Bindreical data on cod from the mumor fishery or the north shore itrait of lofle Tole

by A. 'T. 沺

ar?

1. Introduction
(a) The stock
(b) The fishomr
? Collections
2. Are Valiriation
(a) Otolith odie
(b) Lensth distributions of small rish
3. Arse and Iencth inistributions
S. Mortality
4. Grouth
(a) Age-length
(b) Growth variations and possible causos
(c) Lencth-wejert and rirth-lonrsth
5. liaturity and ipawning
b. Bumary
6. Noferonces
7. In'roduction
(a) The stock

A recular census of the inshore labrador cod fishery, to provido basic data for population studies and to assess the effects of offshore fishinf, was befun in 195?. Various fishing centres on the north slore of the strait of Belle Isle (Fir. 1) were first visited in 1962 and sampling continued through 1966.

Very little maxing of cod occurs between the north shore of the Strait of Belle Isle and the more northerly Labrador Coast (Templeman, 1962). The Straits cod form part of the "Nest llewfoundland" stock which rances from southwestern Newfoundland, along the Nowfoundland west coast, and nossibly to the quebec north shore, depending on season (Templeman, 1962). Bummer distribution is mainly in the northerm and northeastern Gulf of St. Lawrence (Dfvisions LIR and LE), while in winter and early sprine the cod are distributed around the southwest corner of Newfoundland (Divisions $4 \pi$ and $3 P_{N}$ ). It is possible that at least two "sub-stocks" are presente; both wintering in the same area while separating in summer between western liewfoundland and the north shore of the Gulf.

The data presented here cover only a small part of the area of summer distribution for a very brief period of sampling in each year, being a by-product of more intensive investigations along the coast of Labrador. They are summarized to provide a preliminary description of the hiology of the stock and as background for more wi.despread studies begun in 1966 (Wiles, MS, 1967a).
(b) The fishery

The inshore cod fishery is relotively small, being carried out by less than 500 men fishins: from small boats majnly from June to Soptenber. Cod are taken by trap, gillnet, ficcer and lonfline, the trdy prohably being the stin:le most productive gear, thererb no estimates of mound catch by each gear are available.

Annual catches exhibited large fluctuations since 1957 (Firs. 2) with an overall domward trend. Numbers of cod fishermen inereased to $196 /$ but decreased sljeshtly in 1965 and 1966. Catch per mill was varjable, but decitined from an averofe 17 tons suring 1957-6u
to less than 10 tons during 1964-66 (Fig. 2). Trends in catch per man are comparable to those described for Labrador by May (1967b).

Over the past 10 years variations in annual catch have closely followed the annual variations in catch per man. These year to year variations are probably due to a combination of varying year-class survival and varying availability to the inshore gears. Downward trends in catch and catch per man may be due to competition from the offshore otter trawl fishery.
2. Collections

Details of collections are listed in Table I, and location of areas sampled in Figure 1. Virtually all the material was taken from the summer trap fishery during a one or two day visit each year. Several communities were sampled in 1962 and 1963, but the material from each was so similar that one community only was visited from 1964 onwards. Two saraples of small cod were obtained by hook and line from the shore in years when these were abundant. A single sample was obtained from the centre of the Strait (Centre Bank) in October, 1962 by the research vessel Investirator II, using an otter trawl with small-mesh codend.

Random samples of the comercial catches were taken for length measurements (fork length to the nearest cm). From 1962-64 random subsamples of the moasured fish were taken for otolith collections, determination of sex and maturity, and measurements of opercular girth and whole and guttcd-cilled welghts. Otolith collections were also made from "category" samples of the smallest and largest size cateroriez of tho measured fish (generally fish less than 35 cm and greater than 60 cm in length). During 1965 and 1966 "stratified" sub-samples of the measured fish were taken at the rate of $20-25$ per $3-\mathrm{cm}$ length group. These were examined for sex and maturity and otoliths collected.
3. Ane Validation
(a) Otolith edge

Otoliths were used for age determination and appearance of th: otolith edge (i.e. whether opaque or hyaline) was recorded for all fi h ared. The data were analysed for each ace grour using random samples
from 1962-64 and stratified samples adjusted to the rendom length distributions for 1965 and 1966.

