
I. Introduction.

At the 1965 Anmpual Heeting of ICMAF Denmark proposed that Division 1B be closed to trawline in order to protect the great quantities of snall cod present on the grounds in Div. 1B. Panel 1 considered this proposal and recommended that the Committee on Research and Statistic be requested to examine the desirability of further protection for small cod at Greenland and in particular in this connection the cffects of a closure of Store Hellefiske Bank.

A Greenland Cod Working Group (hereinafter called the group) has been established to consider the matter. This group met in Rome in September 1965 and in Copenhagen in February 1966. At these meetings great progress was made in tabulating basic data required for the assessment. The group also had some discussion of the various problems. However time did not permit the group to finish the work. In preparation for the meetimp in Madrid 1966 the group asked Mr. Gulland to prepare a paper containiner assessment of mesh size regulation and of closure of $1 B$ based on data as size composition of catches, discard rate etc. and the present author to prepare a paper on the likely effect of closure of $1 B 3$ based on the Danish tageing experiments in West Greenland waters. The present paper deals with these tagging experiments, but it is emphasized that a great part of other data used here is based on material compiled and discussed by the group during the Copenhagen meeting and partly given in the report of that meeting (Res.Doc. 66-18).

It is also emphasized that the present paper together with the paper to be prepared by Mr. Gulland should be fully discussed by the group in Madrid previous to the 1966 Annual Meetinc of ICNAF. The present paper is thus prepared more as a working paper for the group than as a document with final conclusions on the question of protecting small cod at West Greenland.

II. Data necessary for the calculations.

Sone basic data and assumptions are needed for the calculations in this paper. Such basic data are:

1) Natural mortality and mortality due to tagging.
2) Growth rate of cod and length-weight relation.
3) Fishing effort and fishing intensity in all divisions of Subarea 1.
4) Discard rate by gears.
5) Proportion between liners' and trawiers' effort in 1.B. Proportion between trawlers' effort in $1 B$ and total effort in other parts of Subarea 1.
6) Age and size at recruitnent in IB together with gear selection.
7) Factors to convert number of tags reported to real number of recaptures.
8) Natural mortality and mortality due to tascing.

Estimates of total mortality rate (Z) and of its two components (F and M) are given in previous report from the Assessment Subcommittee (Beverton
and Hodder, eds., 1962). These estimates were based mainly from series of age composition data. For the period 1952-57 F was estimated to equal M, both being about 0.18. For the Labrador cod which may have a M amilar to that of Greenland cod the Assessment Subcomnittee found M to be between 0.15 and 0.35 and May (1966) proposes the true value to be within the lower half of that range. The group at the meeting in Copenhagen estimated M for Subarea 1 cod to be 0.15 to 0.20 .

In the present paper therefore M has been taken as 0.20 for all sizes of cod regarded although it is possible that M is sonewhat larger for the smaller cod. For tage cod it is quite clear thet some will die due to tagging or lose their tags. It has not been tried to calculate this extra mortality but very roughly M has been estimated to be 0.35 in the calendar year of tageing. As all tageing experiments dealt with here arc from mid year months this value of M runs for half a year. Thereafter M is taken as 0.20 ($t=1$ year).
2) Growth rate of cod and length-weicht relation.

The growth rate of cod in Subarea 1 has been subject to changes from time to time (Hansen and Hermann, 1965). The Danish samples from lA-1D offshore, quarter of July, 1953-1965 clearly show that concerning growth rate this period falls into two, viz. 1953-59 and 1960-65, the growth rate in the last period beind higher than in the former (Table 2, Fig.1). This corresponds with recent German studies (Meyer, 1966). Applying German figures for gutted weight to these growth curves and looking on 10 cm groups of cod (the -5 cm regarded as mean of the group) this means that e.g. a cod of $30-39 \mathrm{~cm}$ length with the present frowth rate will more than double its weight in one year and that the weight after two years is more than four times the original weight (Table l). At the same time there is most likely also a considerable increase in value per unit weight.

3) Fishing effort and intensity.

Due to the great variation between fishing vessels, between gears and between catchability and distribution of cod at various seasons it is extremely difficult to get reliable single figures for fishing effort and intensity. The author has tried to estimate the effort on the base of Portuguese Dory Ilours (Horsted, 1965 a). Garrod (Table 2 in the report of the Copenhagen meeting of the group, Doc. 66-18) gives some estimates of total fishing effort based on other fleets. The two sets of figures correspond extremely well with each other. In this paper the figures estimated by the author (I.c.) have been used. 4) Discarded and industrial fish.

Discarded cod and cod processed to fish meal are hereinafter called discards.
It is most essential to know the rate of discarding for each size group of cod, but unfortunately very few data exist. Some figures of total discards are
given by Meyer (l.c.) for the German trawl fishery in Subareal in 1965.
The group has tried to estimate discerds for each size of fish by comparing commercial lundings with catch of research vessels but points out that this may give an overestimate of discards as the trawlers may prefer to fish on those parts of the grounds where bié cod are relatively most abundant.
for the purpose of this paper it has only been necessary to estimate the discards in lB.

Assuming that the difference between comercial landings and research catches (Doc.66-18, Fig.5) expresses the discards the rate of discarding in per cent of numbers caught would for $1 B$ be as given in Table 3. Applying these figures to the average catch of trawlers in $1 B$ as estimated by the group (Doc. 66-18, Table 4) gives about 54\% discards of total numbers cuught by trawlers in IB. This may as pointed out be an overestimate.

For the purpose of this paper also a completely hypothetical but I hope uncerestimated discard rate in $1 B$ has been used (discard A) besides the discard rate given in details in Table 3 (discard B), viz.:

Discard A		Discord B
trawlers:	lensth group	
no catch, no discard	32 cm	100% discarded
90% discarded	$33-41 \mathrm{~cm}$	100%
70%	$"$	$42-50 \mathrm{~cm}$
none	$"$	$51-59 \mathrm{~cm}$
none	$"$	60 cm
none	$"$	all
liners:	43%	$"$

Applying the rate A to the average trawl catch in $1 B$ as done above for rate B gives about 21% discards by numbers of trawlers' catch (rate $B=54 \%$).
5) Proportion between liners' and trawlers' effort in Div. 1B. Proportion between trawlers' effort in Div. IB and total effort in other parts of Subarea 1.

Table 4 partly taken from Horsted (1965 a) gives for various former periods the new effort in $1 B$ and in lC-lF if the effort of trawlers' fishing in 1B had been diverted to the more southern divisions of Subarea 1. The effort for the year 1964 has here been estimated purely from catch data assuming that catch per effort in 1964 was as in 1963.

The total effort in $1 B$ has in Table 4 been splitted up in liners' and trawlers' effort according to the landings from these two fleets. As trawlers are presumed to have more discards than liners this estimate for the two fleets may be biassed, the effort of the trawlers tending to be too low, that of the liners too high.

When dealing with fishing mortality of different length groups of cod the effort ought to be splitted up also according to length groups. This has partly been done when calculating the long-term change by a closure. Using the two rates of discarding (A and B) together with the Tables 4 and 5 of the
group's Copendan report (l.c.) it is found that of the totul effort in 1B in 1961-64 the following percentages were due to liners and trawlers respectively:

			A	
lencth group	liners	trawlers	liners	trawlers
$32-39$	75	25	22	78
$40-49$	40	60	22	78
$50-59$	48	52	34	66

These figures are used for all periods when calculating the long-term chance and refering to the growth rate (Section II, 2) cod of length group 32-39 cm could next year well be regarded as the $40-49 \mathrm{~cm}$ group and this asain next year as the $50-59 \mathrm{~cm}$ group. For cod outside 1 B and for all cod bigger than 60 cm the figures given in Table 4 are used.
6) Age and size at recruitment. Cear selection.

Danish tacging experiments in inshore waters of Div. 1 B (Tables 5, a-c) have shown thict many cod of length group $20-29 \mathrm{~cm}$ by tafging are recaptured on Store Hellefiske Bank in the second year after tasginc, while many of those of length $30-39 \mathrm{~cm}$ by taceing are caught on Store Hellefiske Bank in the first year after tageinc.

