ANNUAL MEETMG -. ZUNE 1966

Report of meeting of Greenland Cod Working Group
Ciopentiagen, 21-25 February 1966

Introduction
At the 1965 meeting of CNAF a proposal was made by Denmark that Store Hellefiske Bank should be chosed to trawling in order to protect the stock of West Greenland cod. After some discussion Panel 1 recommended:-
(i) that the Reseafct and Statistics Committee examine the desirability of further protection of small cod at West Greenland, and in particular in this connection the effects of a closure of Store Hellefiske Bank, and
(ii) that facilities be provided, if required, for a meeting of a small working parts of experts to examine the matter.

The problem was further iiscussed at he meeting of the Assessments Subcommittee in Rome in Septernber, where a detalled program for the work of the group of experts was drawn up. Foliowing an invitation by the Danish Government it was agreed to hold the Working Croup rneeting in Copenhagen, the actual venue being the ICES hearqualers in Charlottenlund.

The meeting took place during the week 2l-2.5 February 1966 and with the foilowing participants:

Y. A. Cultand	UK (Chairman)
P. M. Hansen	Denmark
S. A.Horsled	Denmark
A. Meyer	Germany
A. Schumather	Germony
R. Monteiro	Portugal
D. J. Garrod	UK
A. Treschev	USSR
V. Ponomarenko	USSR

During the meeting it was possible to assemble the essential basic data, carry out many preliminary calcutations, ard discuss extensively the problems involved. The preliminary results strongly suggested that the protection of the small cod would be benelicitl, but the was not time to consider fully quantitative assessments of the resuits of specific measures for the protection of small fish ithough some preliminary resulte are given in this report).

The present report must therefore be considered preliminary and primarily for scientific use, and it is hoped that a properly considered report to the Commission on the cffect of protection of small fish (both in general, and as a result of specific conservalion measures) will be prepared at the Madrid meeting.

As mentioned in previous reports Beverton and Hodder, 1962) the stocks of cod at Greenland can be divided into offshore and inshore groups, the offshore groups being further separable into a northern part (Divisions lA-1D) and a southern part (Divisions 1 E and 1 F). So far as possible the northern and southern parts of the offshore lishery arf treated separately.

The Group found some difficulties in assessing the state of the stock due to big changes that have occurred in both the stock and the fishery. The changes in the fishery, such as the development of the German fishery from nearly nothing in 1953 to the major fishing country in 1964, made it difficult to determine a single measure of catch per unit effort, or of tot effort which can be used throughout the period being studied. There is aiso a great lack of comprehensive data on discards, and on the size composition of the catches by important sections of the fishery. The Greenland cod stocks are also, among the major ICNAF stocks, among the most susceptible to changes in the environment, particularly to changes in year-class strength. In the past few years catches have benefited from a succession of good year-classes - six out of nine year-classes from 1953 to 1961 were above average .. but more recently the three successive year-classes from 1962 to 1964 all appear to be poor. It is therefore to be expected, whatever conservation action is taken, that the catches will decline around 1967-68, when these poor year-classes enter fully into the fishery, and the earlier good year.-classes have been depleted. It is therefore particularly necessary to emphasize the remarks usually made, that any assessment made in this, and similar reports, concerning the effect of conservation action (e.g. that the use of larger meshes would benefit the total catches) represent com. parisons between possible catches in the future with the larger mesh and catches that might be taken in the same period if the smaller mesh were used.

Total Catches, Catoh per Unit Effort and Fishing Effort
Table 1 gives the total catch of cod from 1953 to 1964 by divisions and gears, distinguishing between trewl and line fisheries. The total catch is shown in Fig. 1. [n Fig. 2 and 3 the catches, excluting those for which the division is not known, are summarized for Divisions $A B C D$ and EF to show catches from the two principal stocks which irhabit the region. These catches represent 75% of the iotal.

Looking first at the landings from Divisions ABCD in Fig. 2, when taken over the whole perios, there is no trend: landings in 1961, 1963, and 1964 were equal to those of 1954 , 1955 , and 1956 at 200,000 tons, but intervening poor years 1957-60 suggest a graduel decline in the lete 1950s until a recovery took place in 1961 leading to a $p=a k$ eatch of 300,000 tons in 1962. Between fisheries there has been a steady, if slight, decline in landings from the line fisheries apert from better years in 1961 and 1962. In the period 1953-60 the total catcl was equaily divided between gears, but since 1960 the trawlets have caught two-thirds of the total. Between divisions the catch from A is negligible but there has been some shift in the distribution of catches between B, C, and D. Division $1 D$ was much more important in 1954, 1953, and 1956 but thereafter catches wexe poor everywhere until 1961, and especially poor in IC in 1960. Since 1961 the table shows kighest landings in ib in 1961-62, in $1 C$ in 1962-63 and in $1 D$ in 1963-64.

In 1 E and 1 F trawler landings have been increasing throughout the period with particularly good landings in 1957, 1958, and 1963. On the other hand, the line figheries of Greenland and Norway reached a peak in 1961 when they renched 50% of the total. Since then the line fisheries have decreased to only 20% in 1964. 'The majority of the trawl catch has been taken in iE in recent years but fishing in $1 F$ is more important to the line fisheries.

Overall the fall in landings from Divisions ABCD in the late 1950 s was balanced by the improvement in Divisions EF so there is little trend from a level of ca. 275, 000 tons in the period 1953-60 (Fig. 1). Since then increased landings from all areas gave a temporary peak of 450,000 tons in 1962.

In both groups of divisions, the outstanding years of high and low landings can to a large extent be accounted for by variations in year-class strength though fluctuations in fishing activity are also important factors. Good or bad
year-classes do not always occur simultaneously in both the northern (ABCD) and southern (EF) stocks (e.g. the 1956 year-class was outstanding in the south but the 1957 was strong in the north). Thus years of good fishing do not necessarily coincide in the two groups of divisions.

Effort and Catch per Unit Effort

The estimation of catch per effort, and hence effective fishing effort, a.t Greenland is complicated by the wide variety of fleets and changing seasons at which fishing has taken place. No trawler fleet has fished consistently throughout the period in all divisions; the Norwegian longliners give the only continuous series but these are not reliable indices of the stock available to the trawler fleets.

