THE NORTHWEST ATLANTKC FISHERIES

ICNAF Res.Doc. $69 / 46$

ANNUAL MEETING - JUNE 1969

Report of Mid Term Meeting of Assessments Subcommittee

London, 22-25 January 1969

1. The Assessments Subcommittee met under the Chairmanship of Mr B.B.Parrish in London by courtesy of the Ministry of Agriculture, Fisheries and Food from 22 to 25 January 1969. Other participants were Dr F. Chrzan, Mr Z. Pietniewicz (Poland), Mr J. Gulland (FAO), Dr A.S.Bogdanov, Mr L. Zheltov (USSR), Dr A. Meyer, Dr A. Schumacher (Germany), Mr Sv. Aa. Horsted (Denmark), Mr D.J.Garrod (UK), Dr A.W.May, Dr G.F.M. Smith, Dr F.D.McCracken (Canada), Mr R. Hennemuth (USA) and Mr L. R. Day (ICNAF). Dr D. Cushing (UK) attended for a half-day discussion. The agenda is attached as Appendix I.

2. Provisional Estimates of Catch Quotas for Subarea 1 Cod and Subarea 5 Haddock

At the Commission meeting in 1968, R\&S reported results of recent assessments of the state of the exploited stocks in the ICNAF Area. They indicated that for the main cod and haddock stocks any increase in fishing beyond the present level would certainly not result in any long-term increase in average annual yield. They also showed that for some of these stocks a reduction in fishing mortality rate from the present level, through regulation, would not result in any appreciable decrease in long-term, average, annual yield, and would probably increase it. At the same time it would result in an increase of the average catch-per-unit effort and a reduction in the total fishing costs. The assessments showed that this applies especially to the cod stock in Subarea 1 and the haddock stock in Subarea 5, both of which have been over-exploited in recent years. It was reported further that, for both of them, the scientific data needed to set up and operate a catch quota regulation are currently available.

Further analyses, carried out since the 1968 Annual Meeting, do not change these conclusions and point to the desirability of introducing regulations controlling fishing mortality rate ($\mathrm{e} . \mathrm{g}$ 。 catch quotas) on these stocks, additional to the mesh size regulations currently in force. Therefore, as a guide to the Committee on Regulatory Measures, provisional estimates have been made of the total catch quotas which would have to be set at the present time for the Subarea 1 cod and Subarea 5 haddock fisheries respectively to achieve specified reductions in fishing mortality. These are set out briefly below:

(a) Subarea 1 Cod

From information on the numbers of cod caught in a given year, the fishing mortality rates for the fully recruited age-groups, the mean weight of fish at each age in the exploited stock and the number of new recruits entering it, it is possible to estimate from the avallable information for one year, the total catch which can be taken, for a given fishing mortality rate, in the next year. is an example, estimates of these catches have been made for the cod fishery in Saharea 1 for 1968 and 1969, based on observed catch data for 1967, and fishing effort data for 1965. Since 1965, fishing mortality has increased at least up to 1967, and if this trend has been continued into 1968 would give a fishing mortality of around 0.80 . Values of fishing mortality $10-25 \%$ less than this (i.e. $0.72-0.60$) will give yields per recruft not subetantially less, and possibly higher.

The yoar-classes now recruiting to the Greenland cod fishery are weak, so that the catch is likely to decrease in the immediate future, whatever course of action, ia adopted. Quotas for 1968 to give specified fishing mortalities are:

To achieve	F	$=$	0.80	349,000 tons
$"$	$"$	F	$=$	0.72
$"$	F	$=$	314,000 tons	
			0.60	285,000 tons

The quota for 1969 will depend on the removals in 1968, which are unknown. Because of the weak year-classes, fishing mortality may not have been as high as 0.80 even in the absence of regulation due to temporary diversion to other areas. Possible quotas are:

If 1968 fishing mortality had been 0.80

To achieve 1969	F	$=0.80$	281,000	tons
To achieve				
1969	F	$=0.60 \quad 228,000$ tons		

If 1968 fishing mortality had been 0.60
To achieve $1969 \quad F=0.60 \quad 276,000$ tons
These figures show that, with the reduction in fishing mortality rate, the estimated catches, i.e. (the catch quotas) in both 1968 and 1969 are, of courae, lesa than at the higher mchanged rate, but the eatimate for 1969, with the 25% reduction is only slightly less, indicating that most of the initial loss in catch due to the cutback in fishing effort has been made up by the end of the second year.

It is emphasized that the above estimates are only examples of the catch quotas to achieve a cutback in fishing mortality rate of 10% at 25% in 1968 or 1969. They do not apply to the quotas if regulations are first introduced in 1970 or subsequently. These will depend on the values of the population parameters (e.g. mortality ratea, growth and especially, recruitment) applying at that time. As mentioned above, the year-classes, recruiting in 1968 and 1969 are known from pre-recruit surveys to be weak ones and the available data point to the one recruiting in 1970 also being weak. With continued high fishing this will result in a further decrease in catch in the unregulated fishery in 1970 to a lower level than in 1969, which would therefore, necessitate, getting lower quotas than those indicated above.