Trawling with covered cod end by German research vessels in 1965 (Meyer, l.c.) has shown that considerable numbers of year class 1962 (3 years old cod) were present on Store Hellefiske Bank in November, this year class predominatind the samples. Also the year class 1963 (2 years old cod) which is normally regarded to be a rather poor one was fairlywrepresented.

Judging by this it is reasoneble to belicve that cod in $1 B$ are fully recruited by a total lencth of 40 cm .

In the group's Copenhagen report (I.c.) a selection factor of 3.7 and a selection range of 10 cm has been used. Recent Cerman investigations (Bohl,1966) suggest that this factor is too high. A factor of 3.38 was found by Bohl, selection range being 8.7 to 10.3 cm . Applying these last data to a 1.10 mm mesh size'means that selection starts by a total length of cod about 32 cm . For the convenience of the assessment it has therefore been assumed that also cod of lenfth group $30-39 \mathrm{~cm}$ (or at least $32-39 \mathrm{~cm}$) arc fully recruited. To judge by the age composition of the samples mentioned above this may not bevunrealistic assumption.

7) Conversion of number of tags reported to actual number of recaptures.

Concerning Danish tagging experiments in Greenland waters the problem of fishermen's non-returning of tags hios been dealt with before by Poulsen (1957) and Horsted (1963 and 1965 b). The factors given by Horsted (1965 b, p.3) have been used for tags released before 1961. The great majority of tags used before 1961 are Petersen tags fixed to the gill cover of the cod.

Various papers presented to the North Atlantic Fish Marking Symposium,

Woods Hole, 1961 (ICNAF Spec.Publ. 4) sugested, however, that fixing the Petersen tag dorsally was better then fixin \mathcal{G} in the gill cover and that also Spachetti tags fixed dorsally gave relatively many returns. In 1961 and 1962 Danish cod tageing in Subarea l was accordingly made partly with Petersen tags fixed dorsally and to the gill cover (1961) and partly with Spaghetti tags and Petersen tags fixed dorsally (1962). The result were, however, very disencouraging. It would complicate this paper too much to go into details. It was found, however, that by suall cod (less than 50 cm) Petersen tag fixed to gill cover was clearly much better (5-1o times better) than the same tag fixed dorsally, while by big cod (70 cm or more) the dorsal position was slightly better than the gill cover position. Results varied very much for the mediun sized cod. Spaghetti tag seems to be somewhat better than dorsally fixed Petersen teg but unfortunately the printed number on some of the Spughetti tiges is washed out.

As a whole the comparison mentioned is very complicated as the experiments gave most confusing results and although some conversion factors have been used the author is not too happy of these factors. Fur ther experiments and analyses will have to be made before such factors should be published.

Complicating the 1961-62 tageing experiments too is the relatively poor Portuguese return of tags in 1962 proposed by Horsted (1965 b) and later on confirmed and explained by Capt. de Almeida and R. Monteiro (personal comm.) All this make any judging by the 1961-62 experiments most uncertain, also as some returns may still be expected from these experiments.

III. Various assumptions.

Having data as given in Section II it ja still necessary for the assessment also to introduce sone basic assumptions besides those already mentioned in Section II.

The proposal for closure of $1 B$ to trawling were based on the general theory
1.) that the relative amount of small cod is greater on Store Hellefiske Bank than on any other West Greenland fishinf bank. This is generally confirmed by the various samples (Copenhagen report of the group, Tables 4 and 5, Fie.5).
2) that these small cod are more heavily fished by trawl than by line. Discussed in Section II, 4.
3) that small cod when reaching a bigerer size begin to emifrate from Div.l13 (analysed in Sections IV and VII, Tablos 5, 8 and 1I).
4) that the migration of medium sized and big cod from other divisions to Div. IB is rather small or, if such misration takes place, a great part of these cod will again move out of lB (analysed in Section VII, Tables 7, 8 and lo).
In the calculations it has further been assumed
5) that migration of cod and distribution of cod after a closure of $1 B$ will still be as shown by the tagring experiments before the closure, including here the basic assumption that tagged cod is evenly distributed in the stock and behove as non-tagged cod.
6) that migration of cod from $1 B$ offshore areas to $1 B$ inshore waters is rather small and not likely to change very much after a closure (analysed in Section IV, 1 and 2, Table 6).
7) that the micration which takes place in a certain year as shown by tagging experiments has been completed at the beginning of that year's fishing season.
8) that trawlers formerly fishing in $1 B$ will fish in other Greenland waters after a olosure of $1 B$.
9) that distribution of liners in Subarea 1 will not change after a closure of $1 B$ to trawling. This assumption may not hold as $1 B$ after a closure may attract liners partly because at any rate they believe the conservation effect in $1 B$ to be very great and partly because they avoid having their lines spoiled by trawlers. This question needs perhaps further study by the group in Madrid.
10) that as the majority of tagged fish recaptured are caught in the first and second year after tageing it is proper to assume, that the effort, which has caught the recaptures from a period's tagging experiments is the effort from the period: 1 year after first experiment started to two years after last experiment started, i.e. cod from tagging experiments 1955-57 are assumed to have been recaptured by the effort in the years 1956-59.
Some snaller assumptions are introduced in the calculations because or
11) Recaptures from year NK (not known) have been regarded as belonging to first year after tagging. Recaptures from Div. 1 NK have been allocated to known divisions according to known recaptures. Recaptures from areas outside Subarea 1 (mainly East Greenland - Iceland) and recaptures from Subarea NK have been regarded as caught in Div. 1C-1F. Catch, effort and recaptures from Div. 1A have been included in 1. . All this transfering of figures may sound rather drastic, but has little or no effect on the calculations as only very few recaptures are involved in the transfering.

IV. Migration of cod towards and within Div. 1B.

As mentioned in the previous section some study of the migration of cod towards and within $1 B$ is necessary before further assessments of the effect of a closure of $1 B$ can be made.

1) Mi.gration from inshore waters of $1 B$ to offshore waters.

Cod have frequently been tagged in inshore waters of Div. 1B, mainly in the harbour of Christianshåb (Disko Bay), in the coastal waters close to Holsteinsborg and in the fjords Amerdloq and Ikertoq just south of Holsteinsborg. The
results of tagging experiments from these localities in the period 1955-62 are given in Tables 5a-5c, giving actual number of returns as well as estimated number of recaptures in per cent of numbers tagged. Although a full study of migration needs to deal with recaptures per effort instead of just numbers of recaptures the Tables 5a-c nevertheless demonstrate very clearly that there is a considerable migration of cod from inshore of $1 B$ to offshore waters, especially when it is taken into account that all returns from area not known have been taken by nations other than Creenland. In fact, in all experiments and for all sizes of fish very few tags are returned by Greenland fishermen 3 ore more years after tagging while there are still considerable numbers returned by other nations fishermen, this suggesting that nearly all cod original present in inshore waters of Div IB will migrate to offshore area, and when they have arrived here most likely behave as other cod present in the offshore area.
2) Migration from offshore to inshore waters of tB.

Table 6 summatrizes return and estimated recaptures from Div $1 A+B$ of cod tagged in $1 B$ offshore waters in various periods. Comparing Greenlander's per cent of returns with Greenlander's per cent of total cod landings in $1 A+B$ it is quite clear, that cod tagged in offshore waters do not $m 1 x$ very much with the stock in inshore waters.

Following this conclusion and the former conclusion it is therefore assumed that a closure of Div. $1 B$ to hawling will have only miner effect (but this effect is gain) to the inshore cod fishery, and in the assesments migration from offshore to inshore area have been neglected (se also Section III, 6.)
3) Migration from more southern divisions into Div.lB.

