ANNUAL MEETING - JNE 1967

Fesulta of Atlantic salmon tagoing in the Maritime
Provinces, Canaia, 1964-60

By K. hadivay Allen
Fisheries Research loard of Canada
Siolobical Station, Bt. Antrevs, iJ.
illhouk the earliest Canadian tags recovered from Greenland were attaclied in 1959, it is only the 1963, 1964 and 1965 smolt tagicins whicł have siven sufficient numbers of recoverics there to provire a useful basis for analysis. In the earlier years the numbers of tags used were comperatively small, and tie Greenland fishery had not reached sufficient intensity to crive a hich recovery rate. The still larcer number of smolts tacer in Canada in 1950 will, of course, not beein to appear in Greenlan! catches until the autumn of 19067.

The principal resulte for 1903 , 1964 and 1905 are sumarized in the appended table. 'They have been divided into three areas: (a) on the west coast of the Gulf of St. Lawrence; the Iiiramiclif River in Iew Brunswick; (b; on tre south and south-east coasts of the Gulf in Nova scotia, the liarearee River and the River Philip, and (c) in the ray of Tundy; the Big Salinon fiver on the south coast of Hew Brunswick. Counting fences or traps which permitted the examination of returnin a adults were operated on all those rivers except the liararee River, where the only lence was on a minor tributary.

The additional cata mich have become available
Aroil the 1960 fishery liave brought out three points:
(a) lhe effect of the sisie and condition of smolts at the time of migration on their subsequent movenents may extend to influencinc the proportion which travel to trie Greemland area.
(b) There may be na jor variations from year to year in the proportion of Canadian salmon visiting Greenland.
(c) 'there may be ilitierences in the proportion of salmon boing to Greenland from different parts of the Canadian coast. Effects of sholt size and condition

Some indications of the effect of size and condition at migration on subsequent hovements can be obtained by eranination of the data for the hatchery-produced fish, since these may vary mich aore in Erowth rate and parentage than the natural smolts in any one river. por example, of the latchery-produced smolts liberated in the Miramichi Biver in 1964 , 3 returns were received from Greenland and 24 as grilse or 2-sea-year salmon in home waters (Greenland Giving 11% of total recaptures; while in the same year the natural smolts were 7 against $230(2 \%)$. In 1953 the corresponding figures were: hatchery smolts 3 against 105 ($3 ;$), natural smolts 9 against 78 (10;). Thus the hatchery smoltis cave a return from Greenland which was much hicher than that for natural smolts in 1964 and much lower in 1963 . There appear to be no significant differences in the proportions returniné; as erilse as $2-s e a-y e a r$ salmon between the various lots. Detailed examination of the full data for hatchery-produced fish suscests that there may be a tendency for the larger smolts to produce relatively fewer Grilse and, perhaps as a result, a larcer proportion of lish visiting Greenland.

Variations irom year to year
the number of Ganalian tags recovered from Greenland in 1906 was much reater than in any previous year, anr the
increase was due more to a ligher proportion of tass being recaptured and reported than to the increase in the number of tags used. Fooling all data for the Gulf of $S t$. Lawrence, the results are

Year of	Motal sinolts			INatural smolts		
tagging	Tagsed	eenla	感	Tagged	Greenland	0
1963	12710	$\because 3$. 10	4678	9	. 19
1964	40135	14	. 03	14220	7	. 05
1965	41980	110	. 26	16483	58	. 35

The trend is similar if the hatchery smolts are examined separately, the 1964 return being lowest, and the 1965 return highest.

These figures would be affected by any differences in the tafcinc procedure which could influence overall recovery. It is therefore interesting to compare the returns as rilse and from Gromland for the same material

	Hotal smolts			Matural smoltij		
	Grilse	Greenlond	$\frac{\text { Greenland }}{\text { rilse }}$	Grilse	Greenland	$\frac{\text { Greenland }}{\text { grilse }}$
1906	196	13	.07	6o	9	. 14
1964	260	14	. 05	187	7	. 04
1965	445	110	. 25	103	58	.36

Comparisons between Greenland and 2-sea-year returns can only be made yet for the first two years. These give the following results

	Total smolts			Natural smolts		
	2-sea	Green-	Greenland	2-sea	Green-	Greenland
	-jear	land	2-sea-year	year	land	2-sea-zear
1963	37	13	. 35	12	9	. 75
1964	100	14	. 14	59	7	. 12

Thus, all analyses show siailar trends; a moderate drop in the relative return from Greenland from 1963 ts 1964 , and a strong risse in 1965 to vell above the l90́j level.
'Io obtain overall figures which would indicate approximately the relation between the proportions of returns coming from Greenland in the three years, the values for 1963 have been taken as 1.0 , and seometric means determined for all the series of data for the other years. This leads to the following table

	Ratio		Greenland catches for following jear
1963	1.0	1400 metric tons	
1964	0.3	$716 \quad "$	$"$
1965	2.5	1235	$"$

The comparison in the tajle with the Greenland catches shows that wille the decline in the 1904 returns is of the sane order as the change in the Greenland catch, the rise in retums for 1905 is not associated with a rise of similar magnitude in the Greenland catch. A better comparison would be with the size of the fishing effort in each year at Greenland but these data are not available. The information which has been received does not suggest that there was any substantial increase in effort at Greenland in 190^{6}.