However, Portuguese dory vessels and Portuguese, Spanish, and German trawlers do provide a consistent series of catch per unit effort data for 1 ABCD. These statistics are summarized in Table 2, wherein the catch per effort is expressed relative to the 1956-60 mean and is used to derive an index of effort. This compares very closely with the effort estimated by Horsted (1965a) using a different technique, thus confirming in general the the estimates of stock abundance. In Fig. 4 the data show a sharp fall in abundance beginning in 1957 and reaching a minimum in 1960. The subsequent improvement in the stock did not reach the 1954-56 level of abundance and has declined again since 1962.

From this it can be seen that although the abundance of cod in Divisions $A B C D$ was falling at a time when catches in Divisions EF were rising, the decline continued through to 1960 when catches were relatively low everywhere. These changes in catch probably reflect features in the year-class strengths of the separate stocks.

Table 2 also shows that fishing effort has increased steadily in ABCD throughout the period to a level which is almost double that of 1954-57. Effort statistics for 1964 and 1965 were not available to the Working Group but it is believed that fishing effort has not increased substantially since 1963, and may well have decreased in 1965. There is no comparable series for EF but indices estimated by Horsted (loc. cit.) and those based upon data from English trawlers, indicate a five-fold increase in effort since 1954-56.

National contributions to the catches have not been given in detail but the broad changes in fleet composition are summarized in Table 3 as percentages of the total catch in selected years 1953, 1959, and 1963. Between 1953 and 1959 there is little change, but by 1963 German landings had risen to onethird of the total. Greenland, Norway, Portugal, and Spain have not maintained their proportion of the catch.

In summary, catches in Divisions ABCD were high in 1954-56, and low in 1957-60. In Divisions EF, catches were low until 1957-58, so overall there was a steady yield of ca. 275, 000 tons until 1960. Since then a temporary increase in all areas gave a peak landing of 450,000 tons in 1962. Catch per unit effort show the same broad trends as the catches in ABCD, with fishing effort increasing steadily and almost doubling during the period. In all divisions line fisheries have taken a decreasing proportion of the catch and in recent years their actual landings have fallen. It is not clear to what extent this is caused by decreased effort, or decreased abundance, but since the fall parallels that of the trawler fleets it most probably reflects the decline in abundance.

Length Composition of Commercial Landings
The Group found some difficulty in carrying out a satisfactory analysis of the length composition data, and in particular in estimating the total
numbers of each size caught and landed. Because of the big differences between the size compositions of the catches by the different types of vessels, as well as seasonal and area variations in the catches of the same gear, very extensive sampling is required, but this has not been possible. The best sampling of the commercial fleets has been of the landings by trawlers of fresh fish on ice, where samples can be taken when the fish are landed; at the opposite extreme are the catches of the factory trawlers which fillet and freeze their fish at sea; for these virtually no sampling has been possible; this is particularly unfortunate for the important German fishery, where it is known that the smallest fish acceptable for filleting and freezing is considerably smaller than the smallest. size acceptable as fish on ice.

Another problem is that virtually all the samples available are of catches by research vessels, or landings by commercial vessels, and few of actual commercial catches before discarding. It is known that both English and German vessels, at least on occasion, discard appreciable quantities of small fish, or use them for fish meal, but there are no good estimates of the actual quantity. A rough estimate has been made by comparing the length compositions of commercial landings and research vessel catches (see below).

In the present calculations, therefore, it has only been possible to make separate analyses for the two major gear classifications - trawl and others, and for each division. For each type of gear and each division all available data on the length composition of the commercial landings during the year have been combined. No account was taken of the season of sarnpling, though when samples were available from more than one group of vessels e.g. English and German trawlers, the samples have been weighted roughly in accordance with the total catch during the year by the groups of vessels concerned. The resulting mean percentage length composition has been raised by a factor calculated using a weight/length relationship to give the total numbers landed by the two types of gear in each division each year. These calculations have been done for each of the years 1961-64, and the average annual landings by trawl and line are given in Table 4 and 5.

Comparisons have also been made of the length composition of landings by commercial trawlers and catches by research trawlers in each division. These are shown in Fig. 5, which gives for each division the percentage length composition of commercial landings, and the percentage length composition of the research catches, increased by a factor to make the total numbers above 60 cm the same. The difference among the small fish (shaded in the figures) is an estimate of the proportion discarded, which ranges from about 70% in $1 B$ to 15% in 1 E . This figure may be an overestimate because, compared with the research vessels, the commercial trawlers may prefer areas where the larger fish predominate, but at least gives some measure of the possible rate of discarding.

Age Composition

Data on the age composition of Danish offshore catches are available for every year since 1952. These, expressed as percentages, are given for the northern divisions in Table 6. Since these samples have been taken with similar gear at about the same time (June-August) each year they will reflect fairly accurately changes in the age composition or mortality of the stock. Precise estimation of the mortality rate is not easy, since the lack of any precise measure of catch per unit effort makes the comparison of the aburidance of the same year-class in successive years difficult, while the great fluctuations in year-class strength make estimates from the percentage age composition very variable.

However, by taking the average of the percentage composition for the years 1962-65, some of this variability is removed; these average compositions
for the years 1952-56, 1957-61, and 1962-65 are shown in Fig. 6 and are plotted on a logarithmic scale in Fig. 7. The points for $1962-65$ from 5 years old onwards fall on a reasonably straight line, corresponding to 54% surviving each year, or an instantancous total mortality, Z, of 0.62 . Since this mortality rate refers strictly to the period when the fish concerned (between 5 and 10 years old) were entering the fishery, rather than to the period of sampling, this estimate of $Z=0.62$ corresponds to the average mortality roughly in the period around 1960.

This value of Z is considerably greater than that obtained by the earlier Assessment Group's report (0.35), based on the average percentage age composition for 1952-57, i.e. referring to the period around 1950.

While age composition data from other sources are probably less reliable as direct quantitative measures of mortality, there is good qualitative agreement in there being recently proportionally much fewer old fish, and hence a higher mortality.

The effort data given earlier show that between 1953 and 1960 the effort nearly doubled. Effort data are not available before 1953, but the rapid increase in catches between 1948 and 1953 suggests that effort too was rapidly increasing, so that the total mortality of 0.62 corresponds to a fishing effort rather more than twice the effort when the mortality was 0.35 . Uncertainty concerning the actual effort, and the pericd to which the mortality applies make it difficult to use this information to get a precise separation of fishing and natural mortalities, but there is gool agreement with the estimate for the earlier period that fishing and natural mortality were about equal, i.e.

$$
F_{1}-M=0.15 \text { to } 0.20
$$

and for $1960 \quad \begin{aligned} & \mathrm{F}_{2}=0.30 \text { tc } 0.50 \\ & \mathrm{M}=0.15 \text { to } 0.20\end{aligned}$
so that in 1960 fishing accounted for about two-thirds of the total death.s, i. e.

$$
\mathrm{E}=0.6-0.7
$$

There is also fair agreement with the results of tagging experiments. Those in Division 1B are analyzed in more detail in a later section; in this Fig. 8 shows that the percentage recaptured has been increasing during the last 20 years, agreeing with the increased effort and increased mortality, and that in the last few years this percentage has reached about 50%, and r ather more for the bigger fish. This percentage should be equal to E, the ratio of fishing to total mortality, but is likely to be an underestimate due to uncorrected losses.