Proposing the closure of $1 B$ it was assumed that the migration of cod from southern areas into Div $1 B$ was relatively small, or if such a migration existed the cod moving into Div $1 B$ would behave as other cod present in 1B, which means that a great part of the inmoving cod would again move out of $1 B$. Table 7 summarizing tagging experiments for the years 1955-60 in Divisions $1 B, 1 C$ and ID offshore area shows that from tagging experiments in $1 \mathrm{C} 5-15 \%$ of the recaptures are taken in 1 B , while from tagging experiments in $1 D 3-6 \%$ of the recaptures are taken in $1 B$. Although also these recaptures ought to be weighted according to effort in the various regions these figures by themselves say, that the migration from more southern divisions into $1 B$ is rather small. It must also be remembered that cod having moved into $1 B$ are part of the stock in $1 B$ and hence that some of them - and as Table 7 and later assessment show a good deal
of them - again will migrate out of Div. 1B. It is therefore not likely that a closure of Div. $1 B$ to trawling means that any great proportion of the stock found in more southern divisions will avoid been caught by migrating to Div.lB.
V. Different ways of expressing gain and loss due to closure of Div.1B to trawling.
The effect of a closure of $1 B$ to trawling may be expressed in various ways. By introducing a larger mesh size than hitherto used the term "immodiate loss" is used, but speaking about closure of a certain area one must distinguish between two sorts of loss. viz.
a) the loss (or gain) which the banished fleet suffers expressed as the difference between the catch which the vessels would have obtained by staying in the closed area and the catch which they get in the areas to which they move.
b) the loss in autput of the stock which was present in the closed area when closing this.
The immediate effect which the banished trawlers feel is the type a) loss, and this loss depends on the possibility of finding another area where catch per effort is as good or very nearly as good as in the closed area. As shown in the groups report such areas exist throughout the year in the more southern part of Subarea l. It is very difficult to say anything exact about this loss. The trawlers did perhaps choose $1 B$ because catch per effort here was better or thought to be better than in other divisions. On the other hand some trawlers did at the same time fish outside $1 B$ and these presumable thought fishing here to be better than in 1B. In some cases, therefore, the trawlers leaving $1 B$ may find fishing outside $1 B$ to be better than in $1 B$ and therefore get an immediate gain instead of loss. It is, however, essential to remember that the cod in Subarea 1 must be regarded as being so heavily exploited (Assessment Subcommittee reports 1964,1965) that any increase in effort in any division is supposed not to give any increase in total catch but rather a steady or slightly decreasing total catch, and it is hence most reasonable to think that trawlers moving from $1 B$ will not in the first short time after moving get their former catch in $1 B$ fully compensated, and that entering a new division they will also have some influence on the catch of the fleet originally present here. This sort of loss has not been estimated in this paper. The "short time effect" is here taken as the type b) loss, viz. the loss in output of the stock present in 1 B at the time of closure. This loss will of course be greatest in the first
year after closure, but gradually cod will move out from $1 B$ and some of them be caught outside, so that the loss after some years is diminished or even changed to again due to the increased weight of the single fish. This short time effect has been calculated for each 10 cm group of cod present in Div.1B. The total short time loss should be weighted according to the size composition (in 10 cm groups) in 1 B .

After some years the cod originally present in Div.lB at time of closure do not exist any more. From that time only cod recruited after closure are exploited, and the "long - term effect" is here given on a "per recruit base", the recruits being regarded as the cod in the 40-49 cm group. The long-term erfect is here given by the difference in output of $1 B_{\mathrm{c}}$ in $40-49 \mathrm{~cm}$ group without a closure and the output which would have been obtained in the same period with a closure, while the "short time effect" is given by the corresponding difference found for cod bigger than 50 cm present in 1B at time of closure.

The netto gain or loss for the total fishery in Subarea 1 is then the defined "long-term effect" minus a possible loss in total catch in divisions outside $1 B$ due to the increased effort in these divisions by redistribution of trawlers from lB. VI. Model used to calculate "long-term effect" and "short time effect" from tagging experiments.

With reference to the various basic data and assumptions mentioned in Sections II and III the "long-term effect" and "short time effect" as defined in Section V is' for each lenght group of fish present in 1B calculated in the following way:

Let N_{o} be initial number of fish tagged and n_{0} number of total recapturcs in the calender year (year 0) of tagging. Following Beverton and Holt (1957) the total fishing mortality coefficient F in this year is found from the equation

$$
\begin{equation*}
\frac{\underline{n}_{0}}{N_{0}}=\frac{F_{u}}{F_{c}+M_{u}}\left(1-e^{\left.-\left(F_{u}+M_{u}\right) t_{i}\right)}\right. \tag{I}
\end{equation*}
$$

where $\quad M=0.35$ and $t=0.5$ (Section II.1).
The number of fish present at the beginning of next calender year (year 1) is then given by

$$
N_{t}=N_{0} e^{-\left(F_{i}+M_{b^{\prime}}\right) t_{0}}
$$

and continnuing with equations (1) and (2) (M in the next years $=0.20$ and $t=1$) the F in each year and the number of tags present at the beginning of each year, N is calculated.

This F, however, is an overall F, but F may vary between divisions. Knowing the distribution of tagged fish and the returns from each division it is, however, possible to calculate the seperate F in each area. This is done by splitting up n in three groups, viz. those caught by ines in 1B, those caught by trawlers in $1 B$ and those caught by all gears outside 1B. Assuming further that the distribution of tags, which takes place during a calendar year, is finished at the beginning of that year (or at the beginning of the fishing season) N can be splitted up between divisions according to proportions given $(y$

n is number of recaptures in each division and f the chance of the tagged fish to be caught in each division as given by Horsted (1965a). In this way N is splitted up in a part staying inside $1 B, N_{B}$, and another N_{C}, having migrated to areas outside lB. Following equation (1) F can be estimated for these to parts seperately, F_{B} and F_{C}.

Assuming that a closure took place in the period dealt with F_{B} would be reduced in the same proportion as the effort in IB (given in Table 4) while F_{C} would be increased. The two new coefficients are called F_{B}^{\prime} and F_{C}.

The new effort in the two areas would instead of a catch of n_{B} and - n_{C} give a new catch n_{B}^{\prime} and n_{C}^{\prime} also calculated from equation (1). The total numbers surviving in a year, r, after closure is now given by

$$
\begin{equation*}
r+N^{\prime}=N_{B}^{\prime} \text { e }{ }^{-} r_{B}^{F_{B}^{\prime}}+N_{C}^{\prime} \text { e }{ }^{-F_{C}^{\prime}} \tag{3}
\end{equation*}
$$

This number of survivers again can be splitted up into two parts. F and F^{\prime} can again be calculated, and new catch and survivers for next year again estimated.

The gain or loss for each length group in each year is in terms of numbers given by the difference between, n and n^{\prime}, but the gain and loss has in the calculation been splitted up so that the gain of remaining lines in $1 B$ and the gain or loss for the total fleet outside $1 B$ (including
the trawlers moving from Div.lB) are given seperately.
In terms of weight each group of fish must for each year be multiplied by the weight factors given in Tables 1 and 2 , and to judge the full gain these again ought to be multiplied by a value factor, which may vary from country to country.
VII. Effect of closure in former periods.

The basic material of the tagging experiments on which the calculation are based is given in Tables $8 \mathrm{a}-\mathrm{c}$, while an example of the detailed calculation as given in Section VI appears in Table 9. From the other experiments only the final figures for loss and gain are given.

The "short time effect" (defined in Section V) by a closure of 1 B to trawling is given in Table lo a-c as per cent change in catch of each length group by numbers and gutted weight (head on). The actual catch without a closure is within each length group the catch per 1000 fish present in $1 B$ at time of closure or when tagging experiment stated.

Some of the figures, especially for year l. may look very unreliable, but this is to some degree explained by the fact that all returris from year NK have been allocated to year 1 (Section III, 11).

The "short time effect" for liners in 1B is as expected an immediate raise in catch and an increase in mean size of fish caught, gain in terms of numbers being less than gain in weight.

For the other fleet in Subarea 1, including trawlers formerly fishing in 1B the total"short time effect" is a decrease in catch but an increase in mean weight of fish, decrease in numbers being less than decrease in weight. This total loss, however, consists of two components, viz. a great loss in the first years after closure and later on a gain, but this gain smaller than the loss in the first years. The gain generally seems to begin in the 3 rd year after closure. To estimate "short time effect" fo. the stock as a whole it is necessary to weight the effect in each length group with a factor which is the proportion that this length group has in the whole stock. As Table lo deals with imaginare closure this has, however, not been found to be worth while.

