N)	3L	OTB	Mar Aug Oct	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	1 1	$\begin{aligned} & 232 / 177 \\ & 245 / 212 \\ & 159 / 82 \end{aligned}$	8 5 5	$\begin{aligned} & 293 / 367^{1} \\ & 245 / 315^{2} \\ & 118 / 141^{3} \end{aligned}$
	3 N	OTB	Mar May Aug Sep Oct Nov	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	4 4 1 3 1 2	$\begin{gathered} 1095 / 1118 \\ 1271 / 1121 \\ 244 / 265 \\ 749 / 1157 \\ 262 / 174 \\ 272 / 438 \end{gathered}$	8 5 5	$\begin{aligned} & 293 / 367^{1} \\ & 210 / 260^{4} \\ & 245 / 315^{2} \\ & 118 / 141^{3} \end{aligned}$
	30	OTB	Mar May Oct	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	3 1 1	$\begin{array}{r} 1010 / 666 \\ 206 / 134 \\ 172 / 221 \end{array}$	8 5 5	$\begin{aligned} & 293 / 3671 \\ & 210 / 260^{4} \\ & 118 / 141^{3} \end{aligned}$
USA	5Z (E69 ${ }^{\circ}$)	OTB	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	CL CL	6 3 2 5 4 12 9 9 6 3 8 1	$\begin{gathered} 303 / 468 \\ 167 / 178 \\ 156 / 98 \\ 430 / 323 \\ 278 / 143 \\ 909 / 652 \\ 489 / 773 \\ 350 / 772 \\ 221 / 379 \\ 232 / 160 \\ 359 / 538 \\ 14 / 93 \end{gathered}$	22 16 27 24	$495 / 497$ $341 / 382$ $560 / 679$ $575 / 600$
	5 Z (W69 ${ }^{\circ}$)	OTB	Jan Mar Apr May Jul Aug Sep Oct Nov Dec	$\begin{aligned} & C L \\ & C L \end{aligned}$	3 4 4 4 1 1 1 1 1 1	$\begin{gathered} 190 / 197 \\ 304 / 247 \\ 215 / 233 \\ 303 / 185 \\ 57 / 41 \\ 64 / 85 \\ 114 / 78 \\ 43 / 61 \\ 35 / 68 \\ 57 / 59 \\ 18 / 69 \end{gathered}$	23 8 21 18	$354 / 385$ $154 / 155$ $444 / 450$ $442 / 460$

Same age-length key used for $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30 .
Same age-length key used for 3 L and 3 N .
Same age-length key used for $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30. Same age-length key used for 3 N and 30.

Table 10. Greenland halibut length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (N)	23	OTB	Oct	CL	1	642/935	1	328/464
	3K	OTB	Nov	CL	1	483/512	1	179/246
		GN	Jul Aug	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 310 / 519 \\ & 226 / 342 \end{aligned}$	7	237/280
	3L	GN	May Jun Jul Aug	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 358 / 441 \\ & 330 / 389 \\ & 126 / 253 \\ & 358 / 321 \end{aligned}$	2 6	$\begin{aligned} & 101 / 94 \\ & 99 / 181 \end{aligned}$
German Dem. Rep.	1 C	OTB	Nov Dec	$\begin{aligned} & C C \\ & C C \end{aligned}$	1	$\begin{aligned} & 182 \\ & 756 \end{aligned}$	-	-
Poland	3K	ОТВ	Mar Apr	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 1181 / 1408 \\ & 2240 / 2902 \end{aligned}$	-	-
USSR	SA 0	OTB	Aug Sep	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$		$\begin{aligned} & 7534 / 6223 \\ & 2939 / 2309 \end{aligned}$	-	-
	2G	OTB	Aug Sep	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 18 \\ & 31 \end{aligned}$	$\begin{aligned} & 1041 / 1403 \\ & 1107 / 1351 \end{aligned}$	-	-