Deposition of opaqua material at the otolith edge was well advaneed durins the June-July priod when most of the rampling was done (Table 2). As in Labrador, opaque material armars to be deposited first in tho youncer fish, but aprears carlion in the year in the porulation as a mbe twn in tw: jurador (ubaron 2) cod (May, 1967a).
 onaque material at the otolith odge tri June-Jvily as opposed to $18 \%$ durine the same months of 1958-64 in Subarea 2. This indicates that annual groith becins earlier each year in Division lif.

By Soptember-October all the fish had ejther opaque edges in the otoliths or had completed deposjition of opaque material and begun to deposit the hyalinc material of the next winter zome. Using the corvention of January 1 as the fish's "birthday" the narrow hyaline zome at, the ed,o is imored for determining are. Should this zone not be recospized as the beginning of the next "winter" error" in aye dotermination will occur. Cod Prom !jubarea 2 also befin to form a hyallne zone in autum (19ay, 1:67a).

The data were not sufficientily djstributced throurghout the verar to cemonstrate conclusively the val.jdity of the otolith method, but by analosy with the pattorn in Subarea 2 (May, 19674 and addition of the evidence imediately following the otolith method is considered reliable. It should be noted, however, that secondary or check zones do occur. Faniliarity with the otolith pattern in the area provides the bost neans of recognizing these.
(b) Lencth distrihutions of small fish

In September, 1962 and July, 1.W4 mand cod were sufficiontl:" nunerous near the shore at Red fay ( $\mathrm{Fi}_{\mathrm{ij}}$. 1) to obtain gamples with hook: and line. Lon"th distributions of these with assjened ares from otoliths are sho:m in Firure 3. In July of 1964 the smallest fish ( $9-15 \mathrm{~cm}$ ) exhibited a sinrle hyaline zone near the otolith edse, followed in most by a varyinis amount of opaques material. In September of 196241 of the sumple ( $12-19 \mathrm{~cm}$ ) exhibited a hyaline zone followed by a wide opaque zone,

Thile the remainder had an additional very narrow hyaline zone at the otolith edige. The latter was considered to represent the beginning of the next "winter" (see above); thus both groups were regarded as age 1. In July of 1964 fish of length $17-23 \mathrm{~cm}$ were assirned an are of 2 from the otoliths; those greater than 23 cm in len th an ase of 3 . From the nrogresston of modes in the length distributions (Fig. 3), and the correswondence of afce interpretations to these modes it is evident thot otolitli ase interpretations are volid.
4. Are and Lencth Distributions

Length distributions of all fish measured (Table 1) were combined for each year (except the sumner and autumn collections of 1962). Corresponding aje distributions were adjusted to the number measured by use of arg-length keys from combined random and catesory samples in 1962-64 and stratified samples in 1965-66.

Age and length distributions from the summer inshore comercial fishery and from a research vessel sample on Centre Bank in autumn of 1962 are compared in Figure 4. The distributions are very similar considering the small numbers involved and differences in gear selectivity. The research vessel sample is likely from the'same population as that fished inshore in surmer, the fish having moved deeper and farther from shore as the season progressed.

Ace and length distributions from the inshore trap fishery (Fig. 5) are acain similar from year to year, being made up laresely of very yount and small fish. In each year, except 1962, almost one-half the fish in the age distributions were age 4 . In 1062 age 5 fish were dominant. This was an anomalous situation due to the relatively great survival of the 1957 year-class. In all years most of the fish were less than 50 cm in length. Virtually no fish older than ase 10 or larger than 70 cm were taken. It is obvious that in this fishery, where catches are heavily dependent on the newly recruited age-groups, the relative success of the fishery will depend very greatly on fluctuations in year-class survival. Thus increased landings in 1962 and 1963 (Fiz. 2) were at least partly due to better than average survival of time 1957 yoar-class.
5. Iortality