Since the present (1965) effort is probabiy above that for the period to which the above estimates refer, it is likely that the present value of E is above 0.7. Accordingly, in the assessments of the effects of mesh change etc. a most probable value of 0.7 , and bounding values of $E=0.5$ and 0.8 , within which the true value probably lies, have been used.

Growth

The Group did not examine the growth of cod in any detail. Data from Danish experimental fishing were presented by Dr Hansen. The average length of certain ages of fish each year are given in Fig. 9 (figures 1 A and 1B from Hermann and Hansen, 1965). Over the whole period for which these data are available, there have been fluctuations, amounting to up to ca. 20% in length each side of mean; most recently the average lengths have tended to
increase, possibly due to increases in temperature. An important consider ation as far as this report is concerned is that any recent decrease in the stock cannot be due to changes in the growth rate; also that a faster growth means that small fish will be exposed to losses from natural causes for a shorter time before growing to a good size, so that the benefits from protecting the small fish are likely to be increased.

The average growth of Greenland cod is given in Table 7. This gives, as well as the average length and gutted weight of fish of each age in December (at the end of December), the percentage increase in weight during each year. Allowing for the natural mortality of around $15-20 \%$, it is clear that the total weight of a year-class doubles between 3 and 4 years old, and is still increasing up to 6 or 7 years old. The estimated changes in the abundance of a group of 1,000 fish, in the absence of fishing and with a natural mortality of 20%, is given in the last rows of Table 7 in terms of numbers and weight. This shows in general terms the desirability of protecting three year old fish, and catching them, on the average, at about 6-8 years old (compared with about 5-6 years old at present - see Fig. 6).

Mesh Changes

Assessments of the effects of increasing the mesh size have been made in the same way as in the earlier Assessment Group's report, i.e. by calculating an immediate loss of the fish in the present landings which will be released by the larger mesh, and the long-term effect on the landings when the fish released have grown big enough to be retained by the larger mesh.

In the calculations a selection factor of 3.7 (for meshes as measured with an ICES gauge, as used for scientific purposes) and a selection range of 10 cm has been used. The effective mesh-size at present in use (as measured with an ICES gauge) was assumed to be 100 mm - the selectivity of the nets used by several countries being reduced by the use of chafers - though so far as the effect on the landings, which contain few fish in the selection range of the 100 mm mesh, are concerned, this assumption is not very critical. The calculations have been based on the average landings for 1961-64, and it must be emphasized again that these are landings, not catches. Since appreciable quantities of small fish are discarded, most of which would be released by a suitably large mesh, the estimates given are distinctly underestimates of the likely benefits from using larger meshes.

Results of Mesh Assessment

Calculations, using the method of Gulland (1961) have been made of the effect of using mesh sizes from 110 mm to 170 mm , with no allowance for discards, and of the effect of a $150-\mathrm{mm}$ mesh for two probable rates of discards - 10 and 20% by numbers. For the latter calculations it was assumed that a $150-\mathrm{mm}$ mesh would release all the discarded fish. The results are given in Table 8. This table shows that, ignoring discards, the total catches will increase, even at the lowest likely value of E for increases of mesh size up to 130 mm . For the most probable value of E the total catch increases up to a.t least 170 mm . The benefits are, as usual, not equally shared between different gears, with the catches by other gears increasing substantially for any mesh size increase, while, if no allowance is made for discards, the trawl landings would appear to decrease for mesh sizes greater than 130 mm . However, if allowance is made for discards, then both groups of gears will benefit at least from the use of $150-\mathrm{mm}$ meshes. For a 10% discard rate the gain in total catch is about 5%, and if the discards are 20% the gain in total catch is $7-9 \%$. The corresponding gains to the trawlers are $2-3 \%$, : and $6-7 \%$ respectively.

The proposal to close this bank to trawling was put forward with the specific objective of protecting small cod, and would be expected to have broadly similar conservation effects as the use of a larger mesh size. The assessment of the likely effects require a considerably wider range of data than the assessment of the effects of mesh change; these include the size distribution of the catches both on Store Hellefiske Bank and in other parts of West Greenland; the movements of cod of all sizes from the closed area into the areas where they can be caught; and the probable redistribution of the trawlers previously fishing on Store Hellefiske Bank.

Since most of the data available has been grouped according to ICNAF divisions, the Working Group could not adequately separate the data concerning Store Hellefiske Bank from those for other parts of Division 1B; however, the majority of the catches from $1 B$ are taken on Store Hellefiske Bank. In this report, therefore, assessments have been made of the effect of closing the whole of lB, rather than of Store Hellefiske Bank only.

Redistribution of Fishing

The long-term effect of closure of lB will be influenced by how the fishing diverted from 1Bis redistributed - the benefit from better protection of the fish in 1B might be more than balanced by the losses due to increased fishing on other grounds already heavily fished. The trawlers at present fishing in lB are large vessels; including factory trawlers, which could fish in a wide range of alternative grounds, including outside the ICNAF area. A full assessment of the effect should, therefore, include analysis of all possible alternatives. However, most of the alternative grounds, with the possible exception of Labrador, are probably as heavily fished as Greenland, and it has been assumed that the fishing effort diverted from $1 B$ will be redistributed within the Greenland area; this simplifies the assessments, though it may over estimate the future effort (and hence underestimate the future catch per unit effort) in Greenland waters, but only to the extent that the effort outside Greenland is underestimated (and the catch per unit effort overestimated).

