INTERNATIONAL COMMISSION FOR

THE NORTHWEST ATLANTIC FISHERIES

Serial N. 1853 (D.c.8)

ICNAF Res. Doc. 67/63

ANNUAL MEETING - JUNE 1967

The study of the effect of large-meshed chafer on the

selectivity of the trawl net

V.M. Naumov VNIRO, Moscow

At the 1966 Annual Meeting of ICNAF, the Subcommittee on Gear and Selectivity passed a recommendation urging all member countries to continue experiments on the selectivity of trawls furnished with chafers of the Soviet and Polish types.

The results of the investigations of the effect of topside chafer of the Soviet type on the selectivity, strength and durability of trawls were set out in Res. Doc. 66, (Serial No. 1534) and Res. Doc., 66/58, (Serial No. 1663) submitted to the 1965 and 1966 Annual Meetings respectively.

Newly obtained data do not change the essence of the earlier conclusions as to these chafers and therefore they are not referred to in this contribution.

The following is a short description and an account of the results of the experiments with a large-meshed chafer of the so-called Polish type which were completed on board the trawler Vitebsk in ICNAF Div. 2J (Labrador) in the period from February 2 through March 8, 1967.

A conventional trawl net with a codend made of double Kapron of 3.1 mm diameter and an inner mesh size of 110 mm was used in the experiments.

The codend was fitted with a chafer made of double twisted Kapron of 3.5 mm in diameter and with the inner mesh size about twice the size of mesh in the codend itself.

The chafer was of the same length and width as the codend and was attached to it along all four selvages and upper lacings (one central and four transverse). During the trials normal fishing conditions were observed, i.e., speed of trawl haul 3.5-4 knots; average duration of trawling $-1\frac{1}{2}$ hours.

In order to evaluate the selectivity of the codends, a standard cover made of Kapron webbing with the inner mesh size of $40~\rm mm$ was fastened over the chafer and was 1.5 times wider and 2m longer than the codend.

Protective flaps made of used Kapron netting and bull hide were attached to the underside of the codend.

In the beginning the sizes of the meshes in the codend and chafer were measured after each trawl haul and later, after the stretching of the twine had stabilized, measurements were made after every 2 or 3 trawl hauls.

The measurements were made with the ICES gauge at a pressure of $4~\rm kg$. In all 28 measurements of meshes in the both codend and chafer were completed, and, as a result, the mean inner mesh size of the codend was determined as 107 mm and the chafer - 225 mm. The measurements are given in Table I.

Table I.

Results of Mesh Measurement (in mm)

Part of trawl net	Average	Mean value			
	<u> </u>	<u>II</u>	III	IV	†
Codend	103.8	106.7	103.8 (110.0)	113.2	106.9 (108.4)
Chafer	223.7	225.2	225.5 (226.9)	228.6	225.8 (226.1)

The length of fishes was measured by a conventional method with rounding off to the nearest cm.'

The whole catch was measured. There were 40 experimental trawl hauls completed using the Polish-type chafer. The results of trials grouped by 10 successive trawl hauls are set out in Tables 2-5. Table 6 gives the summary results of the tests and Table 7, the selection factors. The selectivity curves are shown in Fig. I.

Along with the study of the effect of the chafer on the selectivity of the trawl net, observations of the strength and durability of the codend fitted with this chafer were made.

When the mesh measurements were made, the whole codend was also examined for distortions of the meshes and damage to threads and knots. But, in the course of the 40 experimental trawl hauls no noticeable changes were observed in the codend. Later, during commercial fishing operations, this same codend with its Polish-type chafer was torn off during the eighteenth haul and was lost with its catch. Thus, a total of 58 trawl hauls were made with that codend.

At present, some trawl nets fitted with Polish-type chafers are being tested on two fishing vessels with special reference to their resistance to wear and tear.

Discussion and Conclusions

As seen from Table I the mesh size of the codend and chafer increased regularly with the number of trawl hauls with the exception, however, of the third series of tests where the mean mesh size of the codend became considerably less than that in the second series of trials, whereas the average size of the mesh of the chafer remained almost the same. This can be attributed to the fact that at the time of the third series of experiments the air temperature dropped to -10 and -15 degrees C, which caused the Kapron to shrink.

