IITRODUCHICN

Therfish stocks of the ICNAF Convention Area are caught in aignificant amounts by such diverse fishing gears as shorembased traps, small hook and line vessels, dory schooners, pair trawlers, and otter tramiers of widely varying size:. Attemps have been made from time to time to finl some connon grourd for standar dization of effort statisto 3 i aportea by the member nations for their vessels fishing in the Convention Area. These have met with
\therefore varying degress of success, and at the 1959 Amual Meeting" it wos $\because r e c o m m e n d e d$ by the standing Commitee on Research and Statilstios that the United States attempt to calculate stardard effort'units from its extensive series of statistios from vessels of various sorts fishing for cod, haddock and redfish. The ultimate results desirea build be that the memoer nations could either report effort statisticu forl thein fleets in uniform fashion or furnishithe Secretariat with conversion factors to reduee the effort to common undts.

In orther words, the effort of a stem trawler from the United Kingdom oould be reported or converted into so many standard Portuguese trawler units, hence easily compared with the effort of a Spanish pair trawler tean. Suci dato would go far to simplify the task of those who attempt to measure the results of exploitation.

COMPARISOIV OF VARIOU'S UNITS OF EFFORT

U.S. vessels of disferent sizes fishing In the same area.

One of the primary conditions foi studying the comparative efficiency of different vessels is that they be fishing in the same place within as small units of space and time as possible. With this in mind, we sought a units of space and time where small (5 to 50 gross tons), medium (51-150 gross tons) and large (151 gross tons and over) otter trawlers were fishing together. (Because of the nature of the U.S. fleet, we were unable to take into account any vessels other than otter tramiers.)

The only place in which vessels of these diverse size groups fish at the same time is the west side of the South Channel (Statistical Subarea XXII G : Rounsefell 1946). This aroa of about 4000 square miles lies in the western portion of Subdivision $5 Z$ and contains depths of water from the litteral to inore than loo fathoms.

In the past five years, 1955-1959, vessels of all three sizes hailing from Boston fished in the area simultaneously and caught some cod and haddock during the months of January, February, July, September, October and November of each year, Table 1 shows the catches and fishing efforts in days fishi" for these vessels, and Table 2 the surmaries of theso statistics for the five years.

Table 1. -- Catch and effort statistics for three sizes of Boston otter trawlers fishing the west side of the South Channel, 1955m1959. Catches are in thousands of pounds, effort in days fished.

Table 2.- Sumary of catch and effort statistics for three sizes of Boston otter trawlerg fishing the west
side of the South Channel, 1955-1959. Catehes are in thousands of pounds effort:in days fished

The summary data are also shown in Figure 1. It is immediately apparent that the catches per unit effort for either cod or haddock do not reflect anything close to constant relationships for the three sizes of vessels in these years. Not until the catches of cod and haddock are combined do we get catches per unit effort in which smaller vessels are not shown as sometimes less efficient, sometimes more, than larger ves:

However, even when the catches of cod and haddock are combined and catch per unit effort calculated for the two together, simple tests show no statistically significant relationship between the catch/effort figures for any two of the three--large, medium and small otter trawlers.

Some of the phenomena shown in Figure 1 can be explained:

1. The area under study is not physically homogenous, as mer jnt above, and it is conceivable, even likely, that we are comparing the i :ceh of large and medium vessels fishing as much as 60 miles offshore in deep water with the catch of small vessels fishing shallower waters within sight of land.
2. The division of vessels into size categories is crude; it is quite possible that vessels in each size category are not uniformly distributed in the category.
3. Changes in fish abundance have occured during the period and it is obvious that the small otter trawlers turned their attention to cod rather than haddock. No correction has been made for effort directed toward either species at the expense of catches of the.othen.
4. A change has occured in the fleet; at the beginning of the period there were about 30 large and 25 medium vessels fishing out of Boston, whereas at the end these proportians have reversed. At the same time, the number of small trawlers has been reduced by half, from 14 to 7 .