Table 11. Winter flounder length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Canada (M)	4 T	OTB	Jun	CL	4	360/440	4	68/81
	4	OTB	Ju1	CL	2	101/299	3	54/61
			Aug	CL	1	93/107	3	54/61
	4X	OTB	Jul	CL	$\begin{aligned} & 3 \\ & 8 \end{aligned}$	$\begin{aligned} & 210 / 299 \\ & 745 / 838 \end{aligned}$	11	186/252
	5Ze	OTB	Aug	CL	1	65/81	1	31/31
USA	$5 Y$	OTB	Mar	CL	2	231	-	-
	5	OTB	Dec	CL	1	127	-	-
	5Ze	OTB	Jan	${ }_{\mathrm{CL}}^{\mathrm{CL}}$	5 1	315 26	-	-
			Mar	CL	5	334		
			Apr	CL	6	375	-	-
			May	CL	6	371	-	-
			Jul	CL	9	640		
			Aug	CL	8	442	-	-
			Sep	CL	10	637		
			Nov	CL	8	507	-	-
	5ZW	OTB	Aug	CL	1	95	-	-
	6	OTB	Mar	CL	1	- 149	-	-
			Apr	CL	2	193	-	-
			May	CL	1	57 143	-	-
			Jul	CL	1	143	-	-
			Aug	CL	1	74 117	-	-
			Oct	CL	1	117	-	-
			Nov	CL	1	150	-	-

Table 12. Summer flounder length and age sampling data for 1976.

Country	ICNAFDiv.	Gear	Month	Type of sample	$\frac{\text { Length samples }}{\text { No. No. meas. }}$		Age samples	
							No.	No. aged
USA	5Ze	OTB	Apr	CL	4	290	-	-
			Oct	CL	2	151	-	-
	5Zw	OTB	Jan	CL	7	603		
			Mar	CL	4	259	-	-
			Apr	CL	2	123		
			May	CL	5	487	-	-
			Jun	CL	9	668		
			Jul	CL	4	351		
			Aug	CL	1	61	-	-
			Sep	CL	4	204		
			Nov	CL	3	211	-	-
	6	OTB	Jan	CL	4	348		
			Feb	CL	14	1383	-	-
			Mar	CL	4	399		
			Sep	CL	4	307	-	-
			Oct	CL	4	233	-	-

Table 13. Windowpane flounder length and age sampling data for 1976.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples	Age samples	
					No. No. meas.	No.	No. aged
USA	5Ze	OTB	Jan	CL	4 85/461		
			Feb	CL	4 27/458	-	-
			Mar	CL	4 20/454		
			Apr	CL	2 14/242		
			May	CL	1 56/80	-	-
			Jul	CL	1 0/131		
			Aug	CL	$10 / 135$	-	-
			Nov	CL	$436 / 405$		

Table 14. Roundnose grenadier length and age sampling data for 1976.

Country	ICNAFDiv.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
German Dem. Rep.	1C	OTB	Nov	CC	1	203/107	1	101/53
	2 H	OTB	Oct	CC	1	77/73	1	42/45
	3K	OTB	Feb	RC	4	457/344	2	172/123
	3L	OTB	Feb	RC	1	170/130	1	55/51
USSR	SA 0	OTB	Aug Sep	$\begin{aligned} & \text { CC } \\ & \text { CC } \end{aligned}$	$\begin{aligned} & 68 \\ & 31 \end{aligned}$	$\begin{aligned} & 8824 / 4688 \\ & 2896 / 1218 \end{aligned}$	-	-
	1C	OTB	Ju1 Aug Sep Oct	$\begin{aligned} & C C \\ & C C \\ & C C \\ & C C \end{aligned}$	$\begin{aligned} & 33 \\ & 19 \\ & 42 \end{aligned}$	$\begin{aligned} & 5621 / 4021 \\ & 2353 / 1077 \\ & 4961 / 1911 \\ & 4611 / 1591 \end{aligned}$	-	-
	2G	OTB	Jul Aug Sep	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	$\begin{aligned} & 15 \\ & 31 \end{aligned}$	$\begin{gathered} 949 / 573 \\ 2493 / 1472 \\ 3330 / 2084 \end{gathered}$	-	-
		OTM	JuT	CC	11	2097/1334	-	-

Table 15. Scup length and age sampling data for 1976.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples No. No. meas.	Age samples No. No. aged	
USSR	6	OTM	Jan	CC	1	200	

Table 16. Striped wolffish length and age sampling data for 1976.