For this reason, it seemed advisable to take as actual mesh size, for the third series of tests, a mean value based on the results of preceding and following series of trials. The figures so calculated are shown in Table I in brackets. From Tables 2-6 it may be seen that the variations in magnitude and size composition of catches are of such an extent that it appears possible to compare the results of the experiments. Moreover, due to the lack of particularly large catches (the maximum catch per haul did not exceed 4 tons), the conditions for fish escapement from the codend in this experiment can be considered to be favourable, and, therefore, the results obtained are evidently quite close to the actual selectivity of the codend.

The mean selection factor of the commercial trawl net using a Polish-type chafer is 3.9 in relation to the measured mesh size and 3.8 in relation to the precisely defined mesh size. It follows from this that the effect of a Polish-type chafer on the selectivity of the trawl net is negligible and within the range of experimental error.

The observations on the resistance to wear and tear also showed that the loss of the codend with chafer in the fifty-eighth haul can hardly be considered as the limit of its durability since no noticeable change was observed in its structure, and it could be destroyed when it got afoul an underwater obsticle.

Further use of such chafers will prove the limits of their application. However, data obtained to date show grounds for recommending the use of these chafers at least in the areas where moderate (3-4 tons) catches are made.

Table II

Series I Soviet experiment, 1967

Commercial trawl net furnished with Polish-type chafer Trawler "Vitebsk"

Area - Labrador, 2J Date - 2-7 Feb. 1967 Number of trawl hauls - 10

Fish species - cod Codend material - double Kapron 103, 8 mm Depth of fishing - 265-400 m

Fish length in cm.	Number of fishes in codend	Number of fishes in cover	Total number	Retention %
up to 25	1 .	2 8 3 5 15 13	3 8 3 5 15	33.3
25	-	8	8	0.0
26	-	3	3	0.0
27	-	_5_	, 5	0.0
28	-	15	15	0.0
29	_	13	13	0.0
30	19	86	105	18.1
31	9	3 9	48	18.8
- 32	14	82	. 96	14.6
33 ·	13	76	89	14.6
34	10	80	90 91.5	11.1
33 · 34 35 36	42	203	245 188	17.1 15.4
36	29	159		24.1
37	47	148	195	19.1
38	<u>7</u> 1	174	215 202	29.2
39	59	143	202 646	39.3
40	254	392	298	35.9
41	107	191	509	46.4
42	236	273 162	367	55 . 8
43	205	144	391	63.2
रिंग	247 552	303	855	64.6
45	552	186	659	71.8
46	473 359	100	468	76.7
47 48	506	111	617	82.0
49	382	85	467	81.8
49 £0	9 7 0	113	1083	89.6
70 E1	543	35	578	93.9
ば2 よ2	585	26	611	95.7
50 51 52 53 54 55 56	390	7	397	98.2
だ), に	407	6	413	98.5
7 4 55	668	10	678	98.5
56	435	2	437 -	99.5
57	262	1	263	99.6
57 58 59	220		221	99.6 99.5
<u>5</u> 9	229	1 1	230	99.6
60	468	1	469	99.8
61	169	1 .	170	99.4
62	218	1	219	99.5
63	127	-	127	100.0
6կ	72	-	72	100.0
65	142	-	142	100.0
66	70	-	70	100.0
67	56	-	56	100.0
68	5 3	-	53	100.0
69	29	~	29	100.0
70	7 7	-	77	100.0
over 70	150		150	100.0
Total	9945	3397	13342	

Table <u>III</u>

Series II Soviet experiment, 1967

Commercial trawl net furnished with Polish-type chafer Trawler "Vitebsk"

Area - Labrador, 2J Date - 7-13 Feb. 1967 Number of trawlings - 10 Fish species - cod Codend material - double Kapron 106.7 mm Depth of fishing - 220-450 m

Total

ble IV.

