ANHUAL MELYING - JUNE 1961

Mannuks on Lac-ulsha Fluetuations in the West Greenland Cod Stocks.

Abstract

Svent Aage Hoxsted Gyenulond Fisherien lnvestigations, Charlottenlund, Denmark.

Abstract

At the prectinge of the Bio-Foonomics Working Group in 1966-67 various rambetory menfures for the llorth Atiantic fisheries were discussed. The worinf eroup found that a catch quota measure was perhaps the most appropriate one hut stressed that when setting catch quotas one has to take into account the flumbrtions in yeermclass strength in the various fish stocks. The present prpor drals with the yenx-mbas fouctuations observed in the Greenland cod mbncks. Thn material hithet to arailable (Sampling Yearbook, Research Reports) is, buwoyex, in many mases far from inoing ample enough for a real judement of tho yearorbens strength. Jhis torebhne with rather poor information on discards does frat lhe actual figures of year ulass strength given in this faper must he tilon with anme reaervatinn. Still, however, the author believes that the figuros give a fair jden of the magnitude of the year-class fluctuations and tho masnituda of the fluctuations in future annual landings due to this yearofand rluoduations.

leat- olass flnebuations in the Groenland cod stocks are of major importance to the fishnry on these stoms. 'Ihishas besn known since regnlar fisheries invert ifations atarted in West Greentand in 1924. In the course of the yeare mernal popera have heen puhlished denling with this year-class fluctuation. Alro mnnul foporia on fisheries and research carried out published in ICifar מ口l! JCh morices deal with the year-clase fluctuation. Summaries and disocesion of the fluotuations are mblished by llansen (1949 and 1953) and by Hermaun,

Harisen (l.c.) and Hermann et.al. (I.c.) have given the relative strength of $i: \because y$ encolasons based on the importance of the year-classes in the fishery

atrenzth found and phblished by the authors mentioned.
The author tried to continue this table in the same manner as used earlier bat found it so difficult to get a usable weighting factor for the Greenlanders' affoit in recent years that the attempt was gizen up and another method had wo he mod.

In the present paper the author has tried to measure the strength of the y ear-classes since 1347 given as number of recruits in the West freenland area. The following precedure has been followed.

1. Landjings from Div. INK have been allocated to known divisions according to Illorsted (1965).
2. Within each division annual landings have been splitted up in four groups viz. a) landings from otter trawlers, b) from dory vessels, c) from liners, d) Greenlanders' landings.
3. Eixisting age.frequency samples have been pooled annually per division and group mentioned above under Item 2.
4. Whe neight of the pooled samples has been calculated according to the ngre-meight key given in Fig. 1 and Table 2.
5. The annual numbers lended of each year-class are calculated by raising meight of pooled samples to weight landed.
h. The year-ciasses 1947-54 are refarded as recruited when 5 years old, While year.classes $1955-51$ are regarded as recruited when 4 years old due to the increarsed growth rate in recent years. Fishing mortality in the year of reeruitment is regraded as being only 25% of the overall i ishine moratlity in that year and fishing mortality on yourger agercoups han not been taken into account.
6. The mean fishing mortality (F) in Subarea 1 is qiven in Table 3 . Hatruel mortality (M) is taken as being 0.20 .
Fnlloung the itema mentioned above the numbersof recruits in each year-class :innen Jサ1才 arc galoulated as shown in the example below. The final figures for monhey or recmits are giten in Table 4, which also gives the theoretjeal number of vge-group I supposing $\boldsymbol{H}=0.20$ for afe-froups I-IV.

Lxemple of calonlatinm number of recruits. Year-cless 1955.1000 recruits (IV-cromp) would he reduced in the following way according to F in lompr 3 and M-0.20.

age.froup	IV	V	VI	VII	VIIII	IX +
No.of fish present	1000	711	391	192	97	46
No.of fish dying	259	350	399	95	51	46
No. of fish caught ($\left.\frac{\mathrm{F}}{\mathrm{F}+\mathrm{M}}\right)$	86	241	143	67	37	34

No. Inded of mengroups IV - VIIL : 574
notinal mmber landed of afengroups IV .. Vill according to samples : $38569 \times 10^{\circ}$
-t.131 momber of meonit: (IV-mpony) $=\frac{39}{6} \frac{2 \times 10^{5} \times 1000}{574}=67.2 \times 10^{6}$
't infe monbor of' fomits as the heot menowre of year-olass strencth and

a) Foximm rolative difference botwem sucnessive year-olacsen is j : I (30armetasm 1953 : 51)

c) Average divergence of single year-classes from long-term mean is about 61% of mean year-class strength.