The catches by trawlers in each month of 1962 (the recent year with the highest catches in 1B) and in each of the other divisions are given in Table 9. This shows that even in the months when fishing in $1 B$ is greatest, there is also a considerable fishing in other areas; in fact, in no month do the catches in 1B amount to more than 55% of the total trawl catch. Thus if the grounds in 1B, including Store Hellefiske Bank, are closed, there will remain alternative grounds on which the trawlers can fish. Presumably, however, ships fish in 1B because catches there are better, or at least are believed to be better, so that there may be some immediate loss of catch if trawlers are diverted from lB. In the following calculations, therefore, it has been assumed that they will catch 5% or 15% less by weight; this catch will be distributed in the southern Divisions $1 \mathrm{C}-1 \mathrm{~F}$ in the same proportion as the present trawl catch in those areas, and will have the same length composition. The immediate effects of closure of 1 B to trawling in terms of numbers of fish of each length caught can therefore be calculated, and the results, based on the average trawl landings in 1961-64 are shown in Table 10. This gives the present landings, in total and for 1B and other divisions separately, and the landings outside 1B immediately following the change. As expected, the total numbers of small cod landed decrease, while there is an increase in the numbers of larger cod.

The actual degree of redistribution required in any one year will depend on the likely proportion of fishing in 1B in the absence of regulation; this varies from year to year, being influenced partly by the strength of the young yearclasses present in 1B. Disruption will be least when the youngest year-classes are weak.

Danish scientists have tagged cod on Store Hellefiske Bank, as well as in other Greenland waters, over a long period. These show that fish disperse from 1B into the other parts of West Greenland, especially IC and 1D, with rather smaller numbers moving into the southern divisions (1 E and $1 F$), and outside the ICNAF area to East Greenland and Iceland. This dispersion is mainly confined to the off shore banks, and few tagged fish have been recaptured in the inshore fishery in lB. The pattern of returns is shown in Fig. 8, which gives for each $10-\mathrm{cm}$ length group (length at tagging) the r eturns from $1 B$ and outside 1B at different periods of tagging. The left-hand part shows the actual percentage of tags returned; this will be a considerable underestimate of the percentage of fish present on Store Hellefiske Bank which are ultimately caught - tags may come off the fish, fish may die when tagged, and in particular not all the tagged fish recaptured may be returned.

Horsted (1965b) has shown how a correction for incomplete returns can be made, based on an assumption of complete returns by the best country (Portugal). This gives an estimate which may still be an underestimate of the actual number recaptured; this estimate is plotted on the right-hand side of Fig. 8. Apart from a drop for the tagging experiments in 1961-62, which may well be due to an unusually low rate of returns from Portuguese fishermen in 1962 (Horsted, 1965 b) and a recent fall in returns from the smaller fish due probably to a change in the type of tag used, the estimated percentage recaptured increases for most sizes over the period 1946-62, reaching a value of some 70% for the biggest fish, and over 50% for the fish of all sizes taken together. Over the same period the proportion returned from outside 1B has increased, and recently more than half the recaptures occur outside 1B. Figure 8 shows that there is no very marked difference in the pattern of returns of fish of different sizes. In considering the returns according to the time since tagging, data for all sizes of fish were grouped together. The results are given in Table 11. This shows that little dispersion takes place in the season of tagging, but by the next year considerable mixing has taken place; the degree of dispersion increases in the following years. After 3 years 50% of the total number of returns come from outside 1 B . This is less than the proportion of the total catch (either from West Greenland as a whole, or from the northern part - ABCD) which comes from outside $1 B$, which suggests that the tagged fish are still to some extent relatively more abundant in $1 B$ than elsewhere. However, the increasing proportion of returns coming from outside lB suggests that it is reasonable to assume that all the stock protected by a closure of 1 B will ultimately become available to the fishery in the more southern divisions. That most of the adult fish must move out, at least temporarily, is shown by the fact that there is little or no spawning inside 1B.

Effects of Closure

Two methods of assessing the effects of the closure of $1 B$ were discussed. The most direct is to calculate directly the probable yield in other areas of the fish present in 1 B , using the tagging and other data to determine what proportion will be caught, and after what time and at what size; this yield can then be compared with the present catch in lB. The effect on the stocks outside lB of the extra effort diverted from 1 B must also be taken into account; however, since these stocks are heavily fished it is likely that moderate changes in effort will cause only small changes in total catch. As the calculations needed for this method are relatively long, with the effect on each size of fish being calculated separately, there was not time to carry out this method of assessment during the Copenhagen meeting, though it is hoped to make some of the necessary calculations before or during the Madrid meeting.

The other method discussed is similar to that used for mesh assessment. The calculations of the immediate effect of the redistribution of effort
show that there will be fewer fish caught; thus more fish will be available for capture in future years, and if the proportion of the extra fish left alive which are ultimately caught is known, then the increase in the number caught can be directly calculated.

Mathematically, if $\mathrm{N}_{1}=$ original catch in numbers
$\mathrm{N}_{2}=$ catch in numbers immediately after redistribution
$\mathrm{E}=$ proportion caught $=$ ratio of fishing to total
mortality
then $\quad N_{1}-N_{2}=$ immediate reduction in numbers caught, and

$$
\frac{\mathrm{E}\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right)}{\mathrm{N}_{2}}=\text { proportion gross long-term increase in numbers } \underset{\text { caught. }}{ }
$$

These extra fish will, however, not have precisely the same length distribution as the present catches. Thus the numbers of the very smallest fish in the catches will not change much, as the fish protected in 1 B will be rather larger by the time they have moved into the other divisions. The immediate reduction in numbers caught is greatest among the small sizes, which when they have moved out of 1B will give the greatest long-term increase to the medium fish. The long-term catches of large fish will tend to be increased by the immediate reduction in catches of small fish, but be reduced by the immediate increase in the catches of medium fish Overall the numbers of larger fish caught may not change much. Thus the numbers of both small and large fish do not change much, and the long-term increase is mainly among the medium fish, so that the average weight may not change much. Therefore, as a first approximation, the long-term changes in the weight caught may be taken as being the same as the long-term changes in the numbers.

References

BEVERTON, R.J.H., and V.M. HODDER (eds), 1962. Report of working group of scientists on fishery assessment in relation to regulation problems. Supplement to Annu. Proc. int. Comm. Northw. Atlant. Fish., 11:1-81. GULLAND, J.A., 1961. The estimation of the effect on catches of changes in gear selectivity. J. Cons. 26: 204-14.
HERMANN, F., and P.M. HANSEN. 1965. Possible influence of water temperature on the growth of West Greenland cod. Spec. Publ. int. Comm. Northw. Atlant. Fish., No.6, p. 557-564.
HORSTED, S.A. 1965a. Fishing activity, effort and intensity in Subareal 1952-1963. An̄nu. Meet. int. Comm. Northw. Atlantic. Fish. 1965. Res. Doc. No. 57, (mimeographed).

