RESTRICTED
THE NORTHWEST ATLANTIC FISHERIES

LCNAF Res. DOC. $67 / 80$

ANNUAL MEETING - JUNE 1967

Changes in the Growth Rate of Cod
from the
Northeastern Gulf of ist. Lawrence
(ICNAF Divisions 4 R and 4 S)
durinp 1947-66.

by M. Wiles
FISHERIES RESEARCH BOARD OF CANADA
Biological Station, St. John's, Newfoundland.

Introduction

Variations in cod growth can arise from changes in hydrographic conditions (Hermann and Hansen, 1965) or changes in stock abundance. In the first case the variations are regulated by external (physical) factors and in the second case by biotic factors involving population stability. When considering tie biology of a commercially exploited fish species it is therefore useful to know the trends in the fishery which the species supports, as well as temporal changes in the hydrography of the area in which the stock lives. Knowing these an assessment of any changes in growth rate can usually be made.

For the Northeastern Gulf of St. Lawrence, a detailed study of the commercial cod fishery was made by Wiles, (MS, 1967). Generally increasing otter trawl effort in Divisions $4 R$ and $4 S$ has apparently resulted in a reduction in the abundance of larger and older fish in trawler and inshore catches. In the present study growth is examined to determine whether this reduction was accompanied by increased growth rates in the cod stock complex of $\angle R S$.

Materials and Methods

Table I gives details of the samples used in this study.
Orfshore moterial comprised otolith collections of fish caught by research vessels using amall mesh otiex trawl during the period 1947-66. Before 1962 random samples of the catches were measured and random subsamples of these taken for otoliths. A similar sampling procedure was used from 1953 to 1964 for inshore data, which consisted of otoliths collected from fish caught by line gears. Since 1962 offshore otolith samples were rancion ull to a certain size above which all fish measured were sampled for otoliths ("category" sizes). For inshore collections in 1966, "stratified" sub-samples were taken from the random measurements. For random plus category and stratified sub-samples, age distributions were adjusted to numbers neasured by means of age-length keys. Mean lengths at age so derived were used together with values from random somples alone in a further analysis of crowth rates.

Atre readings were determined from otoliths according to the method Given in the sumnary by keir (M, 1960). Since data were taken at different times of the year, annual collections were not strictly comparable because of seasonal growth differences. In prefarinf; figures, the convention of adding $1 / 1$ to the otolith age for eech quarter of the year beyond January - March was adopted. Thus a fish of t years collected in April. - June was colled $t+1 / 4$, one collected in July - September, $t+1 / 2$ and one from October - December, t+3/4. Growth was expressed as average fork length at age. Data were analyzed according to the von Bertalanffy (1938) growth curve equation, $I t=l_{\infty}\left[1-e^{-k\left(t-t^{\circ}\right)}\right]$ whern $I t$ is mean length at age t years, lois averace "maximum" or asymptotic length, k is a constant determining rate of change in length increment and t° is the theoretical age at which the fish would be of zero length. Growth curves were fitted using the "trial 100" method of Ricker (1958)

RESUTS

A detailed prelimen inary analysis of growth data for all samples showed that there were usually no differences in growth rate between fish from Divisions 4 R and 4 S . Since stunples were mostly small and scattered in time, data for fivisions 4 it and 43 were combined by years up to 1961 but kept
(3)
separate after 1961. Offshore otter trawl and inshore line gear collections were treated separately because of differences in gear selectivity. For plots of mean length at age the data were treated as yearly samples. However, examination of the composite yearly collections showed that it was necessary to combine data from different years for purposes of growth rate calculations. For offshore material, data were combined in three five year periods; 1947-51, 1957-61 and 1962-66. Material from $4 R$ and $4 S$ were treated separately in the most recent period. Inshore material was less extensive than offshore and was combined as follows; 1953-55, 1963-64, June - July 1966 and September 1966.

