RESTRICTED

THE NORTHWEST ATLANTK FISHERIES

ICNAF Res. Doc. $69 / 48$
Serial No. 2188
(D.c.4)

ANNUAL MLETING - JUNE 1969

Growth of inmature herriru in i iswaminuolivarez = Bay of rundy
by S. IV. Mesisich
Fisheries Jiesearch Board of Cinida Biolorical Stition, St. Antrews, iN. B.

Introduction

Young, immature herring (whematharcapus L.) - so-called sardines - support a major fidstery in the rassamaquoddy bay area-Bay of Fundy (ICNAF Division $4 X$). 'lhe fish apperir first In the catch in late fall whon they have just completed their first year of life, and dominite the catch in the following year. bach year, a new, easily distinguished year-class is recruited to the fishery, thus offering an excollent situmtion for studying the growth of young, immature herring in successive years.

Huntsman (1919), in a study of young herring in the area, reached a tentative conclusion that there were two groups of herring; spring-spawned fish which reached a lenpth of 8.5 cm and 15 cin by the first and second winter respectively, and fall-spawned fish which reached 12.5 can by the second winter. His study was based on the "reterson method" of assigning ages to modes in length frequency distributions.

Parrish (MS, 1953) in a brief study of tierring otoliths from Fassamaquoddy Bay, noticed a difference in otolith structure between age-groups I and II, and questioned whether the age-groups present in any year were from a single population.

The aim of this work was to estimate the rrowth of imnature herring (mainly age-group I) and attempt to identify different sub-populations on the basis of growth characteristics and size at recruitment.

Materials and Methods

This stidy is based on examination and analysis of 162 samples and 8200 pairs of otoliths froll the period $1965-1968$ (Table 1). The fish ranged from $75-220 \mathrm{~mm}$ in total lengths and from 0 to $I I$ years old.

Ages were estimated from the otoliths and each fish was as:igned to an are-group. Are definttion is based on the calendar year. Since the majority of fish are fall-spawned, a fish is considered of age-group 0 until the and of calendar year following its hatchinf. On January 1 of the subsequent year it is considered as afe-froup I.

Separation of theoretical norinal distribution curves from polymodal monthly length distributions was attempted by plotting the cumulative frequency distributions on probability paper; the procedure is described by Harding (1949) and discussed by Cassie (1960).

As indices of growth, relative increments "c" and peometric (or instantaneous) growth rates "K" (Bryuzgin, 1963; Brody, 1964) were calculated as follows:

and

$$
K=\frac{\log _{e} \ell_{2}-\log _{e} l_{1}}{t_{2}-t_{1}}
$$

where l_{1} and l_{2} are fish lengths at tine t_{1} and t_{2} respectively.

Results

Plotting mean length at age against capture data on a time scale (Fig. 1) showed the general trend of growth. The relationship between length and tine (month) for age-group I, which was well represented in all months, was obvious but it was difficult to determine the growth function due to variability in sample means.

Plotting monthly mean lengths of age-group I for successive months (Fig. 2) produced rowth curves which were similarly concave upward though of different magnitude. In 1966, 1967 and I9世8 sampling years (Fig. 2) growth was negligible from January to April and in 1965 from January to March.

Comparison of monthly growth increments showed that growth slowed down during the last quarter of each year (l'able 2). In any year the increment of the last quarter was smallor than the increnent of the previous quarter; Fluctuations in monthly increments (Table 2) and in monthiy means (Fig. 2) reflected the polymodality of length frequency distributions of age-group I.

Separating the individual components which correspond to each of the modes in the polymodal length frequency distributions, and plotting the mean of each component at successive months (Fig. 3) produced growth curves which were similar to the curves produced from monthly mean lengths (Fig. 2). However three length groups appeared in all sampling years (Fig. 3). All curves were concave upward, indicating an increase in monthly growth rates until Septenber, after which there was a tendency to a decrease In the last three months.

When monthly means were plotted on semilog paper (Fip. 4) the points were found to fit nearly rectilinear ilnes. This suggests that the changes in length are functions of length itscif and the lengths of the fish at a given time would be represented by the growth equation:

$$
\log _{\theta} \mathscr{L}_{t}=\log _{\theta} \measuredangle+K t
$$

where \mathscr{L}_{0} is the value of the variate at the beginning of the growth period, \mathcal{L}_{t} is the variate at the end of the period, and K is the geometric (or instantaneous) rate of growth.
the monetric ritee of ronth (t', bly 2) were fourl sinilar lo tioe relitive increments; esch had the same flucturtions as the other. However, the pemotric rate indicited a lower matnitude of growth as would be experted duriar the first years of life (1'tble 2).

Growth of fish of aperroup I from diflerent fishery
 in order to minimize the fluctuations in the neary lengths. Fluctuations amorg districts anc between quarters vere distinct, and overlapping between quarterly mans mas obvious in sone cases. None of the fishery districus tenced to have ijsh of particular size.

Discussion

The present study confirmed luntsman's (1919) conclusions that the rowin!, season is frof H ty to Beptember. 'lhis differs from Mcliarland's (1931) findings that the season of growth extends into the winter.
F^{2} luctuations in absolute monthly increments (rabie $)$ refle:t the flucluations in the monthly mean lengths (f'j. 2). 'inis indicites the inadequacy of the use of monthiy means in comparing monthly irowth rates.

I'he polymodality of leffth frequency distributions of fish of the same are (age-group I) reflects the diversity of copulation elements exploited by the fishery. this is also evidenced in the wide variation in the sample inears (Fig. 1).