	ICNAF Div.	Gear	Month	Type of sample	Length samples No. No. meas.	Age samples Country	IC
Denmark (G)	IC	OTB	Aug	CL	1	362	

Table 17. Atlantic herring length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (M)	4 Vn	PS	Nov Dec	$\begin{aligned} & \text { CC } \\ & \text { CC } \end{aligned}$	$\begin{aligned} & 30 \\ & 33 \end{aligned}$	$\begin{aligned} & 6503 \\ & 4977 \end{aligned}$	-	-
	4W	OTM	Jan Feb Dec	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	$\begin{aligned} & 6 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 1562 \\ 211 \\ 100 \end{array}$	7 1	368 39
		PS	Jan Feb Dec	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	$\begin{aligned} & 58 \\ & 20 \\ & 18 \end{aligned}$	$\begin{array}{r} 13499 \\ 4213 \\ 2864 \end{array}$	78 18	3895 1078
	4X	SB	Jun Jul Aug Sep Oct Nov	$\begin{aligned} & C C \\ & C C \end{aligned}$	5 1 7 9 2 1	$\begin{array}{r} 781 \\ 169 \\ 1073 \\ 1377 \\ 455 \\ 207 \end{array}$	2 16 3	71 619 142
		PS	Jan	CC	4	1286		
			Feb	CC	9	2434	15	593
			Mar	CC	2	580		
			Apr	CC	4	625		
			May	CC	2	408	35	1684
			Jun	CC	36	6367		
			Jul	CC	39	6016		
			Aug	CC	41	5723	109	4918
			Sep	CC	33	5817		
			$\begin{aligned} & \text { Oct } \\ & \text { Nov } \end{aligned}$	CC	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 831 \\ & 347 \end{aligned}$	7	305
		GN	Apr	CC	1	187		
			May	CC	3	611	27	808
			Jun	CC	29	4510		
			Jul	CC	2	211		
			Aug	CC	7	1063	13	436
			Sep	CC	4	669		
		FPN	May	CC	1	217	4	220
			Jun	CC	3	568	4	220

Table 17. Atlantic herring (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Canada (M)	4 X	FWR	May	CC	15	3057		
			Jun	CC	43	6637	57	3010
			Jul	CC	57	8259		
			Aug	CC	33	4251	92	3213
			Sep	CC	15	1950		
			Oct	CC	5	940		
			Nov	CC	2	289	7	244
France (SP)	4R	OTB	Jan	RC	11	595	-	-
	4 Vn	OTB	Mar	RC	7	1793	-	-
	4Vs	OTB	Mar	RC	9	2422	-	-
	4W	OTB	Mar	RC	1	490	-	-
Fed. Rep. G	5Ze	OTB	Mar	RC	8	1587	4	378
		OTM	Jul	CC	1	90		
			Aug	CC	9	890	17	1452
German Dem.	5Ze	OTM	Sep	CC	25	6120	15	1377
			0ct	CC	4	859	2	200
Japan	4X	OTB	Sep	CC	1	102	-	-
Poland	5Ze	OTB	May	CC	2	793	2	194
		OTM	Sep	CC	3	605	2	128
			Oct	CC	6	1346	6	398
	6B	OTM	Feb	CC	1	549	1	100
USSR	4W	OTB	Apr May	CC CC	$2{ }_{2}^{5}$	$\begin{aligned} & 1020 \\ & 4200 \end{aligned}$	18	396
		OTB	Apr	RC	2	408	-	-
		PS	Apr	RC	1	200	-	-
	5Ze	OTB	May	RC	1	200	-	-
		PS	Aug	RC	4	800	12	114
			Sep	RC	10	2000	12	114
			Oct	RC	2	400	-	-
USA	$5 \mathrm{Y}(\mathrm{N})$	NS	May	CC	7	678		
	(1)		Jun	CC	59	5444	43	756
			Jul	CC	58	5597		
			Aug	CC	33	2995	98	1852
			Sep	CC	39	3709		
			Oct	CC	23	2173		
			Nov	CC	11	1037	31	655
			Dec	CC	1	100		
	$5 Y(S)$	NS	Jan	CC	7	838		
			Feb	CC	4	398	23	550
			Mar	CC	23	1442		
			Apr	CC	4	. 113	5	284
			May	CC	1	$\cdot 73$	5	284
			Jul	CC	5	100		
			Aug	CC	9	941	23	468
			Sep	CC	9	824		
			Oct	CC	6	596		
			Nov	CC	9	674	15	318
	$5 Z+6$	NS	Jan Mar	CC	3	$\begin{array}{r} 287 \\ 34 \end{array}$	4	120