Series III Soviet experiment, 1967

Commercial trawl net furnished with Polish-type chafer

Trawler "Vitebsk"

Area - Labrador, Date - 14-18 Feb.	1967	Fish species - cod Codend material - double Kapron 103.8 (110.0) mm Depth of fishing - 295-375 m		
Fish length in cm.	Number of fishes in codend	Number of fishes in cover	Total number	Retention %
up to 25	<u>-</u>	13	13	0.0
25	2	23	25	8.0
26	· -	41	41	0.0
27	1	30	31	3.2
- 28	1 2 1	46	48	4.2
29 .	1	64	65	1.5
30	10	101	111	9.0
31	· 7	106	113	6.2
32	11	1 3 5	146	7.5
33	6	164	170	3.5
33 34 35 36	19 48	165	184	10.3
35	48	214	262	18.3
36	45	234	279	16.1
37 38	39 43	3 10	349	11.2
38	43	257	300	14.3
39	35	263	298	11.7
40	131	348	479	27.3
41	115	248	363	31.7
կ2	205	312	517	39.6
44 44 43	186	258	निर्मित	41.9
7171	193	238	431	मेंंं म ∙8
45	391	322	713	54.8
46	373	208	581	64.2
47	332	216	548	60.6
48	388	174	562	69.0
և9	կկկ	117	561	79.1
50 51 52	512	126	638	80.2
51	454	35	489	92.8
	487	28	515 .	94.6
53 54 55 56 57 58 59 60	471	17	488	96.5
54	395	10 14 4	405	97.5
55	502	14	516	97 .3
56	358	4	362	98.9
57	268	- 2 3	268	100.0
58	260	2	262	99.2
59	235	3	238	98.7
60	280	-	280	100.0
61	173	-	173	100.0
62	170	-	170	100.0
63	111	-	111	1.00.0
<u>6</u> µ	95	-	95	100.0
65	108 61	-	108	100.0
66	ρŢ	-	61 ha	100.0
67	43 48	-	43 L8	100.0
68	48	-	78	100.0
69	35	-	3 5	100.0
70	41 120	-	41 120	100.0 100.0
over 70	120	-	120	100.0
Total	8254	4846	13100	
1004		• • • •	-	

Table V.

Series IV Soviet experiment, 1967 Commercial trawl net furnished with Polish-type chafer

Trawler "Vitebsk"

Area - Labrador, 2J Date - 21-25 Feb. 1967 Number of trawlings - 10 Fish species - cod Codend material - double Kapron 113.2 mm Depth of fishing - 280-360 m

Fish length in cm.	Number of fishes in codend	Number of fishes in cover	Total number	Retention %
up to 25	-	5 7	5 9 . 9	0.0
25	2		9	22.2
26	2	7	. 9	22.2
27	2	7		22.2 13.0
28	2 2 3 1 25 23 58 59	20	23 30	3.3
2 9 .	1	29 61	86	29.1
30	25	77	100	23.0
31	2 3 ro	154	212	27.4
32	50 50	150	209	28.2
33	59 60	166	226	26.5
33 34 35 36	138	267	405	34.1
35 36	123	258	381	32.3
ار 27	142	297	439	32.3
37 38	167	263	430	38.8
39	187	247	434	43.1
40	389	332	721	54.0
41	319	269	588	54.2
42	513	352	865	59 . 3 65 . 7
43	515	269	784	65.7
ī́Д	537	190	727	73.9
45	883	286	1169	75.5
46	819	191	1010	81.1 80.8
47	796	189	985	86.0
48	786	128	914 880	91.2
49	803	77 91	1105	92.4
50	1021	84	870	96.0
51	835	35 35	909	96.1
51 52 53 54 55 56	874 227	フラ 25	752 ·	96.1
55	727 662	25 8	670	98.8
54 cc	843	12	855	98.6
55 56	693	12 5	698	99.3
ラロ ピ 7	504	Ź	506	99.6
58 58	403	1	404	99.∙8
57 58 59	366	1 2	368	99.4
<u>6</u> 0	505	_	505	100.0
61	298	-	298	100.0
62	288	- ·	288	100.0
63	154	-	154	100.0
64	132	-	132	100.0 100.0
65	212	-	212 78	100.0
66	78	-	70 70	100.0
67	70	-	44	100.0
68	77 77	-	30	100.0
69	30	_	71	100.0
70	71 83	<u>-</u>	83	100.0
over 70	03			
Total	16245	4507	20752	

ble VI.