Supposing that the year-class variation as given by the year-classes since 1.947 can be regarded as typical for Subarea 1 (subject to the necessary destinction between the northern and the southern region) the anthor has tried to evaluate the influence of such a variation on the annual landings supposing a fishing intensity as in most recent years (F likely to be about 0.65) as well as a 30% reduction in effort. The results are given in Table 5. The landings given in this table are generally below the actual landings obtained, and it is hence most likely, that the figures in Table 4 are biassed with a tendency to be underestimated. The reason for this may be, that some of the assumptions made do not hold, especially Item 6, page 2 may be too simple an assumption. A much better knowledge of discards is required in this connection.

Although the figures given in Table 4 and hence also Table 5 therefore may be biassed the relation between the figures may nevertheless give a valuable idea of the year-class variation and the influence of this variation on the fisheries.

A general picture obtained from Table 5 is that with a high fishing mortality the output of the fisheries will follow the year-class variation more directly than with a reduced fishing mortelity (effort). If effort is still increasing we may expect great fluctuations in annual landings, and in this connection it may be necessary to point out, that the relative good landings obtained with a high effort in recent years are based on the favourable recruitment in these years with year-classes 1957, 60 and 61 being well above mean, year-class 1956 close to mean, and year-class 1958 being of some importance although below mean.

Possibility of predicting year-class strength:

Hansen (1.c.) and Hermann et.al. (l.c.) have pointed out, that the relative year-class strength may be predicted with some accuracy from observations of cod of age-groups I, II, and III, from larval abundance and even from hydrographical conditions. Timehas not permitted the author to try to make any analysis of this rather important problem, but from some of the samples taken by research vessels fishing with commercial trawls with covered codend the author has the impression, that it is worth while trying to study this problem, as the chance of making predictions with success seems rather good.

References:

Anon. (1965) : Report of meeting of Greenland Cod Working Group, Copenhagen, 21-25 February, 1966. Int.Comm.NW.Atl.Fish. Res. Doc. 66-18.

Hansen, P.M. (1949) : Studies on the Biology of Cod in Greenland Waters. Cons.Int.Explor.Mer., Rapp.et Proc.-Verb., 123 : 61-72.
"
(1953) : The Stock of Cod in Greenland Waters during the Years 1924-52. Cons.Int.Explor.Mer, Rapp.et Froc.-Verb., 136, 12 : 65-70.

Hermann, F., P.M. Hansen and Sv.Aa. Horsted (1965) : The Effect of Temperature and Currents on the Distribution and Survival of Cod Larvae at West Greenland. Int.Comm.NW.Atl.Fish. Spec.Publ. 6, B-14 : 389-395.

Horsted, Sv.Aa. (1965) : Fishing Activity, Effort and Intensity in Subaroa 1 1952-1963. Int.Comm.NW.AtI.Fish. Res.Doc. 57.

Table 1.
Wrat, rerenlani cod. Relative year-clase strength (from Hermann, lansen and Horgtend 1355).
$\left.\begin{array}{|lrrrrrrrrrr|}\hline \text { leal-class: } & 1924 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 \\ \text { Relative strength: } 100 & 3 & 74 & 12 & 9 & 24 & 18 & 43 & 36\end{array}\right]$

Table 2. Age - weight relation used in this paper. See also Fig. 1.

Age group	Mean weight (round fresh)	
	year-classes $1947-54$	$1955-61$
III	.550 kg	.620
IV	$.890-$	1.180
V VI	$1.540-$	2.100
VII	$2.330-$	3.030
VIII	$2.870-$	3.810
IX +	$3.470-$	4.540
	$5.000-$	5.550

Table 3.