Table 18. Atlantic mackerel length and age sampling data for 1976.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Bulgaria	5Zw	OTM	Jan	CC	1	200	-	-
	6A	OTM	Jan Feb	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{array}{r} 1100 \\ 800 \end{array}$	-	-
	6B	OTM	$\begin{aligned} & \text { Jan } \\ & \text { Feb } \end{aligned}$	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	$\begin{array}{r} 799 \\ 1400 \end{array}$	-	-
	6C	OTM	Jan	CC	1	200	-	-
Canada (M)	4 T	PS	$\begin{aligned} & \text { Jul } \\ & \text { Dec } \end{aligned}$	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{array}{r} 843 \\ 33 \end{array}$	5 1	$\begin{array}{r} 1505 \\ 33 \end{array}$
		GN	$\begin{aligned} & \text { May } \\ & \text { Jun } \\ & \text { Jul } \end{aligned}$	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 115 \\ 2265 \\ 210 \end{array}$	17 1	549 32
		LHP	$\begin{aligned} & \text { Jul } \\ & \text { Aug } \end{aligned}$	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & 204 \\ & 972 \end{aligned}$	6	199
		FPN	Jul	CC	1	105	1	31
	4 Vn	LHP	Aug Nov	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{array}{r} 41 \\ 138 \end{array}$	1	$\begin{array}{r} 41 \\ 138 \end{array}$
		FPN	Jun	CC	13	1416	13	421
	4X	GN	May Jun Sep Oct	$\begin{aligned} & C C \\ & C C \\ & C C \\ & C C \end{aligned}$	2 2 2 3	$\begin{aligned} & 403 \\ & 389 \\ & 201 \\ & 334 \end{aligned}$	3 -1	111 35
		FPN	May Jun Jul Aug Sep Oct	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{array}{r} 7 \\ 2 \\ 8 \\ 11 \\ 9 \\ 4 \end{array}$	$\begin{array}{r} 1475 \\ 314 \\ 818 \\ 1416 \\ 1152 \\ 404 \end{array}$	7 25 3	279 766 100
		FWR	Jun	CC	1	125	1	56
Canada (N)	3K	GN	Aug Sep Oct Nov	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	1 4 1 2	$\begin{array}{r} 99 \\ 170 \\ 50 \\ 100 \end{array}$	5 3	269 150
		LHP	Dec	CL	3	125	3	125
		FPN	Jul Aug Sep Oct	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 1 \end{aligned}$	$\begin{array}{r} 45 \\ 90 \\ 160 \\ 50 \end{array}$	7 1	295 50
	3 L	SB	Oct	CL	2	100	2	100
		PS	Sep Oct	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 202 \\ & 529 \end{aligned}$	6 8	$\begin{aligned} & 192 \\ & 529 \end{aligned}$
		FPN	Jul	CL	4	200	4	200
	4R	FPN	$\begin{aligned} & \text { Jul } \\ & \text { Oct } \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{array}{r} 105 \\ 50 \end{array}$	3	$\begin{array}{r} 105 \\ 50 \end{array}$
Cuba	5Ze	OTB	Apr	CC	3	1740	-	-
German Dem. Rep.	57e	OTM	Oct	CC	4	790	3	295
	6A	OTM	Apr	CC	30	10032	3	152
	6B	OTM	Feb Apr	$\begin{aligned} & C C \\ & C C \end{aligned}$	$\begin{aligned} & 10 \\ & 17 \end{aligned}$	$\begin{aligned} & 3937 \\ & 6240 \end{aligned}$	6 3	$\begin{aligned} & 397 \\ & 153 \end{aligned}$