Average sizes at age of otter trawl fish show no discernible trends from 1947 to 1961 (Fig. 1). During the period 1962-66 in Division $4 R$ an upward trend was observed for ages 10-14. A more marked increase was evident in Division $4 S$ but for ages 11-14 (Fig. 1). For the sake of clarity, the plots of mean length of fish older than 12 years have been omitted fromFig. 1 Flots of average sizes at age for inshore line gear samples indicate a decline in all ages between 1953-55 and 1963-64 followed by an upward tendency durine $1964-66$ which is evident for all ages but is particularly nobiceable in ages 10 and above (Fig. 2).

Growth curves fitted to offshore data indicate that no consistent trends occurred in growth rate of all ages sampled during 1947-64. Consequently, offshore data for the whole period were combined as shown in Fig. 3. A single Bertalanffy curve does not fit these data adequately, two different curves being obtained for ages $2-7$ and $2-15$ as follows:

$$
\begin{aligned}
& \text { Ages } 2-7 \quad \text { It }=73.1[1-8-0.37(t-1.8)] \\
& \text { Ages } 2-15 \quad 1 t=118.7[1-8-0.09(t+0.5)]
\end{aligned}
$$

Thus average growth of ages 8 and above was relatively greater than that of younger fish during 1947-66.

Inshore growth curves for 1953-55 and 1963-64 are shown in Fig. 4. These indicate that in the latter period growth decreased slightly for ages 4-9 but increased for ages 10 and above. Also included in Fig. 4 are growth curves for June - July and September 1966 which signify a higher growth rate in 1966 of most ages sampled. Data for 1953-64 were therefore combined and compared with the 1966 material as show in Fig. 5, which indicates that
growth of all ages was greater in 1966 than it had been previously, the fitted curves being as follows:

$$
\begin{array}{ll}
1953-64 & 1 t=90.9[1-\theta-0.14(t+0.3)] . \\
1966 & 1 t=143.1\left[1-e^{-0.05(t+3.5)}\right] .
\end{array}
$$

The differences in the values of 100 and K above are considerable. However, it was found that small changes in the observed data, or differences in the ranges of ages used to determine the growth equations could result in large changes in the growth parameters. This was also noted by Jones (1962) and May et al (1965). Thus the observed differences between loand K for 195364 and 1966 may be artificially large and are of empirical value only.

Despite these qualifications it appears that increases in growth of fish aged 10 or 11 and above.was initiated in Divisions $4 R$ and $4 S$ during ?961 or 1962 and became more noticeable in recent years. The change probably occurred first in that portion of the stock complex in Division 4 S . Increased growth of ages 8 and above occurred sometime during 1963-66 followed (at lenst according to inshore samples) by increased growth by 1966 of all ages sampled (ages 4-18). The general increase in average lengths at ace in 1966 was also particularly noticeable for ages 10 and above in offshore samples.

DISCUSSION

The data used in this study have certain limitations. Firstly, a long series of collections was not available there being years when data were lacking or so limited that they were of little use. Secondly, although a correction was applied to ages when combining material from different seasons, this may not completely compensate for seasonal growth differences. Thirdly, since small numbers of fish were sampled at the oldest ages, values of mean length derived for these may not be accurate. Interpretations of trends in mean length of the oldest fish are therefore provisional. Fourthly, aince temperature may well have had a significant influence on growth, the lack of hydrographic data limits the extent to which the effects of fishing on growth rates may be assessed.

