Selection of cod by bottom trawl codends in Southwest Greenland waters
by H : Bohl
Institut für Fangtechnik
Hamburg, Germany

On the 100th cruise of FRV Anton Dohrn (27.9-30.10.1966) some traw1 mesh selection experiments were carried out in the vicinity of Cape Thorvaldsen (ICNAF Div.1F)。

Four codends of about the same wet knot breaking strength (115-124 kg) and mesh size ($113-124 \mathrm{~mm}$) were used. They were made from polyamide continuous, polyethylene monofilament, polypropylene continuous and polypropylene monofilament. The same codends have already been used on the 12 th cruise of FRV Walther Herwig in November/December 1965 (Boh1, 1966).

During the trials, a total of 23 successful hauls was made; 13,665 cod were caught in the codend and 5,056 cod in the cover. The total length of each fish was measured to the nearest centimeter. Figure 1 shows the relative length composition of the total cod catches made between October 6 and 10 on the one hand and on October 18 and 19 on the other. It can be seen that the cod caught during the second part of the experiments were conspicuously smaller (mean length 46.6 cm) than those caught during the first part (mean length 49.1 cm).

The catches, ranging from 0.3 to 4,6 metric tons per $75-100$ minutes ${ }^{\prime}$ fishing time, were of uniform composition. Cod were clearly predominant; other fish (wolffishes, American plaice, skates, lumpsucker) and invertebrates (mainly holothurians) were caught in small quantities.

The selection curves shown in Fig, 2 for each codend are based on smoothed percentages of retained fish (three-point moving averages). They are fitted by eye.

The selection factors calculated for combined hauls are as follows (the figures in brackets represent the selection factors obtained from the Walther Herwig trials in 1965):

| Polyamide continuous | $: 3.53$ | (3.51) |
| :--- | :--- | :--- | :--- |
| Polyethylene monofilament | $: 3.40$ | (3.38) |
| Polypropylene monofilament | $: 3.26$ | (3.22) |
| Polypropylene continuous | $: 3.30$ | (3.28) |

From this compilation it becomes obvious that the experiments conducted by Anton Dohrn off Cape Thorvaldsen in October 1966, and those conducted by Walther Herwig on Store Hellefiske Bank in November/December 1965 (Bohl, 1966), yielded practically the same selection factors. This striking conformity of the experimental findings claims attention, particularly as there are great differences in the design, size and fishing power of the two research vessels concerned. Anton Dohrm is an $850 \mathrm{~h} . \mathrm{p}$. side trawler with an average towing speed of 4 knots; Walther Herwig, however, is a large $2,000 \mathrm{h.p}$. stern trawler with a towing speed of about 4.5 knots. The conclusions to be drawn from the above-mentioned data would be more reliable if the trials had taken place simultaneously on the same fishing ground. From the evidence available, however, it is likely that the selectivity of bottom trawls is not appreciably influenced by the characteristics of the towing vessel,

In another ICNAF research document (Boh1, 1966) the results of the Walther Herwig trials have been compared with those of trials carried out previously in Subarea 1. Since the Walther Herwig data are in line with the recent Anton Dohrn data, it is not necessary to repeat such a comparison here. But, in view of the R\&S Committee's task to keep the current mesh differentials under
control, it may be useful to review once more the upshot of the German experiments conducted in 1965 and 1966:

Compared to the selection factors determined for the polyamide codend, the corresponding factors for the polypropylene continuous and polypropylene monofilament codends were found in both years to be lower by 7% and 8% respectively. These differences are in accordance with previous results showing the selectivity of polypropylene similar to that of manila. In 1965 as well as in 1966 the selection factors for the polyethylene codend were only 3.7% lower than those for the polyamide codend. This small difference shows polyethylene to have selective properties similar to polyamide rather than to manila/polypropylene. It is remarkable that, in both years, no significant difference was found between the selectivity of the two types of polypropylene codends used. Theoretically, the monofilament codend made from relatively stiff twine should have yielded a markedly lower selection factor than the continuous codend made from relatively flexible twine。

Finally, it must be mentioned that 1,398 girth measurements were made off Cape Thorvaldsen in 1966. The relationship between maximum body girth (G) and total length (L) is described by the regression equation $\mathrm{G}=0.49 \mathrm{~L}-0.49 \mathrm{~cm}$ (Fig. 3). In 1965, the regression $G=0.56 \mathrm{~L}-2.46 \mathrm{~cm}$ was obtained from 1,490 measurements on Store Hellefiske Bank (Bohl, 1966). These equations imply that cod of the 50% retention lengths ($39-44 \mathrm{~cm}$) were thinner in 1966 than in 1965 by 3.6-4.5\%.

References

Boh1, H. 1966. Selection of cod by bottom trawl codends on Store Hellefiske Bank. Annu. Meet. int. Comm. Northw. Atlant. Fish., Res.Doc. 66/67, Ser. No. 1685.
Compilation of selection data for gr sed hauls

Ship Gear Locality Depti range (m) Species studied Experimental method Cover Material Runnage (m / kg) Tex Braiding Twine construction Mesh size	FRV ANTON DOHRN, 62.3 m length o.a., $850 \mathrm{~h} . \mathrm{p} . \mathrm{e}$. German standard roundfish bottom trawl, 140^{\prime} groundrope Off Cape Thorvaldsen (ICNAF Div. 1 F) 100-135 Cod Topside cover ICES specification Nylon continuous 1200 23 tex x 11×3 Single twine Tristed 60			
Codend material	Polyamide continuous	Polyethylene monofilament	${\underset{\text { monofilament }}{\text { Polypro }}}^{\text {mon }}$	continuous
$\mathrm{Cl}_{\text {Runnage }}^{\text {R..tex }}$ (m / kg)	252 3962	153 6516		204 4905
Braiding	Double twine Plaited			
Wet knot breaking strength (kg)	119.5 2.1	115	122	$\stackrel{124}{3.6}$
Date	6.-9.10.1966	9.-10.10.1966	18.-19.10.1966	19.10.1966
Greenwich mean time	09.00-18.25	08.45-23.20	11.15-21.40	08.40-17.35
No. of hauls	7	8	4	4
Av. duration of haul (min)	75	80	90	100
Av. towing speed tirrough water (kn)	4.0	4.0	4.0	4.0
Type of mesh gauge	ICES gauge; 4 kg pressure			
Codend mesh size; mean \pm s.e. (mm)	123.7 ± 0.2	113.2 ± 0.2	119.8 ± 0.2	119.9 ± 0.2
Range (mm) No. of measurements	$\begin{aligned} & 106-130 \\ & 413(=7 \times 59) \end{aligned}$	$\begin{aligned} & 104-126 \\ & 464(=8 \times 58) \end{aligned}$	$\begin{aligned} & 11 J-133 \\ & 188(=4 \times 47) \end{aligned}$	$\begin{aligned} & 113-1: 7 \\ & 192(=4 \times 48) \end{aligned}$

Compilation of selection data for grouped hauls (continued)

1) The average net weight of one basket filled with cod is 68.5 kg

> Cyclopterus lumpus

> Raja sp.
Pain spe

Fig.1: Relative length composilion of cod (codend +cover) off Cape Thorvaldsen.
Tatal (ength (cm)

Fig. 2: Cod selection curves for combined hauls.