Table 18. Atlantic mackerel (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No.	No. meas.	No.	No. aged
Poland	5Ze	OTB	May	CC	2	499	2	131
			Nov	CC	5	1579	3	301
		OTM	Feb	CC	3	2692		
			Mar	CC	3	3201	6	600
			Apr	CC	3	1334		
			May	CC	2	1194	5	497
			Oct	CC	3	640		
			Nov	CC	1	569	3	300
	5ZW	OTB	May	CC	2	486	2	183
		OTM	Mar	CC	1	1055	1	101
			Dec	CC	3	406	3	249
	6A	OTM	Jan	CC	5	5200		
			Feb	CC	2	2809	7	700
			Dec	CC	5	615	5	404
	6B	OTM	Jan	CC	12	13946		
			Feb	CC	2	2440	11	1097
			Dec	CC	2	310	2	150
	6C	OTM	Jan	CC	2	1940	2	201
Romania	5Ze	OTM	Feb	CC	7	600		
			Mar	CC	4	300	3	307
	5Zw	OTM	Feb	CC	1	300	1	103
	6A	OTM	Jan	CC	6	800	6	310
USSR	4VWX	OTB	May	CC	26	5199	7	
			Jun	CC	1	200		213
			Jul	CC	1	200		
			Aug	CC	I	200		-
		OTB	Jul	RC	1	200	-	-
	5	OTB	Jan	CC	30	6001		
			Feb	CC	147	29485	5	225
			Mar	CC	96	19313		
		OTB	Apr	RC	5	1013		
			May	RC	17	3425	-	-
	6	OTM	Jan	CC	41	8226		
			Feb	CC	4	841	3	130
USA	$5 Y$	PTB	Nov	CL	2	242	1	31
		PS	Nov	CL	2	205	-	-
		FPN	Jun	Cl	1	100	1	36
			Ju]	CL	2	203	4	117
			Aug	CL	2	200	4	117

Table 19. Atlantic menhaden length and age sampling data for 1976.

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples No.	No. meas.	Age samples No.	
Romania	6B	OTM	Jan	CC	1	200	1	200

Table 20. Atlantic butterfish length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						o. No. meas.	No.	No. aged
Japan	5Ze	OTB	Jan	CC	1	1203	-	-
	5Zw	OTB	Jan	CC	2	2395	-	-
	6A	OTB	Mar	CC	1	1193	-	-
	6B	OTB	Apr	CC		174	-	-
USSR	5Ze	OTB	Sep	RC		196	-	-
USA	5ZW	OTB	Jan Aug Sep	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$		$\begin{array}{lr} 2 & 200 \\ 1 & 104 \\ 1 & 97 \end{array}$	-	-
	6A	OTB	Feb Mar	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$		$\begin{array}{ll} 1 & 100 \\ 1 & 100 \end{array}$	-	-

Table 21. Alewife length and age sampling data for 1976

Coun	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
USSR	4X	OTB	May	CC	1	200	-	-
	5Ze	OTB	Dec	RC	1	200	-	-
	5Zw	OTM	Jan	CC	1	200	-	-
	6	OTM	Jan	CC	2	400	-	-

Table 22. Atlantic argentine length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
Cuba	4W	OTB	Ju1	RC	1	123	-	-
USSR	4W	OTB	Jun	CC	5	1020	-	-
	4X	ОТВ	May Jun Ju 1	$\begin{aligned} & C C \\ & C C \\ & C C \end{aligned}$	3 1 2	$\begin{aligned} & 600 \\ & 200 \\ & 400 \end{aligned}$	3	208
		OTM	Mar	CC	7	1400	-	-