Estimating the "short time effect" it mustlbeared in mind that the "long-term effect" as defined in Section V begins within the period of the "short time effect", and as the "long-term effect" is an increase in catch this will make the total short time loss less than shown in Table lo.

The greatest interest, however, has the "long-term effect" of the closure.

The calculation of the "long-term effect" per recruit is based on
the $40-49 \mathrm{~cm}$ cod. There is, however, a fishery also on the $30-39 \mathrm{~cm}$ group, but due to gear selection (trawl as well as line) and possible not full recruitment of these smaller fish, fishing mortality must be less than for the bigger cod. It is impossible to say how big F is for these small cod, but it is supposed not to exceed 0.10. F for the $30-39 \mathrm{~cm}$ group has therefore been estimated to 0.00 at the discard rate A (Section II, 4) and to 0.10 for discard rate B, the last estimate to consist of $F=0.02$ for 1 ineis and 0.08 for trawlers. The true value of discard rate and of F for small fish is supposed to be somewhere between the A and the B theory. Table II shows the "long-term effect" (\% change in catch per fish recruited in $1 B$) if a closure had been effective in earlier years and if total fishing effort had remained as in those years.

Clearly the liners remaining in $1 B$ would have a gain, immediate as well as long-term. The other fleets would with a fishery as on the 1955-57 tagged cod have had a loss (numbers as well as weight), but with a fishery as on cod tagged in 1958-60 and 1961-62 these other fleets would have had a minor loss in terms of numbers but a gain in terms of weight of $1-4 \%$ in the discard rate A and $8-13 \%$ in the discard rate B.

As shown in Table 8 the material on which these calculations are based is unfortunately rather poor (119,76 and 175 cod tagged in the three periods respectively), but regarding also the "short time effect" (Table lo) when medium sized cod tend to give a gain after $2-3$ years after closure it is reasonable to believe, that although the figures for "longterm effect" may be rather uncertain, there is no doubt about the fact, that cod recruited in $1 B$ will be best exploited by a closure of $1 B$ to trawling.

- VIII. Possible effect of a future closure.

When calculation are based on tagging experiments it is quite clear, that the calculations must refer to former situations of fishery and their interest therefore be acedemic. In previous part of this paper it has only been possible to deal with situations as before 1962.

Great change in the efficiency and effort of the trawlers is, however, known to have taken place since 1962. In the Copenhagen report of the group (1.c.) it is estimated that $E\left(=\frac{F}{F+M}\right)$ is close to 0.70 . The author has therefore tried to calculate the "long-term effect" which may occur by a future closure of $1 B$ to trawling supposing that an overall F in Subarea 1 is $0.40(E=0.67)$ and that effort outside $1 B$ would raise by 20% if trawlers were banished from $1 B$ to IC-IF. Inside $1 B$ the effort
of liners is taken as mentioned in Section II,5. It is furthermore supposed that growth rate in future remains as in 1960-65 (F1g. I., Tables 1-2). The migration of cod from $1 B$ southwards has been taken as a medium migration of that which the tagging experiments have shown for cod of length groups $40-49$ and $50-59 \mathrm{~cm}$.

This assumed migration used here is (in terms of per cent of regarded fish found outside 1B)

Year	$\%$ found outside 1B
0	0
1	30
2	60
3 or more	80

Referring to Section II, 2 and II, 6 recruits are taken as 40 cm cod which will have a growth of

Year	0	1	2	3	4
cm	40	50	60	69	75
kg (gutted,					
\quad head on)	0.530	1.020	1.735	2.490	3.165

The calculations are then made af'ter the model given in Section VI and for the two discard theories A and B (Section II, 4).

The results are given in Table 12. It is found that the "long-term effect" by a future closure will be that the exploitation of cod recruited on St. Hellefiske Bank will be much better than now. Liners remaining in 1B will increase their catch of the regarded cod in terms of numbers $(25-55 \%)$ as well as weight ($37-73 \%$) and other fleets in Subarea 1 will also increase their catch of $1 B$ recruits in terms of weight ($8-22 \%$) although not in numbers (loss of $28-31 \%$). The long-term gain is thus due to the increase in mean size at which the recruits are caught. The total effect for the fishery of Subarea l as a whole depends on the proportion which $1 B$ recruits constitute of the total landings from Subarea 1. Assuming that they constitute at least about 33% of the landings from 1B-1D and nearly nothing of the landings from $1 E-1 F$ and assuming that total catch in divisions $1 C-1 F$ remains constant after redistribution of trawlers after a closure, this means that the long-term gain for the fishery in Subarea 1 as a whole (based on 1960-63 landings) will be at least between 6% and 12% for discard rate A and B respectively.

The main part of the gain is as mentioned due to increased size of the $1 B$ recruits when these are caught. This increased mean size may mean that also the value of the fish has increased whatever this is in the
price paid to fishermen or the price on the different stages of production. This value per weight is therefore different from country to country but if a value factor can be worked out for each size group this factor could readily be used on the Tables 11 and 12.

The Royal Greenland Trade Department (Frølich and Svendsgaard, personal comm.) has tried to work out some factors for their frozen products using the formula

Value factor $=$ final market price $-\frac{\text { money paid fishermen and factory }}{\text { workers }}$ and found the following factors for cod of weight (gutted, head on)

$$
\begin{aligned}
600-700 \mathrm{~g} & =1.65 \text { per unit weight } \\
13-1500 \mathrm{~g} & =2.03(=123 \% \text { of the } 600-700 \mathrm{~g}) \\
21-2300 \mathrm{~g} & =2.15(=130 \% \ldots \ldots . \ldots \ldots .)
\end{aligned}
$$

Applying such factors to Table 12 the "long-term effect" for liners in 1 B is increased to 40% and 70% and for other fleets to 13% and 28% for discard rate A and B respectively. For the fishing of Subarea l as a whole (with the assumptions mentioned) the gain would increase to 7-13\%, but the value factors given will most surely vary between countries and may well be more progressive than those given above, so that the gain for the fishery as a whole may be better than estimated above.
IX. Discussion.

The validity of the results given in the previous Section depends of course on the validity of the data and assumptions used in the calculations The validity of the data and assumptions has to some extent been discussed in previous Sections where data and assumptions are introduced. Further-- more the paper is as pointed out thought as a working paper for the group in Madrid. The author has therefore not found it necessary to go into a detailed discussion on the validity here. It should, however, be pointed out, that in all the calculations based on tagging experiments there has in every case been less than 10% of the tagged fish left after 4 years and in no years more estimated recaptures than estimated tagged fish left. This seems to indicate that natural mortality and estimated number of recaptures are fairly close to the true values and fishing mortality found may accordingly be close to true value too.

The auther has in this paper not tried to judge whether the same conservation of small cod. could be obtained by an increased mesh size. This may to some extent be the case, but the author is most inclined to
belleve that a closure of Div.lB to trawling together with an increased mesh size in other divisions may be the best method of protecting small ood at West Greenland. This question must be discussed by the group in Madrid.
X. Summary.

The effect of closing Div. IB to trawling is judged by tagging experiments introducing at the same time some assumptions, and to evaluate fully the results given in this paper it is necessary to read all sections of the paper.

It is found that a olosure ten years ago would not have been of benefit, partly because of relatively low fishing intensity and partly because of rather slow growth rate of cod at that time. Within the last 7-8 years a closure would, however, have been of some benefit. A closure would at the present time mean a much better exploitation of cod recruited on St. Hellefiske Bank and for the fishery of Subarea 1 as a whole there would possibly be a gain in terms of weight about 6% by a low present discard rate and up to 12% at a high discard rate.

The economical effect would be somewhat higher as the main effect of a closure is a decrease of small cod and an increase of medium sized cod caught, and these medium sized cod presumably have a higher value per unit weight than small cod.

The possible effect of a closure of $1 B$ to trawling together with mesh size regulation should be studied by The Greenland Cod Working Group in Madrid, 1966.