Fishing mortality coefficient (F). Subarea 1 cod.
The figures for the years 1952-58 follow those given by the Greenland Cod Jorking Group (Anon. 1966), while the fisures for 1959-65 correspond with those given by Gulland (MS for the Bio-iconomics working Group 1967).

```
Year 1952 53 54 55 54 56 57 58 5% 59 60 61 61 62 63 63 64 65
F . 21.21 . 23 . 28 . 30 . 30 . 38 . 41 . 44 . 51 . 43 . 54 . 59 . 55
```

$\begin{aligned} & 0 \cdot \tau \tau \tau \\ & \varepsilon \cdot \tau 6 \varepsilon \\ & 5 \cdot 8 z \\ & 8 \cdot \varepsilon 9 \varepsilon \end{aligned}$		0.6τ $5 \cdot \tau$ $\varepsilon \cdot 5$ $C \cdot 9$	$\begin{aligned} & S \cdot \square \varepsilon \\ & L \cdot \tau \tau \tau \\ & 9 \cdot 6 \varepsilon \\ & \tau \cdot \tau L \end{aligned}$	$\begin{aligned} & 8 \cdot \neg \tau \tau \\ & z \cdot \tau L \varepsilon \\ & 6 \cdot 9 \varepsilon \\ & \varepsilon \cdot \zeta \varsigma \varepsilon \end{aligned}$		$\begin{aligned} & L \cdot 0 Z \\ & \tau \cdot L 9 \\ & \tau \cdot 6 \\ & \tau \cdot 8 \zeta \end{aligned}$	$\begin{aligned} & 9 \cdot \hbar \tau \\ & \varepsilon \cdot L \hbar \\ & \varepsilon \cdot L \\ & 0 \cdot 0 \hbar \end{aligned}$	$\begin{aligned} & \tau \cdot \varepsilon L \\ & 0 \cdot L \varepsilon z \\ & 9 \cdot 9 \varepsilon \\ & \forall \cdot 00 z \end{aligned}$	$\begin{aligned} & \downarrow \cdot \forall z \\ & 0 \cdot 6 L \\ & L \cdot 9 \tau \\ & \varepsilon \cdot z 9 \end{aligned}$	$\begin{aligned} & 8 \cdot \tau \tau \\ & 8 \cdot \varepsilon L \\ & \tau \cdot \zeta \tau \\ & L \cdot 8 \zeta \end{aligned}$	$\begin{aligned} & 6 \cdot 6 S \\ & \tau \cdot \forall 6 \tau \\ & \llcorner\cdot 8 \downarrow \\ & \nabla \cdot G \neg \tau \end{aligned}$	$\begin{aligned} & 9 \cdot L \tau \\ & \tau \cdot L \tau \\ & \varepsilon \cdot B \tau \\ & \sigma \cdot 8 \varepsilon \end{aligned}$	$\begin{aligned} & 0 \cdot \varepsilon z \\ & 9 \cdot V L \\ & z \cdot \varepsilon \\ & \nabla \cdot \tau L \end{aligned}$	$\begin{aligned} & 0 \cdot 00 \tau \\ & \varepsilon \cdot \forall \tau \varepsilon \\ & v \cdot 8 \tau \\ & 6 \cdot G 0 \varepsilon \end{aligned}$	L eameqns $\bar{H} T-4 T \cdot \Delta T G$ $C T-\forall T \cdot \Lambda T T$ хәpuI uT sqṭnuoax fo $9^{0 \text { OX }}$ •ON
	$\begin{aligned} & 227 \\ & 00 \end{aligned}$	$\begin{aligned} & 2 I I \\ & 6 S \end{aligned}$	$\begin{aligned} & \text { toz } \\ & 85 \end{aligned}$	$\begin{aligned} & 8 L 3 \\ & L G \end{aligned}$	$\begin{aligned} & 762 \\ & 95 \end{aligned}$	$\begin{aligned} & 22 \tau \\ & \varsigma s \end{aligned}$	$\begin{aligned} & \text { GOT } \\ & \text { tS } \end{aligned}$	$\begin{aligned} & 8 ८ \varsigma \\ & \varepsilon \varsigma \end{aligned}$	$\begin{aligned} & 9 L \tau \\ & \tau S \end{aligned}$	$\begin{aligned} & \not \pm \varphi \tau \\ & \tau \leqslant \end{aligned}$	$\begin{aligned} & 2 \& \eta \\ & 0 \varsigma \end{aligned}$	$\begin{aligned} & L Z I \\ & 67 \end{aligned}$	$\begin{aligned} & 997 \\ & 87 \end{aligned}$	$\begin{aligned} & 22 L \\ & L \forall 6 \tau \end{aligned}$	

atie 5.

'lheoretical landings of subare\% I cod if recruitment change as in the year classes 1947-60. Growth fate considered steady as in the years Gince 1960 (Table 2). F in jefr of recruitment only considered as 25% of the F given in the table