1965b. Defects in the recording and reporting of cod tagged by Denmark in Subarea 1. Int. Comm. Northw.'Atlant. Fish., Redbook 1965, Part III: 172-177.

TABLE 1. Total catch of cod by ICNAF Divisions and gears 1953-1963 (metric tons round fresh)
(a) Trawl fisheries

Year	A	B	C	D	Subtotal ABCD	E	F	Subtotal EF	NK	Total trawl
1953	206	8,898	816	11,657	21,377	6	23,981	23,987	48,652	6
1954	330	43,178	7,793	64,142	115,443	31	14,206	14,237	21,331	151,011
1955	9	11,606	19,577	40,067	71,259	635	7,236	7,871	27,647	106,777
1956	-	19,633	29,716	94,515	143,854	5,347	2,615	7,962	26,865	178,681
1957	-	18,709	22,074	35,413	76,196	26,664	15,688	42,352	21,172	139,720
1958	1	23,066	32,197	43,016	98,461	19,361	23,526	42,887	30,268	171,616
1959	-	40,437	2,977	20,989	64,403	10,905	10,574	21,479	22,539	108,421
1960	-	19,831	7,012	23,320	50,163	15,091	8,951	24,042	25,369	99,574
1961	507	43,666	31,096	43,702	178,971	13,157	13,182	26,339	25,535	170,845
1962	1,017	65,846	66,258	35,208	168,329	25,090	16,609	41,699	37,208	247,236
1963	66	31,175	63,063	50,217	194,521	45,056	15,528	60,584	29,718	234,823
1964	72	29,712	34,607	57,046	121,437	30,879	12,918	43,797	41,252	206,486

(b) Line fisheries

Year	A	B	C	D	Sub- tatal ABCD	E	F	Sub- total EF	NK	Total line
1953	4,603	35,559	11,961	25,197	77,320	3,566	4,908	8,474	25,234	111,028
1954	3,431	54,529	13,643	31,121	102,724	2,537	3,750	6,287	36,553	145,564
1955	1,355	44,023	16,447	51,321	113,146	5,891	4,033	9,924	38,441	161,511
1956	490	42,094	11,887	38,867	93,338	6,671	5,893	12,564	37,000	142,902
1957	277	45,917	13,802	31,950	91,946	6,809	5,880	12,689	24,585	129,220
1958	186	38,718	12,653	35,507	87,064	6,238	9,689	15,927	45,123	148,114
1959	1,223	40,285	13,576	14,274	69,358	5,422	6,905	12,327	43,359	125,044
1960	223	46,220	11,406	17,344	75,193	6,681	8,158	14,839	46,418	138,450
1961	601	40,921	21,378	31,357	94,257	9,204	11,162	20,366	62,416	177,039
1962	315	64,351	15,441	26,588	106,695	5,884	12,205	18,089	78,688	203,472
1963	295	43,938	13,260	19,912	77,405	4,392	9,949	14,341	69,901	161,647
1964	299	22,648	16,972	34,643	74,562	4,615	5,907	10,522	58,186	143,270

(c) All gears

Year	A	B	C	D	Sub- tqtal ABCD	E	F	Sub- total EF	NK	Total
1953	4,809	44,457	12,777	36,854	98,897	3,572	28,889	32,461	73,886	205,244
1954	3,761	97,707	21,436	95,263	218,167	2,568	17,956	20,524	57,884	296,575
1955	1,364	55,629	36,024	91,388	184,405	6,526	11,269	17,795	66,088	268,288
1956	490	61,717	41,603	133,382	237,192	12,018	8,508	20,526	63,865	321,583
1957	277	64,626	35,876	67,363	168,142	33,473	21,568	55,041	45,757	268,940
1958	187	61,784	44,850	78,523	185,344	25,599	33,215	58,814	75,391	319,549
1959	1,223	80,722	16,553	35,263	133,761	16,327	17,479	33,806	65,898	233,465
1960	223	66,051	18,418	40,664	125,356	21,772	17,109	38,881	71,787	236,024
1961	1,108	84,587	52,474	75,059	213,228	22,361	24,344	46,705	87,951	347,884
1962	1,332	130,197	81,699	61,796	275,024	30,974	28,814	59,788	115,896	450,708
1963	361	75,113	76,323	70,129	221,926	49,448	25,477	74,925	99,619	396,470
1964	371	52,360	51,579	91,689	195,999	35,494	18,825	54,319	99,438	349,756

TABLE 2. Relative changes in total catch, catch per unit effort and fishing effort in Divisions A, B, C, and D

Year	```Total```	```Catch per }\mp@subsup{}{}{2) effort B```	Catch per effort from Horsted 1965	$\begin{aligned} & \text { Fishing } \\ & \text { effort } \\ & \text { A/B } \times 10-2 \\ & \text { C } \end{aligned}$	Relative change in effort	
					From C	Horsted 1965
1953	154,526	1.18	1.20	1,310	0.55	0,54
1954	271,073	1.49	1.29	1,819	0.76	0.88
1955	244,677	1.36	1.34	1,799	0.75	0.76
1956	295,948	1.53	1.59	1,934	0.81	0.78
1957	202,597	1.08	1.12	1,876	0.79	0.76
1958	242,566	1.00	0.91	2,426	1.02	1.12
1959	186,348	0.71	0.79	2,625	1.10	0.99
1960	180,129	0.64	0.79	2,815	1,18	0.95
1961	285,348	0.88	0.87	3,243	1.36	1.38
1962	370,175	1.24	1.09	2,985	1.25	1.42
1963	296,441	0.87	0.89	3,407	1.43	1.43

1) Included an estimated share of landings from "division not known."
2) Based on relative changes in catch per effort of :

Portuguesedory vessels
(catch per dory hour, June-August)
Portuguese trawlers
501-900 t (Sail + Motor), 501,900 t (Motor), 901-1800 t (Motor)

901-1800 t
(catch per hours' fishing May-June,
August-Sept.)
Spanish trawlers
(catch per hours' fishing, May-June,
August-Sept.)
German trawlers
501-900 t
(catch per day fished, May-July, 1D only).