XI Referencen.

Beverton,R.J.H. and V.M.Hodder, eds.,1962. Report of Working group of Scientists on Fishery Assessment in Relation to Regulation Problems. Suppl.to Annu. Proc.int. Comm.Northw.Atlant.Fish., 11:1-81.

- and S.J.Holt, 1957. On the Dynamics of Exploited Fish Fopulations. FishoInvest. II,XIX:184-188.London.

Bohl,H.,1966. Recent selection experiments with the approved ICNAF topside chafer. Annu.Meet.int.Comm.Northw.Atlant.Fish.,1966,Res.Doc. 15

Dickie,L.M. and J.A.Gulland, eds., 1964. Report of the Subcommittee on Assessments.Int. Comm.Northw.Atlant.Fish., Redbook I: 61-75.

Gulland,J.A., ed., 1966. Report of meeting of Greenland Cod Working Group, Copenhagen, 21-25 February 1966. Annu.Meet.int.Comm.Northw.Atlant. Fish.,1966,Res.Doc. 18

- and B.B.Parrish, eds.,1965. Report of the Subcommittee on Assessments.Int.Comm. Northw.Atlant.Fish., Redbook I:29-42.

Hansen, P.M. and F.Hermann,1965. Possible influence of water temperature on the hrowth of West Geeenland cod.Spec.Publ.int.Comm.Northw.Atlant.Fish., 6:557-564.

Horsted, S.A., 1963. On non-reported recaptures from Danish tagging experiments on cod, Subarea 1. Spec.Publ.int.Comm.Northw.Atlant.Fish.,4:22-25.

- , 1965 a. Fishing activity, effort end intensity in Subarea 1,1952-63.Annu. Meet.int. Comm.Northw.Atlant.Fish., Doc. 57.
- , 1965 b . Defects in the recovering and reporting of cod tageed by Denmark in Subarea 1. Int.Comm.Northw.Atlant.Fish., Redbook 1965,III:172-177.
- May,A.W.,1966. A note on natutal mortality in Labrador cod. Annu.Meet.int. Comm. Northw. Atlant.Fish.1966,Res.Doc.26.

Meyer, A.,1966. German research report. Annu.Meet.int.Comm.Northw.Atlant.Fish.,1966,Res. Doc.

Pulsen,E.M.,1957. Defects in the recovering of tage, fish. Annu.Meet.int.Comm.Northw. Atlant.Fish.,1957,Doc.4.

Mable I Mean weight (fread on
lentrth and - within each lensth - aftor various periods. Length based on figures from Table 2 and Fig. 1 . Weight based on German figures kindly supplied by Dr. A. Meyer.
$\mathrm{a}=$ totill leneth (cm below)
$\mathrm{b}=$ weigit (gutted) in gram
$c=$ weight in per cent of original weight (when $r=0$)

Table 2。 Mean total length of cod from Danish samples in Divisions la - ld, offshore areas, quarter of July. Mean of lencths measured to cm below.
See also Fig.

Age	$1953-59$	$1960-65$
2	27.0	-
3	38.8	40.3
4	45.8	50.2
5	55.6	60.8
6	63.3	70.0
7	68.2	75.5
8	73.0	80.0
9	75.0	83.6
10	77.2	85.6

Table 3. Haximum discard rate by trawlers in Div. 18 (per cent of numbers caught) taken from Fig. 5 of the report of the Greenland cod. Working Group, Copenhagen Meeting.

om group	landed	caught	discarded	per cent discarded	
33-35	-	17	17	100	
36-38	-	34	34	$100\} 100$	
39-41	-	70	70	100	
42-44	5	115	110	967	
45-47	20	170	150	88 \} 84	
48-50	50	180	130	72	
51-53	80	175	95	547	
54-56	80	150	70	47 43	
57-59	91	112	21	24	
60-62	100	12.0	20	17	\checkmark

Table 4. Change of effort in Div. IB and Divs.lC-1F if trawlers effort are diverted from 1B to 1C-1F.Effort given in "Portuguese August trawling hours" (Horsted 1965 a).

Period	Effort Div.1B		$\begin{gathered} \text { Effort } \\ \text { Div.lC-1F } \end{gathered}$	New effort in per cent of former effort when trawlers are diverted from $1 B$ to $1 \mathrm{C}-1 \mathrm{~F}$.	
	trawl	line		1B	1C-1F
1953-56	128646	117608	415900	47.8	130.9
1956-59	110721	156014	615549	58.5	118.0
1959-62	183833	206696	851025	52.9	121.6
1962-63	99335	115081	519455	53.7	118.1
1962-64	140417	157730	819728	52.9	117.1

Tagsing Locality	Lergth when tagged (cm)	Numbers tagged	Year of recapture	Total returns		Percent of returns uncorrected fisurus				Percent of returns corrected fifures			
						$\|c\|$ Recap by Greenland fishermen	aptured 13 by other nations	outside 13	UK	Recap $1 B$ by ireeniand isishermen	$\left\lvert\, \begin{gathered} \text { aptured in } \\ \text { by other } \\ \text { nations } \end{gathered}\right.$	outside 1B	NK
*) Holsteins. borg District, Cocostal area	20-39	783	$\begin{array}{r} \circ \\ 1 \\ 2 \\ 3 \\ 3 \end{array}$ INK Total	$\begin{array}{r} 3 \\ 16 \\ 18 \\ 7 \\ 12 \\ 2 \\ 58 \end{array}$	3 25 57 26 30 4	$\begin{gathered} 100.0 \\ 75.0 \\ 33.3 \\ 14.3 \\ 8.3 \\ - \\ 39.6 \end{gathered}$	12.5 16.7 28.6 8.3 50.0 15.5	12.5 27.8 42.9 75.0 50.0 34.5	$\begin{gathered} - \\ - \\ 22.2 \\ 14.3 \\ 8.3 \\ - \\ 10.3 \end{gathered}$	$\begin{gathered} 100.0 \\ 48.0 \\ 11.8 \\ 6.3 \\ 3.3 \\ - \\ 17.8 \end{gathered}$	$\begin{array}{r} 24.0 \\ 19.6 \\ 37.5 \\ 3.3 \\ 75.0 \\ 20.2 \end{array}$	$\begin{aligned} & 28.0 \\ & 33.3 \\ & 37.5 \\ & 83.3 \\ & 25.0 \\ & 43.4 \end{aligned}$	35.3 18.8 10.0 - 18.6
	50 or more	120	≥ 4 NK Total	21 8 5 5 - 39	31 16 13 9 - 69	$\begin{gathered} 4.8 \\ 12.5 \\ - \\ - \\ - \\ 5.1 \end{gathered}$	38.1 37.5 40.0 - - 33.3	$\begin{gathered} 57.1 \\ 50.0 \\ 60.0 \\ 100.0 \\ - \\ 61.5 \end{gathered}$	- -	3.2 6.3 - - - 2.9	- 32.3 43.8 15.4 - - 27.5	- 64.5 50.0 84.6 100.0 - 69.6	- - - - -