Estimates of total mortality were obtained from annual age distributions (Fig. 5). It i.s obvious from these that old fish were relatively less nunerous in 1965-66 than in 1962-63. Catch curves for these two pairs of years (irom combined percentage age distributions) are shom in Figure 6, along with the catch curve for the whole period of sampling. Values of total mortality ( 2 ) were . 146 for 1962-63, . 68 for 1965-66 and .54 for the whole period. The increase in total mortality (which is also evident as a concavity between ages 5 and 11 on the combined curve) is likely due to increased fishing on the stock as a whole. However it must be pointed out that the values given here probably do not represent the true population values. Availability of cod to traps probably decreases with age since the older fish are distributed in depths beyond the range of the gear. Thus the catch curves contain a measure of availability as well as abundance. They remain of value in describing the direction and magnitude of changes in total mortality, though the absolute values of $\underline{Z}$ from the catch curves may not represent the population as a whole. -
6. Growth
(a) Age-length

Avcrage length at each age was determined on an annual basis from the adjusted are-length distributions. A plot of the combined data (weighted averages) for the $1962-66$ period is shown in Figure 7. The von Bertalanffy growth curve shown in the figure gave a reasonable fit to the data, though the common "levelling-off" at the older aryes followed by increased growth for the very oldest ages (May et al, 1965) was very much in evidence (Fir. 7). Average lengths for ages 1 and 3 were artificially hish because of hook selection in the former group and trap mesh selection in the latter.
(b) Growth variations and possible causes

Attained sizes at each are were quite variable from year to year. Plots of average sizes of the most abundant age-groups (Fig. 8) reveal a general decline in average sizes from 1962 to 1964, followed by an increase to 1966. Wiles (MS, 1967b) has suggested that increased growth of the oldest age groups in the Newfoundland part of Division $4 R$ is due to the reduction of old fish by otter trawlers since the mid-1950's. However, there is little possibility that variation in abundance is the causative factor for the changes described here.

Lacking synoptic hydrographic data in the area, alr temperatures at selected meteorolocical stations were examined for trends from year to year. The population sampled is known to range at least from the north shore of the Strait of Belle Isle to southwestern Newfoundiand. Meteorological stations at the northern, middle and southern parts of the ranje are located at Belle Isle, Daniels Harbour (Newfoundland west coast) and Port aw: Basques (southwest coast) respectively.

Mean daily temperatures on a monthly basis were available from publications of the Meteorological Branch, Canada Department of Transport. These were the mid-points of averare daily minimum and maxinum temperatures for the month. Mean daily temperatures for each year were estimated by averaging the monthly values. Trends in the annual means corresponded rouchly with the trends in average lencths.

Since cod in this area are known to be distributed at the southern extremity of their range in winter, and over the midde and northerm parts of the ranse in summer, the air temperature data were remored to give averages for those months in which cod mi,ght be expected to be under the influence of local conditions in each area. Nean daily temperatures for winter (December~Arril) at Port anx Easques, and sumer (May-llovember) at Daniels Ilarinour and !?line Isle, exhibjeted trends verer similar to those in averare size over the 1962-66 period ( $\mathrm{Fi}_{\mathrm{i}}$. .8 ).
'rompleman (MS, 1967) has show that mean annual sea tompreratures exhib1t variations parallel to those in the air, thourg or les.or anpitude. Thus air temperatures provice reliable indices of the
djrection, if not the magnitude, of temperature variations in the sea. The present comparison leaves much to be desired; in particular it should be noted that the mean summer temperatures in each yroor nover the period May to Novenber, while the fish were collected in late June to late July. Also the data series is too short to rule out a coincidental pattern. Nevertheless the comparison does provide the working hypothesis that Erowth variations in this area, and for the ranfe of ajes considered, are largcly environmentally induced.
(c) Lencth-weight and girth-length

Weights of whole cod, and with viscera and gills removed, were obtained for all fish sampled during 1962-6l. All weights were made in the field and recorded to the nearest ounce ( $1 \mathrm{oz}=28 \mathrm{~g}$ ). Wej-ht-lensth curves of the form $!=11^{n}$ were fitted to the data (about 1000 observations) and are shown in Figure 9. Plotted averages of both whole and suttod-gilled weichts adhered closely to a logarithmic straisht Iine though there was some tendency for the largest sizes to depart from the rerression. Points above 60 cm were better fitted by regressions employing greater exponents. Thus values of $\underline{n}$ for fish greater than 60 cm in length were 3.43 for the whole weight curve ( 3.01 for all sizes) and 3.37 for the gutted-gilied weight curve (2.91 for all sizes). A similar phenomenon was described by lhay (ME 1966).