(Summary)

Series V

Soviet experiment, 1967

Commercial trawl net furnished with Polish-type chafer

Trawler "Vitebsk"

Area - Labrador, 2J Date - 2-25 Feb. 1967 Number of trawlings - 10 Fish species - cod Codend material - double Kapron 106.9 (108.4) mm Depth of fishing - 220-450 mm

Fish length in cm.	Number of fishes in codend	Number of fishes in cover	Total number	Retention %
up to 25 26 27 28 29 301 32 334 56 37 8 9 0 41 2 43 44 56 47 8 49 551 556 57 559 661 666 667 669 70 0ver	2 6 2 6 9 6 126 6 137 101 141 374 284 325 372 483 1368 904 1395 1311 1470 2712 2396 2148 2261 2319 3606 2628 2772 2127 2050 2805 1997 1469 1261 1124 1747 851 927 557 441 634 248 228 142 277 525	57 77 84 87 151 177 471 385 651 728 726 1174 1019 1115 1033 1657 1034 844 1277 800 734 553 395 441 145 129 64 41 58 17	59 83 86 93 163 597 188 867 1518 867 1516 1516 3025 2314 3989 2714 2772 2863 2014 1130 1751 853 2014 1130 1751 853 2142 277 252 253 263 263 277 277 277 277 277 277 277 277 277 27	3.4 7.2 2.3 0.46 3.3 21.16 17.4 12.2 14.6 17.4 12.2 19.6 25.0 21.9 20.4 20.4 20.5 21.9 20.4 20.5 20.4 20.5 20.5 20.5 20.5 20.6 20.6 20.7 20.6 20.7 20.6 20.7 20.7 20.6 20.7 20.6 20.7 20.6 20.7 20.6 20.7 20.0 20.

69182

19737

49444

Total

Table VII.

Selection factors of Kapron codend (108.4 mm) with Polish-type chafer (226.1 mm)

		Series			
Selection factor	I 4.08	II 3. 89	III 4.29 (4.04)	IV 3.50	Mean Value 3.92 (3.86)

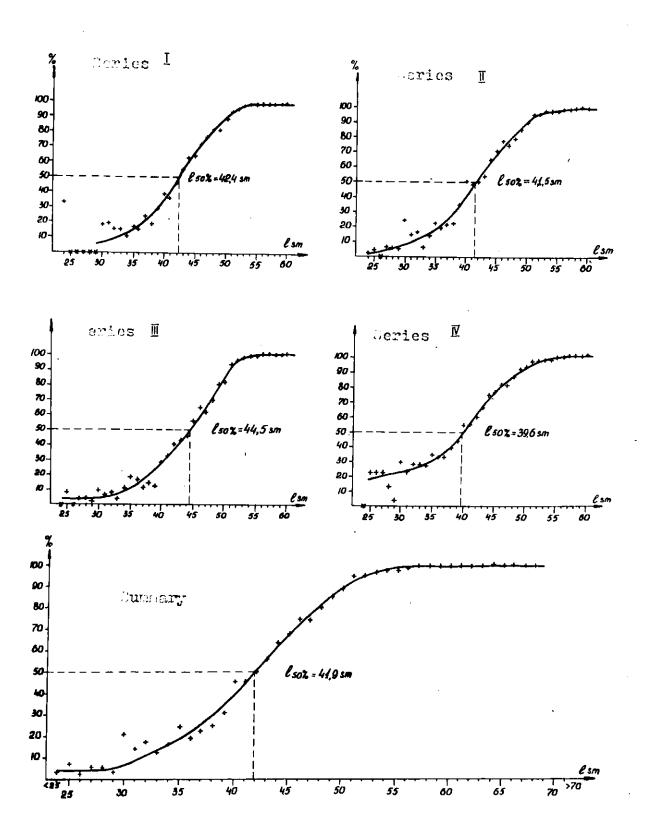


Fig. 1. Selectivity curves of Kapron codend (108.4 mm mesh size) furnished with Polish-type chafer (226.1 mm mesh size).