RESTRICTED

ICNAF Res. Doc. 67/108

## INTERNATIONAL COMMISSION FOR



THE NORTHWEST ATLANTIC FISHERIES

Serial No.1908 (D.c.4)

### ANNUAL MEETING - JUNE 1967

Results of Atlantic salmon tagging in the Maritime Provinces, Canada, 1964-66

> By K. Radway Allen Fisheries Research Board of Canada Biological Station, St. Andrews, D.E.

Although the earliest Canadian tags recovered from Greenland were attached in 1959, it is only the 1963, 1964 and 1965 smolt taggings which have given sufficient numbers of recoveries there to provide a useful basis for analysis. In the earlier years the numbers of tags used were comparatively small, and the Greenland fishery had not reached sufficient intensity to give a high recovery rate. The still larger number of smolts tagged in Canada in 1966 will, of course, not begin to appear in Greenland catches until the autumn of 1967.

The principal results for 1963, 1964 and 1965 are summarized in the appended table. They have been divided into three areas: (a) on the west coast of the Gulf of St. Lawrence; the Hiramichi River in New Brunswick; (b) on the south and south-east coasts of the Gulf in Nova Scotia, the Hargaree River and the River Philip, and (c) in the Eay of Fundy; the Big Salmon River on the south coast of New Brunswick. Counting fences or traps which permitted the examination of returning adults were operated on all those rivers except the Hargaree River, where the only fence was on a minor tributary.

G 2

The additional data which have become available from the 1966 fishery have brought out three points:

- 2 -

(a) The effect of the size and condition of smolts at the time of migration on their subsequent movements may extend to influencing the proportion which travel to the Greenland area.

(b) There may be major variations from year to year in the proportion of Canadian salmon visiting Greenland.

(c) There may be differences in the proportion of salmon going to Greenland from different parts of the Canadian coast.

# Effects of smolt size and condition

Some indications of the effect of size and condition at migration on subsequent movements can be obtained by examination of the data for the hatchery-produced fish, since these may vary much more in growth rate and parentage than the natural smolts in any one river. For example, of the hatchery-produced smolts liberated in the Miramichi River in 1964, 3 returns were received from Greenland and 24 as grilse or 2-sea-year salmon in home waters (Greenland giving 11% of total recaptures), while in the same year the natural smolts were 7 against 236 (2%). In 1963 the corresponding figures were: hatchery smolts 3 against 105 (3%), natural smolts 9 against 78 (10%). Thus the hatchery smolts gave a return from Greenland which was much higher than that for natural smolts in 1964 and much lower in 1963. There appear to be no significant differences in the proportions returning as grilse as 2-sea-year salmon between the various lots. Detailed examination of the full data for hatchery-produced fish suggests that there may be a tendency for the larger smolts to produce relatively fewer grilse and, perhaps as a result, a larger proportion of fish visiting Greenland.

## Variations from year to year

The number of Canadian tags recovered from Greenland in 1966 was such greater than in any previous year, and the

GЗ

increase was due more to a higher proportion of tags being recaptured and reported than to the increase in the number of tags used. Fooling all data for the Gulf of St. Lawrence, the results are

| Year of | Total    |         |            | Natural smolts |           |            |  |  |
|---------|----------|---------|------------|----------------|-----------|------------|--|--|
| tagging | Tagged G | reenlan | <u>d</u> 💋 | Tagged         | Greenland | 6 <u>0</u> |  |  |
| 1963    | 12710    | 23      | .10        | 4678           | 9         | .19        |  |  |
| 1964    | 40135    | 14      | .03        | 14220          | 7         | .05        |  |  |
| 1965    | 41980    | 110     | .26        | 16483          | 58        | .35        |  |  |

The trend is similar if the hatchery smolts are examined separately, the 1964 return being lowest, and the 1965 return highest.