TABLE 3. National shares of the cod fishery in Subarea 1

Years	1953	1959	1963
Total catch of cod (tons)	202,422	233,542	405,771
Denmark (G)	10.43	11.80	5.73
c Denmark (F)	14.07	16.40	19.17
O France	9.73	13.00	8.92
§ु Germany	-	7.45	33.71
-1 Iceland	6.66	0.20	0.96
先 Norway	15.33	11.40	7.88
\bigcirc Portugal	26.53	28.58	15.57
4 Poland	-	-	0.07
$\bigcirc \quad$ Spain	1.43	5.88	0.12
so. United Kingdom	15.89	5.23	6.63
USSR	-	0.04	1.25
'	100.00\%	100.00\%	100.00\%

TABLE 4. Average annual numbers ('000s) of each length group of cod landed by trawlers 1961-64

Length	1 B	1 C	1 D	1 E	1 F	Total
33-35	8			4		12
36-38	8	8	1.1	17	6	49
39-41	20	28	63	53	27	191
42-44	228	51	181	92	68	620
45-47	811	194	467	106	100	1,678
48-50	1,709	390	852	116	190	3,257
51-53	2,167	808	1,012	171	326	4,484
54-56	2,059	932	834	309	472	4,606
57-59	2,127	1,309	1,022	640	530	5,628
60-62	1,915	1,921	1,342	870	664	6,712
63-65	1,829	2,216	1,720	1,290	662	7,717
66-68	1,502	1,948	1,976	1,550	661	7,637
69-71	1,504	2,130	2,081	1,454	656	7,825
72-74	1,044	1,548	2,059	1,209	514	6,374
75-77	998	1,296	1,739	888	465	5,386
78-80	628	826	1,352	710	354	3,870
81-83	586	720	1,097	506	259	3,168
84-86	306	527	731	291	161	2,016
87-89	334	527	531	238	115	1,745
90-92	209	301	344	134	63	1,051
93-95	126	229	201	86	36	678
96-98	71	102	118	45	18	354
99-101	19	49	92	23	13	196
102-104	29	49	37	13	3	131
105-107	12	2	28	7	3	52
108-110	5	6	15	-	1	27
111-113	-		11	3	1.	15
Total	20,254	18,117	19,916	10,825	6,367	75,479

table 5. Average annual numbers ('000s) of cod landed by vessels using lines 1961-64

Length (cm)	1 B	1 C	1 D	1 E	1 F	Total
$\begin{aligned} & 24-26 \\ & 27-29 \\ & 30-32 \\ & 33-35 \\ & 36-38 \\ & 39-41 \\ & 42-44 \end{aligned}$	$\begin{array}{r} 22 \\ 190 \\ 337 \\ 460 \\ 933 \end{array}$	$\begin{array}{r} 8 \\ 35 \\ 58 \\ 108 \\ 88 \end{array}$	8 23 48 26	1 1 1 16	3 1	$\begin{array}{r} 30 \\ 234 \\ 419 \\ 620 \\ 1,064 \end{array}$
$\begin{aligned} & 45-47 \\ & 48-50 \\ & 51-53 \\ & 54-56 \\ & 57-59 \end{aligned}$	$\begin{aligned} & 1,759 \\ & 2,346 \\ & 2,141 \\ & 2,064 \\ & 1,980 \end{aligned}$	$\begin{aligned} & 170 \\ & 183 \\ & 240 \\ & 278 \\ & 345 \end{aligned}$	$\begin{aligned} & 205 \\ & 308 \\ & 462 \\ & 561 \\ & 656 \end{aligned}$	$\begin{array}{r} 36 \\ 80 \\ 99 \\ 111 \\ 128 \end{array}$	$\begin{array}{r} 25 \\ 31 \\ 117 \\ 242 \\ 406 \end{array}$	$\begin{aligned} & 2,195 \\ & 2,948 \\ & 3,059 \\ & 3,256 \\ & 3,515 \end{aligned}$
$\begin{aligned} & 60-62 \\ & 63-65 \\ & 66-68 \\ & 69-71 \\ & 72-74 \end{aligned}$	$\begin{aligned} & 2,026 \\ & 1,676 \\ & 1,323 \\ & 1,099 \\ & 1,044 \end{aligned}$	$\begin{aligned} & 405 \\ & 518 \\ & 545 \\ & 448 \\ & 410 \end{aligned}$	$\begin{array}{r} 945 \\ 957 \\ 1,062 \\ 1,128 \\ 1,216 \end{array}$	$\begin{aligned} & 158 \\ & 227 \\ & 319 \\ & 418 \\ & 390 \end{aligned}$	$\begin{aligned} & 514 \\ & 529 \\ & 544 \\ & 558 \\ & 498 \end{aligned}$	$\begin{aligned} & 4,048 \\ & 3,907 \\ & 3,793 \\ & 3,651 \\ & 3,558 \end{aligned}$
$\begin{aligned} & 75-77 \\ & 78-80 \\ & 81-83 \\ & 84-86 \\ & 87-89 \end{aligned}$	$\begin{aligned} & 893 \\ & 632 \\ & 705 \\ & 485 \\ & 308 \end{aligned}$	$\begin{aligned} & 448 \\ & 448 \\ & 443 \\ & 327 \\ & 217 \end{aligned}$	$\begin{array}{r} 1,306 \\ 1,147 \\ 959 \\ 713 \\ 669 \end{array}$	$\begin{aligned} & 374 \\ & 359 \\ & 264 \\ & 142 \\ & 159 \end{aligned}$	$\begin{aligned} & 585 \\ & 426 \\ & 293 \\ & 237 \\ & 134 \end{aligned}$	$\begin{aligned} & 3,606 \\ & 3,012 \\ & 2,664 \\ & 1,904 \\ & 1,487 \end{aligned}$
$\begin{gathered} 90-92 \\ 93-95 \\ 96-98 \\ 99-101 \\ 102-104 \end{gathered}$	$\begin{array}{r} 305 \\ 225 \\ 144 \\ 93 \\ 55 \end{array}$	$\begin{array}{r} 148 \\ 90 \\ 40 \\ 22 \\ 20 \end{array}$	$\begin{array}{r} 432 \\ 230 \\ 170 \\ 102 \\ 63 \end{array}$	$\begin{array}{r} 102 \\ 27 \\ 10 \\ 28 \\ 3 \end{array}$	$\begin{array}{r} 62 \\ 52 \\ 16 \\ 10 \\ 2 \end{array}$	$\begin{array}{r} 1,049 \\ 624 \\ 380 \\ 255 \\ 143 \end{array}$
$\begin{aligned} & 105-107 \\ & 108-110 \\ & 111-113 \\ & 114-116 \\ & 117-119 \end{aligned}$	44 38 15 8 8	8 15 8 2	56 12 18 10 8	2 5 3 2 2	2 3	$\begin{array}{r} 112 \\ 73 \\ 44 \\ 22 \\ 18 \end{array}$
$\begin{aligned} & 120-122 \\ & 123-125 \\ & 126-128 \end{aligned}$	15	.	- 3 2 2	2		17 3 2 2
Total	23,373	6,075	13,567	3,469	5,290	51,714

TABLE 6.