Were the data more extensive it woyld be possible to take som of these considerations into account: the area mi'ght be subdivided, the vessels taken by smaller size groups, only the vessels with some definite percentage in the catch used for calculations of catch per day of either species, etc. But the data at times are so sparse that we do not beleive any further fragmentation would be profitable.

Therefore, we can only offer this treatment as an example of the difficulties encountered in attempting to find quantitative relationships between abundance indices obtained by different sizes of vessels.
U.S. vessels fishing in different fisheries.

During the garly 1950's a good many large otter trawlers were removed by their owners from the Georges Bank.haddock: fishery, transferred to Maine ports, and sent fishing for redfish. We are forthnate in hav good catch and effort records for these vessels as haddock fishermen al. as redfishermen, and were able to make a comparison of a selected group of boats before and after the change. Although the-otter tratilers are all over 151 tons and therefore "large", there is some variation in size and horsepower (Table 3).

Table 3 - Sizes and horse powers of vessels used in comparison of redfish and haddock fisheries.

Boat	Gross tonnage	Horsepower	
A	167		375
B	310		600
C	314		650
D	310		600
E	320		650
F	$164:$		380
G	311		600
H	320		600
J	314		650
K	164		380

Table 4 shows the basic statistics used in the evaluation. Table 5 a surimaty-of these statibtics - limited the data from the haddock fishery to trips made on Georges Bank in the year 1948 and 1949 and the redfish data to trips made pr the Grand Banh in the year 1954 and 1955, after all of the boats under study had changed over.

Tabll	- Bpaic statistic 1948 Haddock			use		$\begin{gathered} \mathrm{mpq}^{2} \\ \mathrm{ps} \\ \hline \end{gathered}$	son of haddock and redfic vessals LS, effort in days fistre.				Catches are in thore			
Vessel							1954 Redfish 1955				1		Scores	
					1949									
	Catch	Effort	C/E	Catch	Effort	C/E	trips	C/E	$\begin{gathered} \text { No. of } \\ \text { trips } \end{gathered}$	C/E	1948	1949	1954	1955
A	758,8	$\therefore 90,8$	8.4	12255	124,5		2	29,4	1	23,3	. 69	. 86	. 76	. 89
B	976,9	67.7	14.4	68700	54,8	12.5	12	50,9	4	2c, 5	1.19	1.10	1.32	1.12
C	549,3	42.5	12.9	1212.4	106.2		10	56.1	6	24.0	1.07	1.00	1.45	. 91
D	648.7	51.9	12.5	2446.3	106.6	13.6	11	46.6	6	27.5	1.03	1.19	1.21	1.05
E	551.1	58.8	9.4	4.1 .6	4.1 .4		15	43.6	5	23.0	. 78	. 87	1.13	. 87
F	1496.5	133.6	112	12452	144.5	8.6	8	33.8	2	17.4	. 93	. 75	. 88	. 66
G	1090.7	79.5	13.7	289.6	30.0		6	56.5	8	23.2	1.13	. 85	2.46	. 88
H	468.4	47.8	9.8	394.7	39.3	10.0	13	40.9	3	31.5	. 81	. 88	1.06	.88 1.20
J	62.6	8.4.	7.5	1773.3	88.9		12	47.7	4	33.6	. 62	1.06	1.24	1.28
K	1114.7	142.8	7.8	1371.6	172.0		8	37.4	I.	- 2.20 .3	. 64	. 70	. 97	1.28 +.77

[^0]Table 5.- Summary of statistics used in comparison of haddock and redfish vessels.

Vessel	Mean haddock score	Mean redfish score
A	. 78	. 83
B	1.15	1.22
C	1.03	. . . 1.18
D	1.11	1.13
E	. 83	1.00
F	-84 -	: : . 77
G	. 99	1.17
H	. 85	- 1.13
J	:84	1.26
K	. 67	. 87

Note.-- Mean haddock score is thé simple numerical average of the two years, 1948 and 1949, when the vessel was primarily a hadde fisherman. Mean redfish score is computed similarly for the years 1954 and 1955.