Table 23. Capelin length and age sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Bulgaria	30	OTM	Jun	CL	5	1000	-	-
Canada (N)	2 J	OTM	Nov	RC	1	27/22	1	27/22
	3K	OTM	Oct	RC	5	140/110	5	140/110
	3L	OTB	Mar Apr	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	7 8	$\begin{aligned} & 174 / 176 \\ & 328 / 77 \end{aligned}$	7	174/177
			May	RC	1	$\begin{array}{r} 328 / 77 \\ 38 / 12 \end{array}$	9	366/86
		OTM	Mar	RC	3	82/68	3	82/68
		SB	Jun	CL	2	95/0	2	95/0
		FPN	JuT	CL	1	43/0	1	43/0
		MIS	Jun	RC	23	1095/55	23	1095/55
			Ju]	RC	13	598/41	13	598/41
	3 N	OTB	Jun	RC	3	63/87	3	63/87
		OTM	Jun	RC	27	277/1073	27	277/1073
	3 Ps	OTB	May	RC	9	216/234	9	217/235
		OTM	May	RC	1	17/33	1	17/33
		SB	Jun	CL	19	890/60	19	890/60
		MIS	Jun	CL	1	49/0	1	49/0
	4 T	PS	May	CL	3	116/34	3	116/34
Japan	3 N	ОТВ	Jun	CC	10	882	-	-
			Jul	CC	32	3721	-	-
	30	ОТВ	Jun	CC	1	49	-	-
Norway	3 N	PS	$\begin{aligned} & \text { Jun } \\ & \text { Jul } \end{aligned}$	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{CC} \end{aligned}$	$\begin{array}{r} 25 \\ 4 \end{array}$	$\begin{array}{r} 1442 / 917 \\ 338 / 131 \end{array}$	9 2	$\begin{gathered} 368 / 196 \\ 87 / 20 \end{gathered}$

Table 24. Short-finned squid (Illex) length and age sampling data for 1976.

Country	ICNAFDiv.	Gear	Month	Type of sample	Length samples		Age samples	
					No.		No.	No. aged
Cuba	4W	OTB	Jul	RC	2	301	-	-
France (SP)	3Ps	LHP	$\begin{aligned} & \text { Jul } \\ & \text { Aug } \end{aligned}$	CC	1	71 125	-	-
Japan	4V	OTB	Aug Sep	CC.	3	$\begin{array}{r} 302 \\ 98 \end{array}$	-	-
	4W	OTB	$\begin{aligned} & \text { Jul } \\ & \text { Aug } \end{aligned}$	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{CC} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 200 \\ & 101 \end{aligned}$	-	-
	5Ze	OTB	Jan	CC	5	599	-	-
	6 A	OTB	Apr Jun	CC	1	$\begin{array}{r} 209 \\ 81 \end{array}$	-	-
	6 B	OTB	Feb Mar Jun Jul	$\begin{aligned} & C C \\ & C C \\ & C C \\ & C C \end{aligned}$	$\begin{array}{r} 2 \\ 4 \\ 20 \\ 30 \end{array}$	$\begin{array}{r} 200 \\ 398 \\ 1835 \\ 2193 \end{array}$	-	-

Table 24. Short-finned squid (Illex) (continued)

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	$\frac{\text { Length samples }}{\text { No. No. meas. }}$		Age samples	
							No.	No. aged
Poland	5Ze	OTM	Jun	CC	2	539	-	-
			Jul	CC	2	411	-	-
			Aug	CC	1	178	-	-
	52	OTB	May	RC	1	7351	-	-
	6 A	OTB	May	RC	4	4781	-	-
USSR	4W	OTB	Ju1	RC	35	7033	-	-
	4VWX	OTB	Apr May	CC	$\begin{array}{r} 6 \\ 67 \end{array}$	$\begin{array}{r} 1200 \\ 13400 \end{array}$	-	
			May	CC	67 157	31402	-	-
			Ju1	CC	151	30200	-	
			Aug	CC			-	-
		OTB	May Jun	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 4004 \\ & 4600 \end{aligned}$	-	-
		OTM	May Jun		$\begin{array}{r} 8 \\ 19 \end{array}$		-	-
			Jun	CC	19 28	$\begin{aligned} & 3800 \\ & 5600 \end{aligned}$		
			Aug	CC	50	10000	-	-
	5Ze	OTB	Aug	CC	2	400	-	-
		OTB	Apr May	RC RC	3 19	$\begin{array}{r} 651 \\ 3802 \end{array}$	-	-
			Aug	RC	1	200	-	-
			Sep	RC	2	388	-	-
		OTM	Aug	CC	5	1000	-	-
USA	$5 Y$	OTB	Sep	CL	1	41	-	-
			Oct	CL	1	55	-	-
	5Ze	OTB	Aug	CL	1	70	-	-

Table 25. Long-finned squid (Loligo) length and age sampling data for 1976.