Tas;ing locality	$\begin{aligned} & \text { Len th } \\ & \text { when } \\ & \text { tased } \\ & \text { (cm) } \end{aligned}$	itumoers tasged	Year: $0 £$ recap- ture	Total returns		Percent of returns uncorrected figures				$\begin{aligned} & \text { Fercent of neturns } \\ & \text { conrected figures } \end{aligned}$			
				uncorr.	corr.	neca IB Grenland Grenshermen	ptured i 1B by other nations	outside	2π	$\left\lvert\, \begin{gathered}\text { Reos } \\ 13 \\ 0 y \\ \text { rusenland } \\ \text { Insummen }\end{gathered}\right.$	gtured i l3 by otner netions	$\left\lvert\, \begin{gathered}0 \\ \text { Otside } \\ 13\end{gathered}\right.$	NL:
Tile fjords mmerdioq anci Icertoq newr Foisteins- 'oors:	20-39	461		13 8 11 6 5 I 4%	13 16 19 16 21 5 80	$\begin{gathered} 100.0 \\ 50.0 \\ 27.3 \\ 16.7 \\ - \\ - \\ 47.7 \end{gathered}$	$\begin{gathered} 37.5 \\ 36.4 \\ 50.0 \\ 60.0 \\ - \\ 29.5 \end{gathered}$	18.2 16.7 20.0	- 12.5 13.2 16.7 20.0 100.0 13.6	$\begin{array}{r} 100.0 \\ 25.0 \\ 15.3 \\ 6.3 \\ - \\ - \\ 26.3 \end{array}$	$\begin{gathered} 43.0 \\ 21.1 \\ 43.3 \\ 27.3 \\ - \\ 26.3 \end{gathered}$	-	$\begin{array}{\|c\|} \hline- \\ 31.3 \\ 31.6 \\ 31.3 \\ 45.5 \\ 100.0 \\ 32.5 \\ \hline \end{array}$
												31.6	
												18.8	
												27.3	
												-	
								9.1				15.0	
	$40-49$	329	0123$\ddots 4$irkMotal	31	$\begin{array}{r} 35 \\ 20 \\ 22 \\ 24 \\ 1 \\ 6 \\ 108 \end{array}$	$\begin{gathered} 96.8 \\ 18.8 \\ 7.7 \\ 42.9 \\ - \\ - \\ 51.9 \end{gathered}$	3.262.569.214.3100.0-29.9	-12.523.135.7-50.014.3	6.3 7.1 50.0 3.9	$\begin{gathered} 85.7 \\ 15.0 \\ 4.5 \\ 25.0 \\ - \\ - \\ 37.0 \end{gathered}$	$\begin{array}{r} 1.1 .3 \\ 50.0 \\ 45.5 \\ 8.3 \\ 100.0 \\ - \\ 2.5 .9 \end{array}$	-	\|-
				16								10.0	25.0
				13								50.0	
				14								45.8	20.8
				1								-	-
				2								16.7	83.3
				77								23.1	13.9
				14	14	100.0	-	-	-	100.0	-	-	-
			1	5	5	20.0	80.0	-	-	20.0	80.0	-	-
			2	2	6	-	50.0	50.0	-	-	83.3	16.7	-
	50 or more	79	3	1	1	-	-	100.0	-	-	-	100.0	-
			94	ㄱ	1	-	-	100.0	-	-	-	100.0	-
	;												
	\%	!	Totil	23.	27	55.2	3.1 . 7	13.0	-	55.6	33.3	11.1	\because

Table 6. Relation betweon total redurn from Liv. lis and Greenlanders return from Div.la of cod tagged in $1 B$ offshore areus. Only cod bigeer than 40 cm total length When tagfed are regarded. Figures in bracket give per cent of numbers taged.

$\begin{gathered} \text { Period } \\ \text { of } \\ \text { tageing } \end{gathered}$	Numbers tagged	Trotal retiarns from $1 A+B$ uncorr. corrected		Greenlinders returns from laッB(no corr)	Greenlanders returns in per cent of total. returns. uncorr. corrected		Greenlanders'cod lundings in $1 \mathrm{~A}+\mathrm{B}$ in per cent of total cod lan.. dings from $1 A+B$
.952-54	1843	$\begin{gathered} 280 \\ (15.2) \end{gathered}$	$\begin{gathered} 489 \\ (26.5) \end{gathered}$	$\left.\begin{array}{c} 2^{2} \\ 0.1 \end{array}\right)$	0.71	0.41	6.03
955-57	1462	$\begin{gathered} 252 \\ (17 \therefore) \end{gathered}$	$\begin{gathered} 391 \\ (26.7) \end{gathered}$	$\left(\begin{array}{c} 4 \\ (0.3) \end{array}\right.$	1.57	1.02	4.51
958-60	1631	$\begin{gathered} 206 \\ (12.0) \end{gathered}$	$\begin{gathered} 505 \\ (31.0) \end{gathered}$	$\frac{1 \%}{(0.7)}$	5.33	$\therefore 38$	7.15
1961-62	1224	$\begin{gathered} 79 \\ (6.5) \end{gathered}$	$\begin{gathered} 290 \\ (23.7) \end{gathered}$	$\begin{gathered} 10 \\ (0.8) \end{gathered}$	12.66	3.45	5.38

pable 7. Sumary of roturns and estimsted recoptures from manish cor tasing experimenta in Divisions 13, 1 C and 1 D offshore waters in the years 1955-60. WK = area not known or area outside Subarea 1.

$\begin{gathered} \text { Wa;icing } \\ \text { in } \\ \text { Div. } \end{gathered}$	Lenesth when tamesed (cm)	Numbers tageed	Total returns and estimated rectutures		Returns in per cent of total returns 1A-B IC-F' NK			listimatod recaptures jin per cent of total estimnted recaptures 1A-B IC- ${ }^{\mathrm{F}}$ IK		
113	30-39	5	0	u	-	-	-	-	-	-
	40-49	195	39	96	77	18	5	71	24	5
	50-59	738	165	379	71	25	4	64	31	5
	60-69	1105	239	528	60	36	4	53	42	5
	$\because 70$	1055	245	477	69	29	2	64	33	3
1 C	30-39	8	0	0	-	-	-	-	-	-
	40-49	92	19	43	11	74	16	5	65	30
	50-59	207	51	125	12	82	6	14	75	10
	60-69	548	107	213	8	83	8	1.0	75	15
	$\therefore 70$	2122	436	903	5	90	5	5	85	Io
11)	30-39	1	0	0	-	-	-	-	-	-
	40-49	39	6	14	0	100	0	0	100	0
	50-59	434	79	21.0	6	82	11	4	79	17
	60-69	1245		634	2	90	8	2	84	1.4
	$\therefore 70$	2375	483	973	5	88	7	5	80	1. 5

Table 8.
Estimated recaptures (xeturns corrected) from Danish taging experiments in liv. $1 B$ offshore weters. Total is given for both estimated recaptures and in brackets actual returns each of then in number as well as in per cent of numbers tagered. Length is total length in cm by tagging. Year indicates celendar year after tacging. Those caught more than 4 years after tageing are included in the 4 years' recaptures. $N K=$ division, area or year not known. In the calculations those from Division 1 NK have been allocated to division according to proportion between known recaptures, and those from other areas plus area NK have been regarded as taken outside Div. 1B. Those from year NK have been regarded as taken in year 1.

Table 8 a. Tagging in the years 1955-57.

Lencth	Numbers tasced	Year	Div. 1B	Div. 1C-1F	Div. 1 NK	$\begin{gathered} \hline \text { Other areas } \\ +N K \\ \hline \end{gathered}$
40-49	119		$\begin{gathered} 6 \\ 18 \\ 14 \\ 3 \\ 5 \\ - \\ 46-38.7 \% \\ (20-16.8 \%) \end{gathered}$	- $\overline{5}$ 5 1 - $11-9.2 \%$ $(3-2.5 \%)$	$\begin{gathered} - \\ - \\ - \\ \overline{3} \\ - \\ 3-2.5 \% \\ (1-0.8 \%) \end{gathered}$	
50-59	264	$\begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ =4 \\ \text { NK } \\ \text { Total } \end{array}$	$\begin{gathered} 24 \\ 32 \\ 30 \\ 2 \\ 6 \\ - \\ 94-35.6 \% \\ (55-20.8 \%) \end{gathered}$	$\begin{array}{r} - \\ 15 \\ 6 \\ 4 \\ 10 \\ - \\ 35-13 \cdot 3 \% \\ (16-6.1 \%) \end{array}$	$\begin{gathered} \overline{5} \\ - \\ - \\ - \\ - \\ 8-3.0 \% \\ (2-0.7 \%) \end{gathered}$	$\begin{gathered} 1-0.4 \% \\ (1-0.4 \%) \end{gathered}$
60-69	521	$\begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ -4 \\ 4 \\ \text { NK } \\ \text { Total } \end{array}$	48 36 21 9 4 - $118-22.6 \%$ $(79-15.2 \%)$	$\begin{gathered} 1 \\ 71 \\ 14 \\ 4 \\ 12 \\ - \\ 102-19.6 \% \\ (40-7.7 \%) \end{gathered}$	$\begin{gathered} 1 \\ - \\ - \\ - \\ - \\ - \\ 1-0.2 \% \\ (1-0.2 \%) \end{gathered}$	$\begin{gathered} \overline{1} \\ - \\ - \\ - \\ - \\ 1-0.2 \% \\ (1-0.2 \%) \end{gathered}$
± 70	558	$\begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ \Rightarrow 4 \\ \text { NK } \\ \text { Total } \end{array}$	35 49 26 12 6 - $128-22.9 \%$ $(98-17.6 \%)$	$\begin{gathered} \overline{-} \\ 11 \\ 2 \\ 6 \\ 5 \\ 72-12.9 \% \\ (36-6.5 \%) \end{gathered}$	$\begin{gathered} 1 \\ 8 \\ - \\ - \\ - \\ - \\ 9-1.6 \% \\ (3-0.5 \%) \end{gathered}$	$\begin{gathered} \overline{6} \\ 1 \\ - \\ - \\ - \\ 7-1.3 \% \\ (3-0.5 \%) \end{gathered}$

Tagging in the years 1958-60.