TABLE 7.
Growth of Greenland cod.

TABLE 8.
Mesh assessment for Greenland.
Percentage change in landings
(a) No allowance for discards

Gear	E	110	Changing from 100 mm to					
			120	130	140	150	160	170
Trawlers: Imm. Loss Long-term gain	$\begin{aligned} & .5 \\ & .7 \\ & .8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0 \\ & 0 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 0.5 \\ -0.1 \\ 0.1 \\ 0.1 \end{array}$	$\begin{gathered} 1.2 \\ -0.4 \\ 0 \\ 0.2 \end{gathered}$	$\begin{array}{r} 2.3 \\ -0.8 \\ -0.2 \\ 0.1 \end{array}$	$\begin{array}{r} 4.2 \\ -1.8 \\ -0.9 \\ -0.4 \end{array}$	$\begin{array}{r} 7.1 \\ -3.5 \\ -2.1 \\ -1.4 \end{array}$	$\begin{aligned} & 11.8 \\ & -6.7 \\ & -4.6 \\ & -3.6 \end{aligned}$
Other Gears: Long-term gain	$\begin{array}{r} .5 \\ .7 \\ .8 \end{array}$	$\begin{aligned} & 0_{4.1} \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.2 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.4 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 5.4 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 8.1 \\ & 9.3 \end{aligned}$
Total: Imm. Loss Long-term gain	.5 .7 .8	$\begin{aligned} & 0.1 \\ & 0 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.1 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.2 \\ & 0.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 0.1 \\ & 0.7 \\ & \mathbf{1 .}_{.0} \end{aligned}$	$\begin{array}{r} 2.5 \\ -0.1 \\ 0.9 \\ 1.3 \end{array}$	$\begin{array}{r} 4.2 \\ -0.5 \\ 1.0 \\ 1.7 \end{array}$	$\begin{array}{r} 7.0 \\ -0.5 \\ 1.6 \\ 2.7 \end{array}$

(b) Effect of 150 mm , allowing for discards.

Long-term gain, as percentage of present landings

Gear	E	Discard rate by trawlers (by numbers)		
		0%	10%	20%
Trawlers	0.5	-1.8	0.6	3.0
	0.7	-0.9	2.5	5.9
	0.8	-0.4	3.5	7.4
Other	0.5	2.5	5.0	7.6
Gears	0.7	3.4	7.0	10.6
	0.8	3.9	8.0	12.1
Total	0.5	-0.1	2.4	4.9
	0.7	0.9	4.3	7.8
	0.8	1.3	5.3	9.3

TABLE 9. Monthly catches (tons) of cod by trawlers in each Division of West Greenland, and the percentage taken

Divisions	Month												
	I	II	III	IV	v	VI	VII	VIII	IX	X	XI	XII	Total
A	-	-	-	-	-	-	9	144	198	666	-	-	1,017
B	3,138	1,137	207	1,245	2,013	2,011	4,275	14,492	13,150	10,584	6,485	7,429	66,166
C	4,653	14,212	15,304	4,120	895	1,460	3,087	4,408	1,460	3,168	6,729	6,712	66,208
D	1,836	815	3,181	1,384	542	1,016	6,896	7,092	3,272	3,560	5,256	- 358	35,208
E	731	505	2,293	1,938	2,889	7,892	6,419	3,136	200	-926	- 579	582	25,090
F	2,190	413	1,163	224	2,441	1,850	1,333	1,380	535	1,757	1,387	1,934	16,607
NK	1,269	751	239	-	488	9,557	4,106	3,371	5,119	4,701	4,124	3,488	37,208
Total	13,812	17,833	22,387	8,911	9,268	20,786	26,125	34,023	23,934	25,362	24,560		
\% in 1 B	22.7	6.37	9.24	13.98	21.72	9.67	16.36	42.60	54.95	41.74	24,560 26.40	20,533 36.23	247,509 26.73

[^0]| Length (cm) | Present landings | | | Immediate after closure | | Change | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 B | Others | Total | a | b | a | b |
| < 44 | 264 | 608 | 872 | 781 | 765 | -91 | -107 |
| 45-59 | 8,873 | 10,780 | 19,653 | 13,843 | 13,520 | -5,810 | -6,133 |
| 60-74 | 7,794 | 28,471 | 36,265 | 36,560 | 35,708 | +295 | -557 |
| 75-89 | 2,852 | 13,333 | 16,185 | 17,121 | 16,722 | +936 | +537 |
| <90 | 471 | 2,033 | 2,504 | 2,611 | 2,550 | +107 | + 46 |
| Total | 20,254 | 55,225 | 75,479 | 70,916 | 69,265 | -4,563 | -6,214 |
| Weight | 50 | 169 | 214 | 211.5 | 206.5 | -2.5 | -7.5 |

TABLE 11. Actual number of tags returned from different divisions of fish tagged in 1 B

	1 A	1 B	1 C	1 D	1 E	1 F	Other areas	Not known	\% outside
Year of tagging	-	229	7	3	2	-	-	6	5
1 year after tagging	-	372	65	81	20	3	6	20	31
2 years after tagging	1	141	36	43	17	2	8	7	41
3 or more years after tagging 。	-	104	32	54	14.	4	6	10	50

Fig. 1. Trends in total landings of cod from West Greenland

Fig. 2. Trends in total landings of cod from the northern divisions ($\mathrm{A}-1 \mathrm{D}$) of West Greenland (excluding landings from "divisions not known").

Fig. 3. Trends in total landings of cod from the southern divisions ($1 \mathrm{E}, 1 \mathrm{~F}$) of West Greenland (excluding landings from "divisions not known").

Fig. 4. Trends in catch per unit effort and estimated total effort in the northern divisions ($1 \mathrm{~A}-1 \mathrm{D}$) of West Greenland.

Fig. 6. Age composition of Danish offshore research catches.

Fig. 7. Age composition of Danish offshore research catches (logarithmic scale), showing estimated mortalities.