If the increased raturn from Greenland for the 1965 tags is not due to more inteusive fishine , it could be the result either of more efficient tay recovery there, or of a real increase in the proportion of Canadian smolts entering Greenland inshore waters. An increase of $2 \frac{1}{2}$ times in the proportion of tags handed in seems unlikely to have been achieved between one season and the next, but the tag data from other countries should also bear on this point.

An increase in the proportion of Canadian molts boing to Greonland could be contributed to botis by an jncreuse in the proportion remainin in the sea for a second yoar, and by a larger part of those which spend 2 years in the sea reachino the Greenland coast. There is no indication at present of any decrease in the proportion of fish returning as erilse from the 1965 tagings such as mioht be expected if more of these fish than usual had remained at sea for 2 years. the tag
recoveries from 2-sea-year fish caught in Canadian waters in 1967 will, however, provide more satisfactory evidence on this point. If these confirm the indications from the data now available, an increase in the proportion of $2-s e a-y e a r$ fish reaching Greenland may remain the most probable hypothesis.

If it is possible for a significantly greater proportion of Oanadian fish to visit Greenland in one year than in another, then obviously the effects of the Greenland fishery on Canadian fisheries and stocks may vary from one year to another, and it will be correspondinğly more difficult to reach soundly-based yeneralizations until long series of good data are available.

Wicration to Greenland from iifferent areas

In the previous section the results for the Miranichi and lova Scotia have been pooled, and on the present data the hypothesis trat equal proporions of saolts $\}$ from these two areas in the Julf of $3 t$. Lawrence cannot be rejected.

The returns from the Bay of pundy, however, give very different results as the followiñ table, summarizing the data for hatchery smolts, shows:

	Lirami	i and	a	cotia			3 ay of	undy		
				$\%$	Green-				$\%$	Green-
			Green	-Green-	land			Green	Green-	l.and
	Tagged	Grilse	Iand	land	crilse	Tagced	Grilse	land.	land	grilse
1963	25915	73	7	. 027	. 10	21000	29	0	0	0
1964	25497	282	52	. 204	. 18	20000	72	1	. 005	. 014
Total	51412	355	59	. 115	. 17	41000	101	1	. 002	. 610

The results for both yoars show a very small return from Greenland for the Bay of Fundy smults. Since the say of luncy tacjed omolts produced satiofactory numbers of wilse, the difference canot be
due to poor survival from thrse fiah. Hore riourous comparisons are not, however, possible at this stase on account not only of the limited amount of data, but also of the possibility, discussed early, of different batches of hatchery smolts tendinu to show different migration behaviour.
Figures in parentheses are numbers of fish caucht in counting fences；they aro ineluded in the lotals．

（ $\varepsilon) \tau 6$	OZT（LTE）カL	$\begin{gathered} 99 L+9 \text { TVLOL } \\ \text { CNVZ } \end{gathered}$
－	$86(t, 5 \mathrm{~S})$ 己It	slzoe reqou
－	0力（69） 0 Sz	と28， $5 \cdot 78$ \％
－	8¢（50） 29 L	
（2） C°	OT（ ε_{8} ） 20 \％	$\varepsilon \varepsilon \leq \leq_{\tau}{ }_{\tau \mathcal{O} O_{\Psi}}$
（ τ ）\dagger	$\varepsilon \quad(\mathrm{T}) 02$	
（ T ） 65	L（z8）L8T	000力 ${ }^{*} 78$ 江
（ L ） 8 2	ZT（08）SSt	8563［e7odi
（0） 9τ	$\varepsilon($ 㘦 68	
（ τ ）τ	6 （ $¢ \varepsilon$ ） 9	8L9＊7－515
$\begin{gathered} \overline{x E a K} \\ -\mathrm{eos} \\ -z \end{gathered}$	$\begin{aligned} & \text { purt } \operatorname{ssttxy~} \\ & \text {-uәəxp } \end{aligned}$	$\begin{gathered} \text { poqe } \\ -x \geqslant q T \tau \\ -0_{i I T} \end{gathered}$

（ 5 ¢）	LT（6ヶ）L L	6500ε
－	2T（0）$¢ \varepsilon$	SOLIT
－	zT（0） 2ε	T \dagger L， 0 T
0	0 T	$\tau^{\text {TEOT }}$
$(\uparrow \varepsilon)<¢$	H（\％ヵ）¢S	209t；［
$(t ; \varepsilon)<S$	H（9力） 6 S	
0	00	T^{022}
（I） 6	$\tau \quad(\varepsilon) \tau_{\text {\％}}$	2SLE
（ t ） 6	I（ ε ）工力	$\tau_{\text {TSLE }}$
－	－－	0
¢03 $-\cos$ 2		

