MERISTIC COMPARISON OF ADULT HERRING FROM

THE GULF OF MAINE

by
Vaughn C. Anthony and H.C. Boyar
U.S. Bureau of Commercial Fisheries

Biological Laboratory
Boothbay Harbor, Maine

The identification of stocks of herring in the Gulf of Maine is being studied by the U.S. Bureau of Commercial Fisheries. Serological methods, age, length and maturity data and parameters of growth have been investigated as indicators of racial differences. The increase in counts of meristic characters with a decrease in temperature has been documented by other scientists and is investigated in this paper. If herring remain in or return to their respective areas of spawning, they should exhibit meristics unique to that environment--in particular, greater counts should be found in colder waters. The mean temperature of surface water for SeptemberOctober (Figure l) is used as a basis for comparison, since nearly all spawning of herring occurs in the Gulf of Maine at this time. The differences in surface temperature were pronounced between areas with temperatures consistently lower in 1958 than in 1960 for all areas.

In 1962 sampling of herring (mostly spawning groups) was initiated in the Gulf of Maine. From 1962-1965, coastal samples were obtained from Stonington, Connecticut to Grand Manan, New Brunswick and from St. Mary's Bay to Port Mouton, Nova Scotia; samples from offshore were fron Georges Bank. Counts of fin rays (right pectoral, dorsal and anal) and vertebrae were made from samples of 100 fish. The vertebral counts were made excluding the hypural plate. The 1958 and 1960 year classes of herring, considered to be the two most dominant year classes in recent years, were chosen for analysis (Table 1). The data were grouped on an arbitrary area basis, since little is known about the identity of stocks within the Gulf of Maine. Five areas were chosen for investigation; Western and Eastern Maine, Nova Scotia, Georges Bank and Cape Cod (Figure 1).

We examined the differences between years and sexes for each year class and each area before pooling the data. Since unequal numbers of fish were sampled from each area inequality of variances would badly invalidate analysis of variance procedures and individual area comparisons based on the t-distribution. The Bartlett test was therefore used to test for homogenelty of variance between meristic data sampled in different years for each sex, area and meristic character. Six of eighty comparisons were significant at the 5 percent level. Bartlett's test is sensitive to nonnormality and may falsely reject the hypothesis of equality of variance when the meristic frequency distribution is heavily concentrated around the mean such as occurs with herring vertebral data. Three of the significant values were with vertebral data and may have been due to nonnormality. The inferences associated with the t and the F distributions, however, are not seriously invalidated by such nonnormality.

Analysis of variance tests were conducted between years of sampling and sexes. No differences in meristic counts according to sexes were observed. There were several cases, however, in which the mean meristic counts varied significantly from year to year for the same year class in a given area. The areas chosen may have been too large and may have contained several stocks of herring, but probably the herring were not distributed equally in successive years. For example, on Georges Bank in 1964, the 1960 year class was sampled mainly in June and September-October. In June the herring were found primarily on the Southeast Part of the Banks while in September-October there was spawning on the northwest part of the Banks. The fish sampled in June had a significantly higher meristic count than all other herring obtained from Georges Bank. In the winter or spring herring apparently moved southward onto the Southeast Banks and as the season urogressed were replaced with a different group of herring on the northwest portion. When a group of samples was significantly different from all other samples obtained in that area for all years the diffrrences were clearly evident for several meristic characters in most cases. Such samples were discarded on the assumption that the herring lelonged to other herring groups or stocks not normally indigenous to that area.

Fish exclucled from the samples of Nova Scotia and Eastern Maine had unusually high meristic counts while those discarded from Georges Bank, Western Maine and the Cape Cod area (other than that mentioned above) had meristic counts that were unusually low. Such discarding of data will not create sjgnificant differences between areas since the meristic counts of fish from Nova Scotia and Eastern Maine are greater than those from Georges Bank and southern New England. The remaining data were combined over years of sampling and over sex. The area means and their variability are shown in Figure 2.