Temperature and the growth rate of cod have been shown to be related in certain areas of the Nortlwest Atlantic (May at al, 1965; Hermann and

Hansen, 1965), and this relation is probably an indirect one working through effects on distribution of prey, feeding and food assimilation (Kohler, 1964). Under relatively stable hydrographic conditions, growth rate changes may be at least partially due to reduced densities of fish on bottom caused by increased fishing (Kohler, 1964 ; Williamson, MS, 1965; May, MS, 1966). This reduces competition for prey and allows some fish to take in more food and grow more rapidly. Temperature variations in the Northeastern Culf of St. Lawrence are not well documented, so the degree to which these are responsible for the growth rate changes observed in this study is unknown. In the absence of hydrographic data for the area, changes in fishing effort were examined to see whether increased fishing coincided with increased growth rate. Since 1960, increased otter trawler effort in Divisions $4 R$ and $4 S$ appears to have reduced the number of older and larger fish in offshore and inshore catches, particularly in Division 4 S (Wiles, MS, 1967).

The fact that in the present study increases in growth rate first Eppeared for some ages during 1961-62, (which is only one or two years after the peak of trawler fishing in $4 R S$), suggests that the increase in average size at age may be related to increased fishing. The marked increase in growth rate in Division $4 S$ supports this idea since, as mentioned above, it is consistent with the more distinctive effects on age and length frequencies of comercial catches observed in that division.

The changes are not as marked as those which have occurred in other parts of the Northwest Atlantic (see Beverton and Hodder, editors, 1962) possibly because an intense offshore fishery has not yet developed to the same extent as in these other areas. The most definite increase in growth ocurred in 1966, which may indicate that the full effect of increased fishing is only now beginning to be felt.

SUMMARY

Age determinations and resultant average length at age values in Divisions $4 R$ and $4 S$ for 1947-66 suggest that, commencing in 1961 Or 1962, increased growth occurred in cod aged 10 and 11 years, to be followed by increased growth at all ages in 1966. Hydrographic data were not available but it is thought to be significant that the earliest manifestation of

Increased growth occurred soon after the peak trawler landings in Divisions $4 R$ and $4 S$ in 1960. More marked growth changes in Division 45 coincide with 'vell defined reductions in larger and older fish as observed by Wiles (MS, 1967) for commercial landings in this division.

REFERENCES

VON BERTALANFFY, L. 1938. A quantitative theory of organic growth. Human Biology, 10 (2): 181-213.

BEVERTON, R.J.H. \& V.M. HODDLR. eds. 1962. Report of working group of scientists on fishery assessment in relation to regulation problems. Supplement to Annu. Proce int, Comme Northw, Atlant, Fishe, 11 : 1-81. HERMAN, F. and P.M. HANSEN, 1965. Possible influence of water temperature on the growth of West Greenland cod. Spec, Puble_int, Comm, Northw. Atlant, Fishe, No. $6: 557-564$. KEIR, R.S. MS, 1960. Techniques for reading otoliths. Annu, Meet, int. Corm, Northwe Atlante Fishe, 1960. Document No 4 (mimeographed). KOHLER, A.C. 1964. Variations in the growth of Atlantic cod. J_F1ghe_Reg. Bd, Cansda, 21 (1) : 57-100.
MAY, A.W., A.T. PINHORN, R. WELLS and A.M. FLEMMING. MS, 1965. Cod growth and temperature in the Newfoundland area. Spec. Puble int, Comm. Northwe Atlant. Fish., Contribution No. $6: 545-556$.

MAY, A.W. MS, 1966. Biology and Fishery of Atlantic Cod (Gadus morhua morhua $L_{\text {e }}$) from Labrador. NicGill University, Ph.D. thesis, 225 pp. RICKER, W.E. 1958. Handbook of computations for biological statistics of fish populations. Bull. Fishe Res. Bde Canada, No. 119 : 300 pp . WILES, M. HS, 1967. Trends in the cod fishery in the Northeastern Gulf of St. Lawrence during 1953-65 (ICNAF Divisions $4 R$ and $4 S$). Int, Comm. Northwe Atlantic. Fish., Res. Doc. $67 / 79$ WILLIAASON, G.R. MS, 1965. Age, growth, sexual maturity and mortality of cod on the Grand Bank of Newfoundland and St. Pierre Bank during 1946-62. London University, Ph.D thesis : 140 pp .
(7)