(b) Subarea 5 Haddock

During the period 1935-1963 the Georges Bank haddock fishety was a reasonably stabilized one with an average annual yield of about $\$ 0,000 \mathrm{~m}$. tons. With the recruitment of the strong 1962-1963 year-classes, in the yars 1964-1966 there was a rapid increase in fishing intensity, and hence in fiehing mortality rate, giving annual yields of over 100,000 tons, but, with the rapid decrease in abundance of these strong year-classes and the subsequent recruitment of the weak 1964 and 1965 year-classes this was followed in 1967 and 1968 by a sharp reduction in stock abundance and catch, which resulted in a reduction in fishing intensity to approximately the original level. The stock abundance in 1968 was, in fact, at the lowest observed level on record, approximately one-third of that during the 1935-1963 period of stabilized fishing. This is shown by the data in the first two columns in the table below.

Landings, Fishing Effort and Stock Abundance data for Georges Bank Haddock for the period 1935-1963 and for 1968 and the estimated catch in 1969 to maximize
catch-per-recruit

	$\begin{aligned} & 1935-1963 \\ & \text { Annual } \\ & \text { (Average) } \end{aligned}$	1968 (estimates from Provisional data)	$\frac{1969}{\text { (Estimated) }}$
LANDINGS (By wt	48.000 tons	25-31,000 tons	16,000 tons
Number of 2 (By no	3.8×10^{7}	$1.6-2.0 \times 10^{7}$	1.1×10^{7}
Number of 2 yr old and older haddock in exploited stock	13.0×10^{7}	4.3×10^{7}	3.7×10^{7}
Numbers landed per (All age groups day fished (US otter	5,572	1,863	1,600
trawlers) (2 yr olds	1,356	200	<100
TOTAL FISHING EFFORT			
Number of days fished in US trawler units)	7,000	8-10,000	7.000

Using the data for 1968 in the secor d colum of the above table and data on the strengths of the 1906 and lyul year-chisises which will recruit co the stock, the estimate is given in che third columu of the catch quota which could be set for 1969 to maxi wize the tatch-per cecruit at an annual fishing mortality rate of 65% corresponding with the intensity of Eishi:tg during che earlier period of stabilized fishing. It shows that to whieve this the catch in 1969 should not exceed 16,000 cons, conpared with the estimated cetch of $25-31,000$ tons in 1968 . A much greater reduction in catch than this would be necessary if any recovery of the stock would be achieved by 1970.

Data 1 tom pre cecrult fishing surveys show that the 1968 year-class, which will first reeruit to che $41 / 2$ inch mesh fishery $2 n 1970$, is also very weak. Despite uncertainties abuut the telationship between stock and recruitment the Subcomittee considers that, in order to perrit the most tapld rebuilding of the adult stock, and so give an improved chance of better recruitment, it is desirable to restrict the catch to che lowest practicable level for the next few years (i.e. at least up to 1972). Complete closure of the haddock fishery would be the ideal from the point of view of the most rapid recovery of the stock.

The present serious state of the Georges Bank haddock stock and the need for severe regulating measures is largely due to (a) an explosive increase in fishing on strong year-classes immediately after their recruitment to the exploited stock; (b) an unprecedented sequence of poor year-classes. With the presence of highly mobile fleets fishing in the lCNAF Acea, it is clear that fishing can be diverted quickly from one resource to another so that, without regulation strong year-classes can become rapidly depleted resulting, dt best, in very large, shortterm fluctuations in catch and lower long-term average yields but perhaps also in decrease in average recruitment.

The results of the dssessments presented co the Comnission in 1968 showed that the haddock stocks in Sutsarea 4 are aleo fully exploi ced. Poor recruitnent and increased fishang intensicy has led to a decrease in haddock stock density in this subarea also, and since chis will atiect the stock through several years the diversion of fisting fiont the Georges Bank laddock to thest stocks cannot, there. fore, be expected to resulr in incredsed suitilized yields

The Subconanttee wishes to emphasize that regulations controlling itsh
ing mortality rate are not alternative to matize that regulations controlling ish the earlier statements by $R \& S$, ind to reiterate yield per recruit of cud ac W Gill bill be a gain in the long term increase $1 n$ mesh size above that in force, and in some other areas, by a turther increase in mesh size above that in force at the present time

Mid-Term Meeting of Assessments Subcomittee

London, 22-25 January 1969

Agenda and Timetable

22nd and a.m. 23rd January

l. Catch quotas for Subarea 5 haddock and Subarea 1 cod
2. Consideration of other regulatory measures for these and other stocks
a) further increases in mesh size
b) closed areas and/or seasons
c) direct control of fishing effort
p.m. 23 rd and 24 th January
3. Consideration of assessment models
a) the validity of the constant parameter model, with special b) reference to the recruitment: and growth parameters b) the application of other models
a.m. 25th January
4. Assessments of other cod and haddock stocks in the ICNAF Area, with special reference to Subareas 3 and 4