Moasurements of girth at the posterior odire of the operculum whe obtained from $874_{4}$ fish during the 1962-64 period. These measurements were orifinally made in minsing a flexible taye, and later combined into l-cm groups. Preliminary analysis revealed no sex differences. Combined averages for the period are plotted in Figure 10. A weighted straight line fitted to the data gave the regression

$$
G=0.56 \mathrm{~L}-0.07
$$

where $\}=$ opercular girth in cm and $\mathrm{L}=$ fork lenfth to the nearest cm .

## 7. Maturity and Spaming

Observations on stare of maturity were made by gross examination in the field of gonads of all fish sampled. For present purposes various stages were combined as immature, pre-spawning, spaming and spent-recovering. Spaiming was completed by virtually all fish during the period of samping. In June-July 97 of the mature fish vere spent-recoverinf, $2 \%$ spamins, and $1 ;$ pre-spawning. AII mature fish had completed spaming by October 1.

The proportion of mature fish at each $3-\mathrm{cm}$ length group and each age were determined for the June-July collections (Fig. 1l). Kales were first mature at 34 cm and age 4 ; females at 43 cm and age 5 . AIl males vere mature at 64 cm and age 8 ; all females at 64 cm and age 10 . Sizes and ages at $25 \% 950 \%$ and $75 \%$ maturity were estimated from straight lines fitted by eye to plots of the data on probability paper, and are tabulated below.

|  | Size at Maturity $(\mathrm{cm})$ |  |  |
| :--- | :---: | :---: | :---: |
|  | 25\% mature | 50, mature | 75\% mature |
|  | Male | 42.9 | 45.7 |
| Temale | 47.5 | 49.7 | 58.4 |
| Combined | 44.7 | 47.7 | 50.7 |


|  | Age at Maturity |  |  |
| :---: | :---: | :---: | :---: |
|  | 25\% mature | 50,' mature | 75\% mature |
| liale | 4.7 | 5.3 | 5.9 |
| Female | 5.4 | 6.1 | 6.9 |
| Combined | 4.8 | 5.7 | 6.7 |

8. Sunnary

Data on cod from the north shore of the Strajit of Belle Isle, collected from the trap fishery durin: 1962-66, are surmarized. The cod belong to the West Newfoundland stock and are distributed in the northora and eastern Culf of st. Lawrence in surmer; around southwestern leorfoundlard in winter. The trap fishery along the north shore of the strait is a rolativcly minor one, and annual catches and catch per man, though variable, have declined over the past 10 years.

Size and age distributions show the fishery to be heavily dependent on newly recruited year-classes, with few fish older than age 10 present in the samples. Total mortality increased over the $1962-66$ period. Growth was variable from year to year, apparently in response to varying hydrozraphic conditions. Length-weight and girth-length relationships are described. Spawning was virtually complete by June. Nales matured at $\partial$. smaller size and younfer age than females.

## 9. References

May, A. T. Mis, 1\%66. Lengthweight relation in Labrador cod. Int. Comr.. Morthr. Atlant. Fish., Res. Doc. 66-25, 4 p.

1967a. Otolith age validation in Labrador cod. Int. Comra. Horthw. Atlant. Fish., Res. Bull., IIo. 4 (in press).

1967b. Effect of offshore fishing on the Labrador inshore cod fishery. Int. Corm. Northw. Atlant. Fish., Res. Bull., No. 4 (in press).

Mar, A. T., A. i. Pinhorn, V. Vell:s and A. ll. Vonin: 1955. Cod rorth and tomporbture in the llowfonciland aren. ispec. iubl. int. Come.


Trenpleman, T. 1962. Divisions of cod stockes in the morthwest $\Lambda$ thantic.


NS, 1967. Anomalies of sea temperature at Station 27 off Cape Snear and of air temperature at Torbaymit. John's. Annu. Veet. int. Comm. Morthr. Atlantic Fish., Res. Doc. 67-26, 6 p.