Length	Numbers tagged	Year	Div. 1B	$\text { Div. } 10-1 F$	$\begin{aligned} & \text { tured in } \\ & \text { Div. } 1 \mathrm{NK} \end{aligned}$	Other areas + NK	
30-39	5	Total	-	-	-	-	
40-49	76	0 1 2 3 3 4 NK Total	7 10 5 - - - $22-28.9 \%$ $(10-13.2 \%)$	$\begin{gathered} \overline{-} \\ \overline{6} \\ 6 \\ - \\ 12-15.8 \% \\ (4-5.3 \%) \end{gathered}$		$\begin{array}{r} - \\ - \\ - \\ \overline{2} \\ - \\ 2-2.6 \% \\ (1-1.3 \%) \end{array}$	
50-59	474	0 1 2 3 $\geqslant 4$ NK Total	61 63 5 3 10 5 $14.7-31.0 \%$ $(62-13.1 \%)$	1 20 23 19 19 - $82-17.3 \%$ $(26-5.5 \%)$		$\begin{array}{r} \overline{2} \\ 5 \\ \overline{5} \\ \overline{5} \\ 12-2.5 \% \\ (3-0.6 \%) \end{array}$	-
60-69	584	0 1 2 3 $\because 4$ NK Total	57 68 32 1 2 - $160-27.4 \%$ $(64-11.0 \%)$	1 45 43 20 10 $-719-20.4 \%$ $(47-8.0 \%)$	$\begin{array}{r} \overline{6} \\ 3 \\ 3 \\ - \\ - \\ 12-2.1 \% \\ (4-0.7 \%) \end{array}$	$\begin{array}{r} \overline{-} \\ \overline{8} \\ 8 \\ 5 \\ \overline{9} \% \\ 21-3.6 \% \\ (5-0.9 \%) \end{array}$	
$\triangle 70$	497		80 46 32 7 6 5 $16-35.4 \%$ $(70-14.1$	5 27 25 14 14 - $85-17.1 \%$ $(35-7.0 \%)$	-		\cdots

Table 8c, See text in front of Table 8a.
Taggint in the years 1961-62.

Length	Numbers tagged	Year	$\text { Div. 1B \|Div. } 1 \mathrm{c}-1 \mathrm{Recaptured} \mathrm{in}$			Other areas + NK
30-39	2	Total	-	-	-	-
40-49	175	$\begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ \times 4 \\ \text { NK } \\ \text { Total } \end{array}$	$\begin{gathered} 10 \\ 3 \\ 3 \\ 9 \\ - \\ 1 \\ 26-14.9 \% \\ (8-4.6 \%) \\ \hline \end{gathered}$	$\begin{array}{r} \text { - } \\ 10 \\ 14 \\ 5 \\ - \\ 10 \\ 39-22.3 \% \\ (10-5.7 \%) \end{array}$	$\begin{gathered} \overline{-} \\ \overline{3} \\ - \\ - \\ 3-1.7 \% \\ (1-0.6 \%) \end{gathered}$	$\begin{gathered} \overline{7} \\ \overline{3} \\ \overline{-} \\ 3-1.7 \% \\ (1-0.6 \%) \end{gathered}$
50-59	511	$\begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ \pm 4 \\ \text { NK } \end{array}$	57 49 15 2 -1 $124-24.3 \%$ $(26-5.1 \%)$	17 44 36 8 - 5 $110-21.5 \%$ $(22-4.3 \%)$	10 22 - - - $32-6.3 \%$ $(4-0.8 \%)$	23 21 - - $\overline{-}$ $44-8.6 \%$ $(6-1.2 \%)$
60-69	370	$\begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ \geqslant 4 \\ \mathrm{NK} \end{array}$	31 36 11 - - $78-21.1 \%$ $(23-6.2 \%)$	16 60 32 5 - - $113-30.5 \%$ $(33-8.9 \%)$	$\begin{gathered} 5 \\ 7 \\ - \\ - \\ - \\ 12-3.2 \% \\ (3-0.8 \%) \end{gathered}$	5 8 3 4 - $\overline{-} \%$ $20-5.4 \%$ $(5-1.4 \%)$
$-\geq 70$	168	$\begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ \geq 4 \\ \text { NK } \\ \text { Total } \end{array}$	39 13 10 - - $62-36.9 \%$ $(22-13.1 \%)$	$\begin{gathered} 3 \overline{6} \\ 3 \\ \overline{3} \\ \overline{-} \\ 42-25.0 \% \\ (14-8.3 \%) \end{gathered}$	$\begin{gathered} 5 \\ - \\ - \\ 5- \\ 5-3.0 \% \\ (1-0.6 \%) \end{gathered}$	$\begin{array}{r} \overline{7} \\ \overline{7} \\ 2 \\ \overline{5} \\ 14-8.3 \% \\ (4-2.4 \%) \end{array}$

Table 9. Calculation of a gain - loss by a closure of Div. 18 to trawlins: based on tagging experimants in Div. 13 1958-60, length group 50-59 cai by tageing. Symbols see the text, Section VI. Year is calendar year after tačinc.

Year	N	N^{1}	$\begin{gathered} \mathrm{n} \\ \text { total } \end{gathered}$	$\begin{gathered} n \\ \text { 1B line } \\ \hline \end{gathered}$	n 1B trawl	$\begin{gathered} \mathrm{n}_{\mathrm{C}} \\ \text { outside 1B } \end{gathered}$	F	${ }_{1}{ }_{B}$	${ }^{4} \mathrm{C}$
0	474.0	474.0	62.0	32.3	28.7	1.0	. 31	469.6	4.4
1	340.8	385.2	90.0	36.0	32.0	22.0	. 34	244.9	95.3
2	190.6	250.0	33.0	2.6	2.4	20.0	. 20	23.4	175.?
3	133.1	164.4	22.0	1.6	1.4	19.0	. 20	11.4	121.7
4	89.2	107.4	34.0	5.3	4.7	24.0	. 54	21.1	68.1
5	42.6	50.9	-	-	-	-	-	-	..

ont

Year	${ }^{1}{ }_{B}$	${ }^{1}{ }_{C}$	F_{B}	F_{C}	$\mathrm{F}^{1} \mathrm{~B}$	${ }^{17}$	$\mathrm{n}^{1}{ }_{B}$	${ }^{1}{ }^{1}$	$\mathrm{n}^{\prime} \mathrm{B}^{-n_{B}}$ line)
0	469.6	4.4	. 30	. 57	. 16	. 69	33.1	1.2	0.8	-20.5	
1	276.8	108.4	. 36	. 29	. 19	. 35	43.5	29.2	7.5	-24.0	
2	29.4	220.6	. 27	.19	. 1.4	. 23	3.5	41.2	0.9	10.8	
3	11.1	150.3	. 34	.19	. 18	. 23	2.1	23.1	0.5	7.7	
4	25.4	82.0	. 73	. 49	. 39	. 60	7.5	33.9	2.2	5.2	
5	-	-	-	-	-	-	-	-	-	-	

Table: 10
"Short time effect" (defined in Section V) by a closure of Div. lB to trawling given as por cent change in catch within each length group of fish. Actual figures for catch without a closure are in each length group based on 1000 fish present in 1B when tagging experiment started. Kg is gutted weight. Year is calender year after closure or after tagging experiment started - Year 0 is only 6 months, tagging experiments starting in mid year months and closure hence also thought to start in mid year.
a if closure had started in the period 1955-57.

