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1. Introduction 

The first statistical problem with age-length data is how to 
estimate mortality, growth, year-class strength, etc. This paper is 
not concer~ed with that question. Once such estimates are found, 
"second order" questions corne up: What are the properties of these 
estimates, and how can the data be collected to improve these properties 

We need a different kind of answer to these "second order" 
questions. The answer to an estimation problem is a number, the 
estimate, but in the second case, "the purpose ... is insight, not 
numbers". Whereas an estimate must be accurate and may be complicated, 
the description of its properties may be rough but must be simple if 
it is to be generally useful. 

A few examples of such "second order" questions: 

(i) What lengths of fish should be selected for ageing by 
otolith or scale? Should length groups be sampled proportionately, 
by equal sample sizes from each length group, or some other allocation? 

(ii) How large is the 
large sample sizes are needed? 
should be used? 

statistical sampling error? How 
What sort of significance tests 

(iii) Sampling programs would be less 
keys could be pooled. When can this be done? 
is the penalty of pooling when you shouldn't? 

(iv) What happens if the age-length 
distribution come from different populations? 
suggested by W.E. Ricker.) 

expensive if age-length 
To what extent? What 

key and the length 
(This question was 

Any study of questions like 
the basic paradox of age-Ien~th keys: 
bution (especially mortality) and the 

these is immediately entangled in 
Although it is the age distri

conditional distributions of 
~ .L· _ ~. 

J.1l !Sl:UurJ.ll~ LUC: y,-operties of growth rate and mortality estimates, as 
opposed to actually calculating their numerical values, it is more 
important that the mathematics be simple than that it be accurate. 
Approximations are suggested for use with age-length keys with crudely 
linear growth curves, and these approximations applied to a few 
common questions concerning age-length keys. 
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length at fixed ages (especially the growth rate) which are wanted, it 
is the complements of these which are actually collected, the length 
distribution and the conditional distributions of age at fixed lengths. 
In such a pass, any simple formulae relating the directly measured 
quantities to those indirectly measured but more meaningful would be 
a boon, even were these formulae but. crude approximations, useless 
to the person actually performing calculations to estimate growth, 
mortali ty, etc. 

Thus we finally arrive at the main purpose of this paper: 
To devise formulae connecting the quanti tie's measured to the quanti ties 
actually wanted, and explore these in terms of the questions (i) -
(iv). . 

2. Basic Approximations 

It is assumed that the growth curve is linear. Although for 
most data it can be verified that this is not the case, there are two 
justifications of such a simplification. First, linearity is often, 
perhaps even usually, correct as a first order description. Second 
is the remarkable success of crude linear approximations in varied 
applications. 

For any given age-length distribution, the relation between 
the growth rate, G, the slope of the least squares line of length on 
age, and the slope of the least squares line of age on length which is 
denoted B, is 

G • r'B- l (2.1) 

where r is the correlation coefficient. The contributions of the age
length key and the length distribution to r can be separated, 

r • B'/(B' + F) 

F • St.!'/St' 

(2.2) 

where. is the standard deviation of the length distribution and St.t' 
is the mean square deviation of age from the least square line of 
age on length. Thus the age-length key enters the linear growth rate 
through Band St.t and the length distribution through St' This would 
be a complete solution were it not that B is quite independent of the 
length distribution only if the regression of age on length is linear. 
(The factor St'1 also depends on the length distribution but as its 
influence is rather small, this is not likely to be important.) As it 
is, (2.1) is approximate, the degree of approximation depending on the 
linearity of the regression. 

A relation between instantaneous mortality and growth is 

Z = GZ' (2.3) 

where Z' is something primarily determined by the length distribution. 
Ricker (1958) in Chapter 2, Section G, investigates taking Z' as the 
decay rate of the right limb of the length distribution as Z is the 
decay.rate of the right limb of the age distribution. His conclusion 
that the approximation is poor need not deter us altogether as our 
demands are less stringent than his. 