These figures would be affected by any differences in the taggin, procedure which could influence overall recovery. It is therefore interesting to compare the returns as grilse and from Greenland for the same material

|      |        | Total smol |                     | Natural smolts |           |                            |  |  |
|------|--------|------------|---------------------|----------------|-----------|----------------------------|--|--|
|      | Grilse | Greenland  | Greenland<br>Brilse | <u>Grilse</u>  | Greenland | <u>Greenland</u><br>grilse |  |  |
| 1963 | 196    | 13         | .07                 | 66             | 9         | .14                        |  |  |
| 1964 | 260    | 14         | .05                 | 187            | 7         | .04                        |  |  |
| 1965 | 445    | 110        | .25                 | 163            | 58        | .36                        |  |  |

Comparisons between Greenland and 2-sea-year returns can only be made yet for the first two years. These give the following results

|      | 1      | rotal sm | olts       | Natural smolts |        |                   |  |  |
|------|--------|----------|------------|----------------|--------|-------------------|--|--|
|      | 2-sea- | Green-   | Greenland  | 2-sea-         | Green- | Greenland         |  |  |
|      | _year  | land     | 2-sea-year | year           | land   | <u>2-sea-year</u> |  |  |
| 1963 | 37     | 13       | .35        | 12             | 9      | .75               |  |  |
| 1964 | 100    | 14       | .14        | 59             | 7      | .12               |  |  |

Thus, all analyses show similar trends; a moderate drop in the relative return from Greenland from 1963 to 1964, and a strong rise in 1965 to well above the 1963 level.

- 3 -

G 4

To obtain overall figures which would indicate approximately the relation between the proportions of returns coming from Greenland in the three years, the values for 1963 have been taken as 1.0, and geometric means determined for all the series of data for the other years. This leads to the following table

|      | Ratio | Greenland catches for following year |
|------|-------|--------------------------------------|
| 1963 | 1.0   | 1400 metric tons                     |
| 1964 | 0.3   | 716 " "                              |
| 1965 | 2.5   | 1235 " "                             |

The comparison in the table with the Greenland catches shows that while the decline in the 1964 returns is of the same order as the change in the Greenland catch, the rise in returns for 1965 is not associated with a rise of similar magnitude in the Greenland catch. A better comparison would be with the size of the fishing effort in each year at Greenland but these data are not available. The information which has been received does not suggest that there was any substantial increase in effort at Greenland in 1966.

If the increased return from Greenland for the 1965 tags is not due to more intensive fishing, it could be the result either of more efficient tag recovery there, or of a real increase in the proportion of Canadian smolts entering Greenland inshore waters. An increase of  $2\frac{1}{2}$  times in the proportion of tags handed in seems unlikely to have been achieved between one season and the next, but the tag data from other countries should also bear on this point.

An increase in the proportion of Canadian smolts going to Greenland could be contributed to both by an increase in the proportion remaining in the sea for a second year, and by a larger part of those which spend 2 years in the sea reaching the Greenland coast. There is no indication at present of any decrease in the proportion of fish returning as grilse from the 1965 taggings such as might be expected if more of these fish than usual had remained at sea for 2 years. The tag

4 -

G 5

recoveries from 2-sea-year fish caught in Canadian waters in 1967 will, however, provide more satisfactory evidence on this point. If these confirm the indications from the data now available, an increase in the proportion of 2-sea-year fish reaching Greenland may remain the most probable hypothesis.

If it is possible for a significantly greater proportion of Canadian fish to visit Greenland in one year than in another, then obviously the effects of the Greenland fishery on Canadian fisheries and stocks may vary from one year to another, and it will be correspondingly more difficult to reach soundly-based generalizations until long series of good data are available.

#### <u>Migration to Greenland from different areas</u>

In the previous section the results for the Miramichi and Nova Scotia have been pooled, and on the present data the hypothesis that equal proportions of smolts go to Greenland from these two areas in the Gulf of St. Lawrence cannot be rejected.