We compared the trawlers. as haddock vessels to the "Boston Sth J Boats", a group of selected large trawlers of known efficiensy which is used to derive our indices of abundance for Georges Bank haddock. (Some of the vessels used for this comparison were included in the study boat group when they were haddock fishermen.) This was done by taking all of the effort expended by each of the ten trawlers and the weight of haddock each caught, deriving a. catch per day for each boat in each year, then dividing this catch per day by the study boat catch per day (12.1 in 1948 and 11.4 in 1949) to get a score. The scores for the two years were averaged to get the final score for the vessel.

We compared them as redfish boats by taking the catch per day for each trip made during the year to the Grand Bank and averaging these for the boat's yearly catch per day. The yearly catch per day was divided by the catch per day of all large U.S. otter trawlers fishing on the Grand Bank during that year (38.6 in 1954, 26.3 in ${ }^{-} 55$ for a score, and the scores for the two years averaged to get the $1 a$: score for the vessel. It should be noted that U.S. redfish vessels ordinarily fish during daylight hours only, and that no adjustment has been made in these data for the difference between these and the haddock vessels which normally fish twenty-four hours per day while on the grounds.

Redfish data are commonly treated in our laboratory on a trip basis since in recent years each trip has involved a decision by the captain to go a shorter distance and fish longer on a lower abundance of fish, or to goa longer distance and fish for a: shorter time on a higher abundance. Since all of these vessels sailed from Boston as haddock fishermen and had less than a day's steaming each trip to the grounds regardless of where on Georges Bank they fished, all of the days and all of the catch for the year were combined to calculate catch per day of haddock rather than doing it on a per trip basis as we did for redfish.

Figure 2 shows that there is a significant correlation betwee the scores of these vessels as haddock fishermen in 1948 and 1949 and their scores as redfishermen in 1954 and 1955.

We have not exploited these data to the fullest. The calculat outlined above have been on a selected group of vessels and only fo.. four years, two of which they o erated as "pure" haddock fishermen, two of which as "pure" redfishermen, for the sake of simplicity in our first approximations. If the Committee on Research and Statistics
think it worthwhile we can pursue the investigation further. Altogether about twenty vessels changed in the early 50's from one fishery to the other, and data on catch and effort for all of the years are available.

An additional consideration, which we have not been able to treat in this rather brief and cursory study, is that several of these vessels have subsequently been sold to Canadian fishing interests and are currently fishing out of Maritime ports, primarily we believe, for cod and haddock. A comparison of these boats fishing on different grounds, manned with Canadian crews, with their histories as U.S. haddock and redfish vessels might be useful in equating U.S. and Canadian effort statistics.

S U M M A R Y

Although we were unable to derive any standard effort units for U. S. otter trawlers of various sizes fishing the same are at the same time, a comparison of large otter trawlers fishing for haddock and redfish offers some promise that effort data for the two species can be related.

In addition, since some of these vessels have been fishing out of Canadian ports in recent years, probably for cod and haddock, there is a distinct possibility that their performances can be compared to relate U. S. and Canadian effort statistics. A joint study by scientists of the Woods Hole and St. Andrews laboratories, utilizing all of the data available for these vessels, is recommended.

LITERATURE CITED。

Rounsefell, G.A. 1948. Development of fishery statistics in the North Atlantic. U. S. Fish and Wildife Service, Special Scientific Report No. 47, 27 pp.

[^0]: Notes.-- Scores computed for hađdock fishing by comparing th. catoh per day of the vessel with the catch per day of "study boats" used to determine abundanc of haddnck. scores computed for redfishing by comparing the catch per day of the vessel with tho averqge catcn per day for vessels redfishing in the same area.