There is also a choice of Z' which makes (2.3) exact under 
the as~umptions of a linear regression of length on time, and that all 
recruitment takes place at age to. The second assumption is no real 

restriction as it can be achieved by truncating the data after 
collection. The first assumption again enters only through the demand 
that the least squares line of length on age be independent of the 
length distribution. This definition of Z' is 

Z' • 1/ (1' - . tal (2.4) 

where Y is the mean length and ~o is the recruitment length in the 
sense that it corresponds to to on the least squares line. The 
derivation requires integration and is set out in chapter 7. 
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~. The Distribution of Information 

Although the manner of distribution of information between 
the age-length key and the length distribution is easily worked out, 
and some aspects at least, published before (Gulland, 1956, p. 24), 
an explicit statement should be made. Most of the information about 
growth is found in the age-length key. Equation (2.3) tells us that 
the length distribution informs us primarily about the ratio of mortality 
to growth. The comparison of strengths of adjacent year-classes can be 
made on the basis of the age-length key alone; for separated year
classes, some kind of correction for mortality is needed. 

If a von Bertalanffy curve is fitted, the distribution of 
information is rather interesting. In what should be (Knight, 196M) 
the usual situation, the asymptote, L~J is determined by the size of 
the largest fish; this must come from the length distribution. On the 
other hand, the linear properties of the curve come from the age-
length key. A line is determined by its intercept and slope; with the 
von Bcrtalanffy curve the intercept is given by to' and the slope is 

approximately KL~. (The slope at to is KL~ by a simple differentiation.) 

Thus to and the product, KL~, are determined primarily by the age-

length key, and L~ by the length distribution! 

4. Some Questions Roughly Answered 

We now return to the questions raised in the Introduction: 

(i) In sampling otoliths or scales for age reading, should 
each length class be sampled proportionately, sampled equally, or 
some other allocation? As far as mortality and growth, but not year
class strength, are concerned, the important thing is the accuracy 
with which the regression of age on length is measured, this being the 
dominant term in (2.1) and thence by implication the important part of 
the age-length key appearing in (2.3). (Z' is a property of the 
length distribution only.) A regreSSion line is best estimated by 
concentrating effort near the ends of the line. Indeed, in principle, 
the only reason for taking any points near the middle is to check the 
adequacy of the linearity assumption. On the other hand, for 
estimating relative year-class strength, about equal attention to all 
ages, and thence by the approximate linearity of the growth curve, to 
all lengths j is called for. These considerations pretty clearly 
pOint to a practice already in use: Take a complete sample of the 
largest length classes and the smallest; then take equal numbers from 
the rest. 

(ii) What about confidence intervals and tests of signifi
cance for growth and mortality? For practical purposes it suffices to 
get an approximation to the variance, or what is as good, the co
efficient of variation. Denoting by v(*) the coefficient of variation 
of *, the usual linearization technique plus some crude approximation 
yields 

v(G) ± (V(B)' + (GFv(F))' (4.1) 

The derivation is relegated to a later section. For the coefficient 
of variation of Z the usual approximation is 

v(Z) • I v(Z')' + v(G)' (4.2) 

(iii) When can age-length keys be pOOled, and what is the 
penalty of pooling without justification? Since the age-length key's 
information is mostly about year~class strength and growth rate, it 
suffices that these be the same. Put more generally, hence vaguely, 
the age-length key describes some of the biological properties of tne 
stock at some timej whereas such man-created things as gear selection 
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and fishing intensity show up in the length distribution, thus it 
should be safe to mix age-length keys for the same stock OVer such 
a time interval as it remains stable. 

The penalties for pooling unlike keys are these: First, 
the year~class strengths will be mixed. Second. any difference in 
the length distributions will be interpreted primarily as a difference 
in mortalities, even if really a difference between growth rates, for 
most of the information which could distinguish between different growth 
Tates has been lost in the pooling. 

(iv) What if the age-length key and the length distribution 
actually come from different populations? Upon considering section 3, 
we find ,that some information can he salvaged for the population from 
which the age-length key was drawn, but little from the o~her. The 
growth rate, and the relative strengths of nearby year-classes, are 
relatively insensitive to the length distribution. Except in unusual 
cases, no information about mortality is available. 

5. Sampling Error of the Primary Quantities 

Formulae (4.1) and (4.2) give rough estimates of the error 
of the secondary quantities on the basis of estimates of the error 
of the primary quantities. There remains the need of estimating the 
errors of the primary quantities, a considerable problem and one outside 
the scope of this paper. To illustrate some of the considerations 
involved, I remark on an attempt which failed, an endeavour to assign 
error bounds to the growth rate and mortality rate derived from a 
routine age-length key for cod, commercially caught by otter trawl in 
ICNAF Division 4T in 1966, extracted from the files of the St. Andrews 
Biological Station of the Fisheries Research Board of Canada. The 
reader can skip the rest of this section with no loss of continuity. 