Table 25. Long-finned squid (Loligo) (continued)

Country	ICNAF Div.	Gear	Month	Type of sample	Length samples	Age samples	
					No. No. meas.	No.	No. aged
USA	5Zw	OTB	Jan	CL	150		-
			Apr	CL	146	-	-
			May	CL	4661	-	-
			Jun	CL	2419		
			Aug	CL	1101		
			Sep	CL	1100	-	-
	6A	OTB	Feb Mar	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{array}{ll} 1 & 102 \\ 2 & 102 \end{array}$	-	-
		FPN	May	CL	170	-	-

Table 26. Squid (NS) length and age sampling data for 1976.

Table 27. Sea scallops length and age sampling data for 1976.

Table 28. Northern deepwater prawn (Pandalus borealis) length sampling data for 1976.

Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
					No	No. meas.	No.	No. aged
Denmark (G) ${ }^{1}$	1 A	OTB	Jul	RC	2	711^{2}		
	1B	OTB	$\begin{aligned} & \text { Jun } \\ & \mathrm{Ju1} \\ & \mathrm{Ju1} \\ & \text { Oct } \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	6 6 38 1	$\begin{array}{r} 3402^{3} \\ 4598^{3} \\ 9039^{2} \\ 619^{3} \end{array}$		
	1 C	OTB	Jan Apr Jun Jul	RC RC RC RC	1 1 2 1	$\begin{array}{r} 591^{3} \\ 595^{3} \\ 1094^{3} \\ 290^{2} \end{array}$		
	1D	OTB	Jan Jun	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	1	$\begin{aligned} & 541^{3} \\ & 723^{3} \end{aligned}$		
	1E	0TB	Feb May Jun	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	1	$\begin{array}{r} 607^{3} \\ 1005^{3} \\ 2543^{3} \end{array}$		
Norway	1B	0TB	Jul Aug	$\begin{aligned} & C C \\ & C C \end{aligned}$	9	$\begin{array}{r} 2313 \\ 219 \end{array}$		

1 All samples on file as individual samples, each with frequencies for $U R=$ males and females without developed roe or eggs, $H R=$ females with developed head roe, and BR - berried females, Chartered trawler Sisimiut (42 mm mesh).
3 Research vessel Adolf Jensen (40 mm mesh).

PART 4

Sampling Data from Research Vessel Surveys, 1976

The following table contains a list of research samples reported by certain countries for 1976. All of these data were reported as research vessel samples, as indicated by the abbreviation "RC" under the heading "Type of Sample". The samples were reported as taken from catches retained in smail-meshed codends or codends with small-mesh liners. In the case of some species (e.g. herring and mackerel) which are normally caught commercially with small-meshed trawls, most of the research samples are listed in the previous section. The abbreviations for gears are defined on page 19 of this volume.

Table 29. Research sampling data for 1976.