Year	Honth	$\begin{gathered} \text { ICNAF } \\ \text { Divisions } \end{gathered}$	Gear	No. of Random	Otoliths Caterories	Total
Random Samples						
1947	Nov.	$4 R$	Otter trawl ${ }^{\text {a }}$	159	--	159
1948	Aug.	4 S	Otter trewl ${ }^{\text {a }}$	48	--	48
1950	Oct-Dec.	4 R	Otter trawl ${ }^{\text {a }}$	457	--	457
2953	July-Sept.	4 R	Longline	473	--	473
2955	Sept-Oct.	4 R	Longline	225	--	225
1957	Dec.	$4 R$	Otter trawl ${ }^{\text {c }}$	58	--	58
1.961	Nov. Nov.	$\begin{aligned} & 4 R \\ & 4 S \end{aligned}$	Otter trawl ${ }^{c}$ Otter trawl ${ }^{\text {c }}$	$\begin{array}{r} 62 \\ 141 \end{array}$	--	$\begin{array}{r} 62 \\ 141 \end{array}$
1962	Jan. Oct. Sept-Oct.	$\begin{aligned} & 4 R \\ & 4 S \\ & 4 R \end{aligned}$	Otter trawl Otter trawl Otter trawl	537 122 183	128	665 122 215
1963	Sept.	45	Longline	372	--	372
1964	Sept. Nov. Oct.	$4 R$ $4 R$ 48	$\begin{gathered} \text { Longline } \\ \text { " } \\ \text { " } \end{gathered}$	$\begin{aligned} & 123 \\ & 121 \\ & 205 \end{aligned}$	--	123 121 205
2965	Nov. Nov.	4 C	Otter trawl ${ }_{c}^{c}$ Otter trawl ${ }^{\text {c }}$	$\begin{array}{r} 519 \\ 70 \end{array}$	$\begin{array}{r} 13 \\ 8 \end{array}$	$\begin{array}{r} 532 \\ 78 \end{array}$
1966	Oct. Oct.	$\begin{aligned} & 4 R \\ & 4 S \end{aligned}$	Otter trawl ${ }_{c}^{\text {c }}$ Otter trewl	$\begin{aligned} & 306 \\ & 449 \end{aligned}$	$\begin{array}{r} 21 \\ 9 \end{array}$	$\begin{aligned} & 327 \\ & 458 \end{aligned}$
Stratified Samples						
1966	$\begin{aligned} & \text { June-July } \\ & \text { Sept. } \end{aligned}$	$\underset{4 R}{4 R}, 4 S$	Linetrawl Linetrawl	\cdots	--	$\begin{aligned} & 418 \\ & 225 \end{aligned}$
Symbols	a ; non b ; non $\mathrm{c} ;$ lin	ined, no ined				

Table 1. Otolith collections of cod caught by inshore line gears and offshore research vessels using small mesh otter trawl during 1947-66 in

Divisions $4 R$ and $4 S$.

Fig. 1. Trends in mean length at age of offshore cod caught by small mesh otter trawl during 1947-66, Divisions $4 R$ and $4 S$.

Fig. 2. Trends in mean length at age of inshore cod caught by line gears during 1953-65, Divisions $4 R$ and 45 .

Fig. 3. Growth curves of offshore cod, Divisions $4 R$ and $4 S, 1947-66$. Two curves are fitted to the data at calculated for ages 2-7 and 2-15 Shaded circles indicate ages used in growth calculations and open circles those not so used. Number of fish is in parentheses.

FiE. 4. Growth curves of inshore cod, Divisions $4 R$ and $4, S$. Shaded symbols indicate ages used in growth calculations and open symbols those not so used. Numbers of fish are in parentheses.

Fig. 5. Growth curves of inshore cod, Divisions $4 R$ and $4 S, 1953-64$ and 1966. Shaded symbols indicate ages used in growth calculations and open symbols those not so used. Numbers of fish are in parentheses.