Fig. 8. Returns (left) and estimated recaptures (right) of cod of different sizes tagged in 1 B during various periods, expressed as percentages of the initial number tagged. Estimated recaptures in 1961 and 1962 are subject to revision.

Fig. 9. Average length during each year of sampling, of 5-, 7- and

9-year-old cod at West Greenland.

THE NORTHWEST ATLANTIC FISHERIES

ICNAF Res.Doc.66-18
Appendix

ANNUAL MEETING - JUNE 1966

Report of meeting of Greenland Cod Working Group
Copenhagen, 21-25 February 1966

German Length-Weight-Data
A. God - round fresh - West Greenland

The mean weights for each cm were calculated from a curve of 5709 weight datas. The weight-samples are from the following months of the years 1953-1958, 1965 and 1966: February 2, March 1, April 2, May 5, June 3, July 2, August 2, September 1, October 1, November 2 and December 1 sample. The weights of 20 to 50 cm cod are the real live weights. The weights of all cod bigger than 50 cm were taken from gutted cod landed on ice (5% mean loss of weight by pressure during 6 to 15 days storage in ice) and multiplied by a conversion factor of 1.24 to get the round fresh weight.

1	2	3	4	5	6
Length cm	$\begin{gathered} \text { Number of } \\ \text { fish } \end{gathered}$	Mean weight (If measured to cm below)	$\begin{aligned} & 3 \mathrm{~cm} \\ & \text { goup } \end{aligned}$	Mean weight (if measured to nearest cm)	$\begin{aligned} & 3 \mathrm{~cm} \\ & \text { group } \end{aligned}$
20	2	75	-	70	
21	1	90		80	
22	4	105	105	95	95
23	5	120		110	
24	11	135		125	
25	9	155	153	145	143
26	10	170		160	143
27	11	195		180	
28	14	205	208	200	200
29	11	235		220	
30	13	255		240	
31	15	280	282	265	267
32	18	310		295	
33	19	340		325	
34	30	370	370	355	355
35	33	400		385	
36	31	440		420	
37	38	480	480	460	460
38	44	520		500	
39	53	560		540	
40	50	605	605	580	582
41	49	650		625	
42	50	695		670	
43 44	54	740	742	715	717
44 45	55	790		765	
45 46	53	840		810	
47	47	895 950	895	860	863
48	35	1015		980	
49	26	1090	1090	1050	1053
50	40	1165		1130	
51	17	1240		1200	
52	32	1325	1325	1285	1285
53	36	1410		1370	128
54	44	1495		1450	
55 56	46	1580	1582	1540	1538
56 57	51 57	1670		1625	
58	50	1755	1842	1710	
59	50	1930		1860	1795
60	161	2020		1975	
61	147	2110	2112	1065	1065
62	163	2205		2155	

1	2	3	4	5	6
63	143	2300		2250	
64	151	2395	2400	2345	2348
65	146	2505		2450	
66	142	2610		2555	
67	152	2725	2725	2665	2668
68	149	2840		2785	
69	137	2960		2900	
70	138	3080	3082	3020	3022
71	146	3205		3145	
72	130	3335		3270	
73	127	3470	3470	3400	3402
74	139	3605		3535	
75	140	3740		3670	
76	126	3880	3887	3810	3813
77	118	4040		3960	
78	145	4200		4120	
79	127	4370	4370	4280	4283
80	138	4540		4450	
81	111	4710		4620	
82	131	4880	4880	4790	4790
83	150	5050		4960	
84	135	5220		5135	
85	144	5395	5395	5305	5307
86	137	5570		5480	
87	119	5765		5665	
88	103	5950	5952	5855	5855
89	113	6140		6045	
90	86	6330		6235	
91	36	6530	6533	6430	6432
92	31	6740		6630	
93	28	6960		6845	
94	24	7220	7223	7090	7095
95	22	7490		7350	
96	14	7770		7620	
97	12	8060	8063	7910	7913
98	12	8360		8210	
99	8	8670		8520	
100	13	8980	8980	8830	8830
101	6	9290		9140	
102	1	9605		9455	
103	4	9930	9933	9775	9778
104	3	10265		10105	
105	6	10610		10445	
106	1	10965	10967	10795	10797
107	2	11325		11150	
108	1	11690		11510	
109	5	12060	12065	11875	11880
110	-	12445	1111	12255	111
111	-	12840		12645	
112	4	13240	13240	13040	13042
114	1	13640 14050		13440 13850	
15	1	14465	14465	14260	14263
116	2	14880		14680	
17	2	15320		15100	
118	2	15770	15773	15540	15540
119	-	16230		15980	
21	3	16690	17163	16440	
22	,	17650		17410	16923
23	3	18180		17920	
24	1	18720	18720	18450	18453
125	1	19260	-	18990	

B. Cod - fresh gutted - West Greenland

Datas from weighings at sea (cod less than 50 cm) and on land (cod more than 50 cm). For during atorage in ice the cod loose in the mean 5% of their weight, the datas of the gutted landed weight were raised to get the fresh gutted weight.

```Length cm below (midpoint 0.5)```	Number   of fish	$\begin{aligned} & \text { Mean weight } \\ & g \end{aligned}$	```Length cm below (midpoint 0.5)```	Number   of fish	$\begin{aligned} & \text { Mean weight } \\ & g \end{aligned}$
20	2	70	63	143	1960
21	1	80	64	151	2035
22	4	92	65	146	2115
23	5	105	66	142	2205
24	11	120	67	152	2300
25	9	135	68	149	2395
26	10	150	69	137	2490
27	11	165	70	138	2.595
28	14	180	71	146	2705
29	11	195	72	130	2815
30	13	215	73	127	2930
31	15	240	74	139	3045
32	18	265	75	140	3165
33	19	295	76	126	3290
34	30	325	77	118	3415
35	33	355	78	145	3545
36 37	31	385	79	127	3675
37	38	420	80	138	3820
38	44	455	81	111	3970
39 40	53	490	82	131	4125
40	50	530	83	150	4280
41	49	570	84	135	4440
42	50	610	85	144	4600
43	54	650			
44	55	690			
45	53	735			
46	40	780			
47	47	830			
48	35	885			
49	26	950			
50	40	1020			
51	17	1090			
52	32	1160			
53	36	1225			
54	44	1295			
55	46	1370			
56	51	1440			
57	57	1515			
58	50	1595			
59	58	1665			
60	161	1735			
61	147	1810			
62	163	1885			


[^0]:    TABLE 10. Immediate effect on the numbers of fish landed, of closure of Division 1 B to trawling