Year	Length group					\% change in catch after closureLiners 1Bnumbers $\quad \mathrm{kg}$numbersOther Subarea ng			
\bigcirc		53	72.6	38	52.1			- 10	
1		78	147.0	119	224.3			- 2	
2		66	158.1	74	177.2			- 4	
3	50-59	5	14.1	18	50.7				
≥ 4		16	50.6	56	177.2				
otal		218	442.4	305	681.5 .618 .5	15.3	17.9	- 25.6	- 17.5
\bigcirc		55	116.3	41	86.7			- 9	
- 1		40	103.8	167	433.4			1	
2		24	73.1	44	134.0			- 1	
3 $\times 4$	60-69	lo	32.9	15	49.4			- 26	
$\cong 4$		4	13.7	26	88.8				
otal		133	339.8	293	792.3	5.3	5.9	- 4.8	- 2.4
1		38	120.3	27	85.5			- 100	
1		56	184.2	152	500.1				
2		27	92.2	41	140.0			- 22	
3	≥ 70	13	46.1	13	46.1			- 61	
≥ 4		6	22.1	15	55.1				
otal		140	464.9	248	826.8	7.1	7.2	- 16.5	- 16.2

b if closure had started in the period 1958-60

cont/

Table 10 cont.
c if closure had started in the period 1961 - 62.
(more returns expected to be received).

Year	Length group	Catch without a closureLiners 1Bnumbers kgOther Subarea 1 numbers			\% ohange in catch after closure Liners 1 B numbers ng ner		
0		6793.8	97	132.9	6.0		
1		63133.2	219	463.2	22.2		
2		$15 \quad 42.2$	125	351.9	40.0		
- 3	50-59	(2) (6.8)	(17)	(58.1)	(0.0)		
≥ 4		(-) (-)	(-)	(-)	(-)		
?otal		147274.0	458	1006.1	16.319 .0	- 11.8	- 5.7
-		49103.6	105	222.1	2.0		
1		$56 \quad 157.6$	217	610.9	19.6		
2		$16 \quad 54.6$	109	372.2	25.0		3
3	60-69	(-) \quad -)	(24)	(95.3)	(-)		
$\Rightarrow 4$		(-) (-)	(-)	(-)	(-)		
'otal		121315.8	455	1300.5	13.214 .9	- 1.3	1.4
\bigcirc		123389.3	110	348.2	7.3		
1		44161.7	349	1282.6	109.0		
2		32137.0	46	196.9	12.5		
3	± 70	(-)	(12)	(55.2)	(-)		
24		(-) (-)	(18)	(86.4)	(-)		
'otal		199564.7	535	1969.3	30.761 .1	- 17.4	-15.1

able 11
Long-term effect"(defined in Section V) by a closure of Div.IB to trawling based on tagging of $40-49 \mathrm{~cm}$ cod and given for two zates of discarding (rate A and B, see Section II, 4). Actual figures without a closure based on 1000 fish tagged. Kg is gutted weight. Year is calender year after closure or after tagging experiment started. Year 0 is only 6 months, tagging experiments starting in mid year months and closure hence also thought to start in mid year.

L. Low rate of discarding.

:losed Year n the jeriod			Lin	chang 1B kg	$\begin{aligned} & \text { h afte } \\ & \text { othe } \\ & \text { numbe } \end{aligned}$	1 kg
155-57	$20 \quad 14.7$	3022.1		0	- 100.0	
	7288.2	79 96.8			- 100.0	
	69124.9	$91 \quad 164.7$			- 36.3	
	$15 \quad 34.5$	52119.6			23.1	
	3495.7	$41 \quad 115.4$			- 39.0	
	210358.0	293518.6	29.0	35.4	-49.8	37.8
158-60	$37 \quad 27.2$	$55 \quad 40.4$			- 100.0	
	$63 \quad 90.7$	68 97.9			- 100.0	
	3471.9	3267.7			- 100.0	
	$0 \quad 0.0$	79.222 .4			49.336.2	
	$0 \quad 0.0$	105 358.6				
	134189.8	339 787.0	12.7	15.8	-230	4.3
	2316.9	3425.0	0.0		- 100.0	
	$11 \quad 15.8$	126 181.4	9.116.7		7.1	
361-62	$12 \quad 25.4$	102 215.7			6.9	
tal up to zar 2	$46 \quad 58.1$	262422.1	6.5	9.8	- 6.9	0.7
stimated final stal	5583.4	292506.6	5.5	6.8	- 5.8	1.1

3. High rate of discarding.

r,5-57	0 1 2 3 $>$	11 51 69 15 34	8.1 62.5 124.9 34.5 95.7	$\begin{array}{r} 39 \\ 100 \\ 91 \\ 52 \\ 41 \end{array}$	28.7 122.5 164.7 119.6 115.4		1 5 3 3 5		
	Total	180	325.7	323	550.9	45.0	51.9	-49.2	-34.7
	0	20	14.7	72	52.9				
	1	45	64.8	87	125.3				
358-60	2	34	71.9	32	67.7				
	3	0	0.0	79	222.4		0		
	≥ 4	0	0.0	105	358.6		0		
	Total	99	151.4	375	826.9	27.3	31.9	-20.8	12.9
361-62	0	13	9.6	45	33.1	0.0		- 100.0	
		8	11.5	129	185.8				
		12	25.4	102	215.7	25.0		16.7	
stal up to ear 2		33	46.5	276	434.6	15.2	19.8	- 3.6	6.6
stimated final otal		42	71.8	306	519.1	14.3	16.7	- 2.0	7.7

Table: 12

Possible effect by a future closure of Div. 1 B to trawling based on assumptions as stated in Section VII, 3 of the text. Actual figures for catch without a closure are per 1000 fish recruited in lis at a lenth of 40 cm . Year is calender year after recruitment: $k g$ is gutted weight, head on.

Discard rate	Year	Catch without a closure liners 18 Numbers $\mathrm{K}_{\mathrm{E}} \left\lvert\, \begin{array}{ll} \text { other Subarea } & \text { I } \\ \mathrm{K}_{\xi} \end{array}\right.$				\% change in catch after closure Liners 1B Numbers $\mathrm{Kg} \left\lvert\, \begin{array}{lr}\text { other Subarea } \perp \\ \text { Numbers } & \text { Kg }\end{array}\right.$			
$\begin{gathered} \text { A } \\ \text { (low) } \end{gathered}$	-	120	63.6	181	95.9	$\begin{aligned} & 11.7 \\ & 38.4 \\ & 59.1 \\ & 67.3 \\ & 95.5 \end{aligned}$		$\begin{array}{r} 100.0 \\ -\quad 33.5 \\ 25.9 \\ 55.4 \\ 50.0 \end{array}$	
	1	56	57.1	110	112.2				
	2	18	31.2	73	126.7				
	3	5	12.5	45	112.1				
	≥ 4	2	6.3	59	186.7				
	Total	201	170.7	468	633.6	+25.6 + 36.8		- 30.9	8.2
	-	66	35.0	235	124.6	27.8		- 100.0	
	1	39	39.8	126	128.5	71.2		- $\quad 32.7$	
B	2	18	31.2	73	126.7	92.3		51.9	
	3	5	12.5	45	11.2 .1	102.0		$\begin{aligned} & 87.5 \\ & 8.0 .8 \end{aligned}$	
(high)	$\geqslant 4$	2	6.3	59	186.7	145.5			
	Total	130	124.8	538	678.6	$+54.6$	$+72.8$	- 28.2	+ 21.5

Fig. 1 Growth of cod
Divisions 1A-iD offshore
Quarter of July