Wiles, M. MS, 1967a. Trends in the cod fishery in the northeastern Gulf of St. Lavrence during 2953-65 (INAF Divisions $4 \mathbb{R}$ and 45 ). Annu. Meet. int. Comm. Northw. At,lant. Fish., Res. Doc. 67479

MS, 1967 b . Chances in the eronth rate of cord from the northeastem Gulf of St. Lamrence during 1947-66. Annu. liect. int. Comm. Horthur. Atlant. Fish., Res. Doc. $67 f 80$.

Table 1. Colloctions for lensth anc we.

| lear | Locality | Date | Depth | Gear | Otoljth collections |  |  |  | Len;th meas. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Random | Category | Strati- <br> fied | Total |  |
| . 962 |  |  | (metres |  |  |  |  |  |  |
|  | L'Anse au loup | Juty 14 | 13 | Trap | 101. | 34 | - | 7, $\because$ | $\bigcirc$ |
|  | Red Bay | July 16 | 13-15 | Trap | 100 | 25 | - | 125 | ;00 |
|  | Itonley Harbour | July is | 11-17 | Trap | 99 | 33 | - | 136 | 500 |
|  | * Red Bay | Sept. 29 | 2 | Hook | 61 | - | - | 61 | $6]$. |
| 063 | Centre Bank | Oct. 1 | 51 | 0.1 . | 122 | 32 | - | 154 | 172 |
|  | Red Bay | July 16 | 17 | Trap | 120 | 1.6 | -. | 166 | 179 |
|  | L'Anse Amour | July 19 | 7 | T'rap | 164. | - | - | 16\% | 164 |
| 364 | Herley Harbour | July 22 | 15 | Trap | 125 | 30 | - | 155 | 500 |
|  | Red Bay | July 21-22. | 18 | Trap | 130 | - | - | 130 | 130 |
|  | * Red Bay | July 22 | 7 | Hook | 25 | - | - | 25 | 25 |
| 165 | Red Bay | June 24-26 | 11-18 | Trap | - | - | 198 | 198 | 495 |
| '66 | Red Bay | June 28-29 | 17-18 | Trap | - | - | 211 | 211 | 603 |


| Totals | 1,047 | 200 | 409 | 1,656 | $\vdots, 129$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

* STpecial Collections of Small Cod

Table 2. Pronortions of fish exhibitin:; opaque matnvial at the otolith edge in sure-JuIy, 1s05-66, and either an opaque ( 0 ) or narrow hyaline (NH) zone on Sept. 29-Oct. I, 1962. Values based on less than 5 fish are not included.

| Ase | $\%$ | 80 | ${ }^{\text {品 NH }}$ |
| :---: | :---: | :---: | :---: |
| 1 | 100 | 54 | 4.6 |
| 2 | 73 | - | - |
| 3 | 92 | $\cdots$ | - |
| 4 | 80 | 24 | 76 |
| 5 | 68 | 20 | 80 |
| 6 | 63 | 23 | 77 |
| $i$ | 49 | $\bigcirc$ | 50 |
| 8 | 38 | 70 | 30 |
| 9 | 17 | 75 | 25 |
| 10 | 24 |  |  |
| 11 | 7 |  |  |
| 12 | 25 |  |  |
| 13 | 13 |  |  |
| All azes | 71 | 41 | 59 |



Fi, 1. Map of the Strait of Belle Isle showing aress where samplins was carried out.

- 15 -


Fis. 2. Catch, effort and $C / 5$ in the inshore fisher: on the north shore of the Strait of Belle Isle.


Fi.;. 3. Len $\quad$ th distrjbutions of small cod shoring agea assisned from otoliths.


Fi.: 1. Ase and length distributions, 1962. Numbers refer to measured fish. .


Fi:. F. Aere and lencth diatributions from the irahore iraj, fithory. lumiers refer to measured fish.


Firs. 6. Catch curves from the jnghore trap fishery.


Firs. 7. Fitted erowth curve for inshore date, June-July, 1962-66.


Fis. 8. Average lencths of cod of ases 3 to 8 fron the peryod 1752-6\%, with mean daily air temperatures at selectien station; own the same perioul.


Fir. 9. Weight-lenfth relationships for combined data, July, 1962-64.


Wh. 20. Girth-length relationshirs for combaned data, dulu, 1962-6\%.


Fir. 11. Size and ays at maturity, sexes separate ( $\Lambda$ ) and combined ( $B$ ).