The growth curves constructed from the theoretical normal curves of the polymodal length frequency distributions (Figs. 3 and 4) showed that at least three "size-gromps" were represented in a;e-troup I. the growth curves in all years oi sampling were nearly parallel, indicatinf that these groups were rrowirg at aproximotriy the same rate. The consistency and similarity of the dif'erent growth curves in all years of samplin: suggest that the differences have biolorical meanine. It is suggested that they are due to age differential resulting froa spawning at

Huntsman (1919) reported that both spring-and fall-spawned herring were found in the Bay of rundy. However, the same aytror (1ソ34) reported that spawning seems to be graded in time ira. early in tha summer to late in the seasor.

Tibbo, Legare, Scatterpood arid Temple (1'50) found "remly hatchod larvae chiefly in Septerber and Octover, and in sone seasons hatching was extended ir to Noveaber and possibiy into Docenter ".

Ir such conditions, only tre early-spawned part of the hatched larvae could metamorphose. The remainder, spawned late, m:y fail to netamorphose, and overwinter.

Dis (1960) round that the lent: th frequency distributions of zutum lirvae were bimodal, and ascribed tham to "broods" orisinating within the Bay. He also coneluded that there was a continuous migration of post-larvae to the area durin; the sirrifir.

Hence, the three size-groups which are shown in the growth curves (biss. 3 and 4) may orifjnate fron herring which hatchod in the sunner-fall and the spring-spawning seasons respectively.
l'he fluctuations in the quirterly means (tif. 5), ard the overlaming of some of the quarters probably reflect the heteroreneity of the fishery and the f'ree mixing of the size-groups anont; sampled fishery districts. Ihis i's iu conformity with iraham's (1736) conclusion that "there is an apparent independerce of the main stock from purely local conditions". He described the herria' population in the area ds an extensive boty of herring ir the mure open sea touching the coset here ati tiore.
deferences

Brody, 3. 1orl. Bioenergetics and growth. Haefner Publishine Company Inc., New York. p $495-514$.

Bryuzgin, B. L. 1963. O metodakh izucheniya rosta ryb po cheshue, kostiam i otolitam (Methods of studying frowth of fish using scales, bones and otoliths). Vop. Ikhtiol. 3, 2, 347-365 (FRB Trans. No. 553).

Cassie, $k .4$. 1950. The analysis o polymodal frequency distributions by the probability papur method. New Lealand bience review, 8.

Was, Haresh. 1963. Spawning, distrinution, survival and mrowth of larval herring (Clupea harengus L) in relation to hydrographic conditions in the Bay of Fundy. Canada Fish. des. Dd. Iechnjeal report No. 88.

Graham, M. 1936. Investigations of the herring of Passamacuoddy and adjacent regions. J. Biol. Bd. Canada $2(2)$.

Harding, J. 1949 . I'he use of probability for the graphical analysis of polymodal frequency distributions. J. Arar. Biol. Ass. U.K., N.S. 28.
liuntsman, A.f. 1919. Growth of the young herrin: (so-called sardines) of the Bay of Furdy. Canadian fish. ixpea., 19141915.
1334. Herring and water movements. Lancashire DeaFisheries Lab. James Johnstone Memorial Vol., Univ. Jress, Liverpool.

Macrarland, W.. ., WS. 1931. The distribution and movements of the herring of the Bay of Fundy. MS No. 445 , St. Andrews, w.j.
varrish, 13. B., 你. 1958. An appraisal of the passamaquoddy terring problem. Fish. Kes. bd. Canıda, MS Rept. (Biol.), No. 663.
'i'ibbo S.N., J.E.H. Legare, L.W. Scattergood and r. F. Nemple. 195j. Ori the occurrence and distribution of larval herrir: (iiupea Res. bi. Canada $15(6)$.
Table 1. Suamary of herring samples.

Year	Number of samples	Pe_number of rish					Percentage age I group
		Say	East	dest	Grand	Total	
			Charlotte	Iles	Manan		
2065	30	350	40	300	450	1550	
1966	34	400					
1967	51		800	200	300	1700	35.4
1968	47	900	1000	350	350	2600	66.7
	4	700	800	200	650	2350	82.3
Total	162	2350	3050	1050	1750	8200	69.8

Table 2. Herring length-growth and growth rates in four sampling years.

Increment inmm per month Month	Sampline year			
	1965	1966	1967	1968
1	-	\cdots	-	-
2	-0.9	-	1.8	0.4
3	2.8	-0.3	3.8	1.3
4	9.0	1.2	-11.4	-3.4
5	2.7	24.9	10.0	2.1
6	3.0	-7.3	3.0	9.7
7	2.9	24.4	7.1	-5.3
8	16.7	-0.3	23.5	16.6
9	0.5	19.4	11.0	21.1
10	3.3	2.3	3.8	9.1
11	14.0	1C. 3	9.3	7.4
12	-8.4	7.9	\sim	4.5
Increment in min per year	45.6	82.5	62.1	63.6
Relative growth	.394	. 803	. 525	. 528
Geometric growth rate	. 333	. 588	.423	.423

Fig. 2. Mean length by month of age-group I for four sampling years. Vertical lines show observed ranges of lengths; rectangles mark standard deviations with solid block indicating 2 standard errors from the means.

Fig. 3. Hypothetical growth curves of 3 "size-groups" of herring within age-group I (Curves are eye-fitted).

Fig. 4. The relationship of length to time (month) for different size-groups of age-group I (lines are eye-fitted).

Fig. 5. Quarterly mean length of age-group I by fishery districts for four years of sampling (fish numbers are shown).
A 1st. quarter

- 2nd. quarter
- 3rd. quarter
- 4th. quarter