With the combined data, differences between areas were tested by the analysis of variance and adjusted t-tests which determined both the overall significance level among areas for each meristic count and the significance of all area comparisons (Table 2). Adult herring from Georges Bank and Cape Cod were similar as were fish from Eastern Maine, Western Maine and Nova Scotia. There is, however, some question whether the fish from Nova Scotia and Western Maine are similar in all respects The total probability from the mean difference between Nova Scotia and the Western section was only 35 percent as compared to over 90 percent for Cape Cod-Georges Bank, Eastern-Western Maine, and Nova ScotiaLiastern Maine. The variability of meristic data in the Western section of Maine suggests that this area nay be one where stocks frequently intermingle.

The counts of vertebrae and right pectoral fin rays of the two year classes, 1958 and 1960, showed statistical significance between Nova Scotia and both Georges Bank and Cape Cod, and between Western Maine and both Georges Bank and Cape Cod. The vertebral counts of the 1960 year class, and the right pectoral counts for both year classes indicated that Eastern Maine was also significantly different from both Georges Bank and Cape Cod. This strongly suggests that herring from coastal Maine and Nova Scotia comprise one complex of herring which is significantly different from the Georges Bank-Cape Cod complex.

While both year classes showed similar differences between areas, the meristic counts were not similar between the two year classes. As we had expected from the temperature data (Pigure 1) the mean counts of the 1958 year class for the Maine-Nova Scotia complex were greater than the 1960 year class. The mean counts of the 1958 year class, however, for the Georges Bank-Cape Cod complex were consistently less than those of the 1960 year class. This difference may be due to a variation of spawning time from yoar to year irrespective of temperature. The relationship between the two year classes is generally consistent for each meristic character in both the Maine-Nova Scotia complex and the Georges Bank-Cape Cod complex and is additional evidence of the existence of two general groups of herring within the Gulf of Maine.

Figure 1. Areas of investigation of stocks of herring and the mean temperature (${ }^{\circ} \mathrm{C}$) of surface waters for SeptemberOctober, 1958 (upper value) and 1960 (lower value) from selected sites in the Gulf of Maine. *Data available only from cruises of the R/V Albatross III and M/V Delaware.

Figure 2. Mean counts of 4 meristics by area and year class (horizontal bars indicate means; vertical bars indicate 2 standard errors on each side of the mean).

Table 2. Probabilities based on four meristic characters that herring from 2 areas do not differ; the total probabilities are listed in ascending order.

Area Comparisons by Year Class	Vertebrae	$\begin{aligned} & \text { Right } \\ & \text { Pectoral } \\ & \text { fin } \end{aligned}$	Dorsal fin	$\begin{array}{r} \text { Anal } \\ \text { fin } \\ \hline \end{array}$	Total for each comparison
Nova Scotia vs. Georges Bank					
1958	$<.005$				
1960	- 2.020	<	$>.900$ $>.900$.120 $>.900$	<. 005
Western Maine vs. Georges Bank					
1958 1960	$<.005$				
1960	- 020	<.005	$\stackrel{\text { r }}{ } \times .005$	$>.900$ $>.900$	<. 005
Western Maine vs. Cape Cod					
1958	$<.005$	$<.001$			
1960	2.050	<.001	>	$>.900$ $>.900$	<. 005
Nova Scotia vs. Cape Cod					
1958	$<.005$				
1960	- 2030	-	$>.900$ $>.900$	$>.900$ $>.900$	$<.005$
Eastern Maine vs. Georges Bank					
1958		<. 005			
1960	<. 005	<.005	>.900	$>.900$.050	$<.005$
Gastern Maine vs. Cape Cod					
1958	$>.900$	$<.005$			
1960	<. 005	$\underset{\sim}{<}$	>	.820 $>.900$	<. 005
Hova Scotia vs. Western Maine					
1958	$>.900$	$<.005$			
1960	>.900	>.900	>.900	.560 $>.900$. 350
Jape Cod vs. Georges Bank					
1958					
1960	>.900	$\underset{\sim}{2.005}$	\$.900	$\begin{array}{r}\text { P.900 } \\ \hline .330\end{array}$	7.900
Eastern Maine vs. Western Maine					
1958	. 090				
1960	>.900	.150 .290	> $\mathbf{>}$.900	7.900 .830	7.900
Nova Scotia vs. Eastern Maine19581960					
	. 180	>.900	. 730		
	$>.900$. 190	$>.900$	-	>.900