SPECIES Country	$\begin{aligned} & \text { ICNAF } \\ & \text { Div. } \end{aligned}$	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
ATLANTIC COD								
Cuba	4W	OTB	Jul	RC	1	87	-	-
Denmark (G)	1D	OTB	Jan Apr Jun	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 280 \\ & 378 \\ & 248 \end{aligned}$	1 4	146 341
		GN	Oct	RC	10	126	10	126
		LHP	Aug	RC	2	238	4	115
	1E	OTB	Feb Jun Sep Nov	RC RC RC RC	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 564 \\ & 110 \\ & 108 \\ & 372 \end{aligned}$	1 1 1 1	$\begin{aligned} & 157 \\ & 110 \\ & 108 \\ & 211 \end{aligned}$
France (SP)	2.J	OTB	Feb	RC	14	4056	-	-
	3K	OTB	Feb	RC	27	2419	-	-
	3L	OTB	Feb	RC	25	6344	1	287
	3 Pn	OTB	Mar	RC	13	4672	-	-
	4 Vn	OTB	Mar	RC	4	1763	-	-
	4Vs	OTB	Mar	RC	4	542	-	-
Fed. Rep. Germany	1 C	OTB	Nov	RC	7	473	5	329
	1D	OTB	Nov	RC	8	2458	3	284
	1E	OTB	Nov	RC	2	490	-	504
	IF	OTB	Nov	RC	10	2637	4	280
	$2 \mathrm{G}^{1}$	OTB	Nov	RC	9	263	8	165
	2 J	OTB	Nov	RC	40	2040	43	832
	3 K	OTB	Oct	RC	16	346	24	398
German Dem. Rep.	2 J	OTB	Feb	RC	3	3042	2	603
	3 K	OTB	Feb	RC	16	10159	8	2389
	3L	OTB	Feb	RC	2	193	1	80

Table 29. Research (continued)

AMERICAN PLAICE

Cuba	4Vs	OTB	Jul	RC	1	70
Denmark (G)						
	A	OTB	May	RC	9	217
			Jul	RC	9	208
	1B	OTB	Jun	RC	10	2841
			Jul	RC	48	2000
			Oct	RC	30	1387

Table 29. Research (continued)

SPECIES Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
						No. meas.	No.	No. aged
Denmark (G)	1 C	OTB	Jan	RC	1	1333		
			Apr	RC	1	995		
			Jun	RC	1	2483		
			Nov	RC	1	324		
	10	OTB	Jan	RC	1	440		
			Apr	RC	1	1084		
			Jun	RC	3	655		
			Sep	RC	1	298		
			Oct	RC	1	424		
			Dec	RC	1	642		
	12	OTB	Feb	RC	1	408		
			May	RC	1	487		
			Jun	RC	1	339		
			Sep	RC	1	585		
			Nov	RC	1	785		
France (SP)	3L	OTB	Feb	RC	9	2178		
GREENLAND HALIBUT								
Denmark (G)	1 A	OTB	May Jul	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	9 8	$\begin{aligned} & 2393 \\ & 4698 \end{aligned}$		
	1 B	OTB						
			Jul	RC	52	3194		
						813		
		OTM	Jul	RC	1	139		
	1 C	OTB	Apr	RC	1	99		
	1 D	OTB			1			
			$0 \mathrm{ct}$	RC	1	144		
			Dec	RC	1	120		
	1E	OTB	Feb	RC	1	83		
			Nov	RC	1	75		
GREENLAND COD								
Denmark (G)	IB	OTB	Jun	RC	3	66		
	10	OTB	Feb	RC	1	74		
			Dec	RC	1	61		
		GN	Nov	RC	6	192		
		LHP	Aug	RC	1	56	1	56
POLAR COD								
Denmark (G)	1A	OTB	Jul	RC	7	971		
	IB	OTB	Ju1	RC	2	82		
		OTM	Jul	RC	1	128		
ROUNDNOSE GRENADIER								
Denmark (G)	1 B	OTB	Jul	RC	1	127		
SPOTTED WOLFFISH								
Denmark (G)	IA	LL	Sep	RC	1	74		

Table 29. Research (continued)

SPECIES Country	ICNAF Div.	Gear	Month	Type of sample	Length samples		Age samples	
STRIPED WOLFFISH								
Denmark (G)	1B	OTB	Jun	RC	7	128		
ATLANTIC HERRING								
German Dem. Rep.	4X	OTB	Mar	RC	1	77	1	51
	$5 Y$	OTB	Mar	RC	4	700	2	195
	5Ze	OTB	Mar	RC	11	217	4	138
	5ZW	OTB	Mar	RC	5	300	3	207
ATLANTIC MACKEREL								
German Dem. Rep.	5Ze	ОTB	Mar	RC	11	1042	4	168
	5ZW	0тB	Mar	RC	5	85	1	39

1 Reported from Div. $2 \mathrm{G}+2 \mathrm{H}$.