The returns from the Bay of Fundy, however, give very different results as the following table, summarizing the data for hatchery smolts, shows:

|       | <u> Hiramichi and Nova Scotia</u> |               |             |        |                   |        | Bay of Fundy  |      |      |               |
|-------|-----------------------------------|---------------|-------------|--------|-------------------|--------|---------------|------|------|---------------|
|       |                                   |               |             | %      | Green-            |        |               |      | 13   | Green-        |
|       |                                   |               | Green-      | Green- | Green-Green- land |        |               |      |      |               |
|       | Tagged                            | <u>Grilse</u> | <u>land</u> | land   | <u>grilse</u>     | Tagged | <u>Grilse</u> | land | land | <u>grilse</u> |
| 1963  | 25915                             | 73            | 7           | .027   | .10               | 21000  | 29            | 0    | 0    | 0             |
| 1964  | 2549 <b>7</b>                     | 282           | 52          | .204   | .18               | 20000  | 72            | 1    | .005 | .014          |
| Total | 51412                             | 355           | 59          | .115   | .17               | 41000  | 101           | l    | .002 | .010          |

The results for both years show a very small return from Greenland for the Bay of Fundy smalts. Since the Day of Fundy tagged smalts produced satisfactory numbers of grilse, the difference cannot be

5 -

due to poor survival from these fish. Here rigorous comparisons are not, however, possible at this stage on account not only of the limited amount of data, but also of the possibility, discussed early, of different batches of hatchery smolts tending to show different migration behaviour.

G 7

- 6 -

<sup>1</sup>All Kargaree R. <sup>2</sup>Margaree R. 2999:R. Philip 11383 Figures in parentheses are numbers of fish concht i

Figures in parentheses are numbers of fish caught in counting fences; they are included in the totals.

|                                  |                        |                      | 1965                 |                           |                   | 1964                 |                       |                    | 1963/              | YEAR<br>OF<br>LIBER-<br>ATICN            |                 |
|----------------------------------|------------------------|----------------------|----------------------|---------------------------|-------------------|----------------------|-----------------------|--------------------|--------------------|------------------------------------------|-----------------|
| GRAND<br>TOTAL 64766 774(317)120 | Total 30275 412(154)98 | Hat.14823 250(69) 40 | Nat.15452 162(85) 58 | Total<br>25533 207(83) 10 | Hat.11533 20(1) 3 | Mat.14000 187 (82) 7 | Total 8958 155(80) 12 | Hat. 4280 89(47) 3 | Nat. 4678 66(33) 9 | Mo.<br>liber- Green-<br>ated Grilse land | FIRALIGHI RIVER |
| 91(3)                            | I                      | ١.                   | ł                    | ó3(2)                     | 4(1)              | 59(1)                | 28(1)                 | 16(0)              | 12(1)              | 2-<br>sca-<br>yenr                       |                 |
|                                  |                        |                      | •                    |                           |                   |                      |                       |                    | -                  |                                          |                 |
| 30059                            | 11705                  | 10674 <sup>1</sup>   | 10311                | 14602                     | 143822            | 2201                 | 3752                  | 37521              | 0                  | No.<br>liber-<br>ated                    | 110             |
| 127(49) 17                       | 33(0) 12               | 32(0) 12             | 0 T                  | 53(46) 4                  | 53(46) 4          | 0                    | 41(3) 1               | 41(3) 1            | i<br>t             | Green-<br>Grilse Land                    | HOVA SCOTIA     |
| <i>6</i> 6(35)                   | l                      | ł                    | 0                    | 57(34)                    | 57(34)            | 0                    | 9(1)                  | 9(1)               | I                  | 2<br>n- sca-<br>d <u>Vear</u>            |                 |
| 41000                            | 20000                  | 20000                | 0                    | 21000                     | 21000             | 0                    | С                     | 0                  | 0                  | lo.<br>liber-                            |                 |
| 101(65)                          | 72(56)                 | 72(56)               | ł                    | 29(9)                     | 29(9)             | i                    | I                     | ł                  | ı                  | Arthe 7                                  |                 |
| Ч                                | Ļ                      | ц                    | ı                    | C                         | 0                 | ı                    | I                     | ı                  | ł                  | UTIT<br>Green-<br>Land                   |                 |
| 9                                | i                      | I                    | ι                    | 6(4)                      | 6(4)              | ı                    | ł                     | 1                  | 1                  |                                          | ·               |
|                                  |                        |                      |                      |                           | G 8               |                      |                       |                    |                    |                                          |                 |

GULF OF ST. LAURBACE

-----

- 7 -

ł