The values of G and F are readily calculated while running 
textbook linear regressions of length on age and age on length. 

The estimation of the coefficient of variation of B cannot 
be done with the distribution in its final form for presentation; the 
numbers do not represent real fish, but elaborate weighted com.inatians. 
I first considered the possibility of using the unweighted age-length 
key which, though not made up, is readily calculated from worksheets 
available. The regression of age on length could be run on the 
unweighted key yielding a regression equation of no interest whatever, 
and an error estimate of the slope of regression whose calculation is 
the purpose of the exercise. Unfortunately, the textbook error term 
assumes that the 28 samples whose combination make up the unweighted 
age-length key are homogeneous, an assumption hardly tenable after 
the report of Dickie and Paloheimo (1965), and a similar study by the 
author (unpublished). 

The situation for length distributions is much worse than 
for the age-length keys. Dickie and Paloheimo in the study noted 
before found far greater heterogeneity among length distributions 
than conditional age-at-Iength distributions (as measured by the 
likelihood ratio statistic for contingency tables). Moreover, while 
methods for estimating the error of a regression are commonly found in 
textbooks regardless of their applicability to the present situation, 
estimates of the error of the estimated standard deviation of the 
badly skewed distribution, such as the typical length distribution, 
and estimates of the error of the decay rate of the right limb of 
the length distribution are not easily found in textbooks or anywhere 
else. 

6. Derivations of Equation (2.2) 

Equation (2.2) is a descriptive identity and holds whether 
or not growth is linear although it will not be relevant for extreme 
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non~linearity. It is derived from the following well known formulae: 

GB • r2 

H St 2 • mean of products about mean = G 5
t

2 

rZ • 1 _ 5 2/S 2 
t'l t 

where St is the age standard deviation; (6.1) and (6.3) can 
in Steel and Torrie (1960, p. 188); (6.2) is immediate from 
definitions of Band G. Solving (6.2) for St' , 

s2aBs2/G 
t 1 

(6.1) 

(6. 2) 

(6.3) 

be found 
the 

(6.4) 

and substituting (6.1) and (6.4) into (6.3) to eliminate rand 

respectively, 
s ' t 

G • 1 - G s '/B s ' t-1 t 

which is solved for G yielding (2.1). 

7. Derivation of (2.4) 

(6.5) 

~quation (2.4) rests on the fact that the reciprocal of 
average age is an estimate of mortality. That this is true for the 
case of constant mortality is a simple exercise with the exponential 
distribution. For any distribution the following holds: 

Let 2(t) be the mortality at time t, that is 

(df(t)/dt)/f(t) (7.1) 

where ret) denotes the age distribution density function. It is 
usually the mortality for large t in which we are interested; we 
express this by taking as our overall figure for mortality the 
weighted average, where the weight is age over the recruitment age, 
thus 

2 

The numerator is 

~ 

~(t-to)Z(t)f(t)dt 
to 

f (:-to)f' (t)dt 

to 

~ 

/ [(t-to)f(t)dt 

to 

r :(t)dt 

to 

by integration by parts. We then have weighted average 

2 (t) • 
t 

1 • G 

to l' 10 

(7.2) 

(7.3) 

(7.4) 

where t and I are respectively the average age and length of fish of 
age t or more. The right equality is merely a restatement of the 
equat~on for the least squares line, we have (2.4). Note however 
that G here is the slope of the line fitted to fish of age to or more, 
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not the entire population, hence the necessity of the assumption that 
G is stable. 

S. Derivation of (4.1) 

Equation (4.1) follows from the usual approximation with 
partial derivatives, plus a crude approximation. The partial of G 
with respect to B: 

aG • a [ B] 
a1l TIl" JP+ll' 

GCi - ~tF) 

• G Ii( 1- 2GB) 

*(1- 2r ') (8.1 ) 

In an approximate formula, subtractions can be downright dangerous, 
but noting that I 1-2r 2

1 ~ 1, the approximation below is conservative. 

aG < G 
aB li 

C8 • 2) 

The partial of G with respect to F 

aG • G G' 
1iV JP+ll' • Jl' (8.3) 

Taking VC*) to mean the variance of * the usual linear approximation, 

V(G) . (~), V(B) + (*)' V (F) (8.4) 

leads to, 

'£iQl • V(B) + (GF) , ~ (8.5) 
G' B' F' 
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