THE NORTHWEST ATLANTIC FISHERIES
ICNAF Res.Doc.Eg/74

ANAUAL HEETTNG - JUNF 1969

On the porminility of asposicisk teck mize and catch guota Tor Subarea 1 cod
 by Sv.Aa. Horsted
 (Greenland Fiaheries Inveatigations, Charlotteniund, Denmark)

Introduction.
This paper is not intended to be more than a basis for the discussion on the possibility of estimating present and future stock size by age groups and future catch (eventually eateh quota) of Subarea 1 cod. A work sheet for such calculations is proposed. This proposal may not, however, be the only practicable approach to the problem. It ia therefore hoped that the paper will initiate further studies on catch quota assessment.

Present knowledge and future work resuired on the biological side of catch quota management.

The fundamental knowledge necessary for aetting a catch quota with any accuracy of practical interest consists of
a. Complete, reliable and prompt statistics on catches, landings and effort.
b. Adequate knowledge of age composition of catches by division, gear and quarter (or month).
c. Current knowledge of paraneters on growth and mortality including analysis of such parameters' dependence on changes in environment and stock density.
d. Some broad knowledge of the itrength of the pre-recruit cod year-classes. The closer these pre-recruit year-classes are to enter the fishery the nore acourate knowledge is required.
Re. a. Statisticg: Present quality of data seems sufficient good al though inprovement could and should atill be achived. The speed by which data are available has, however, by mid May 1969 not allowed the author to make more than a rough calculation of the probable 1968 catch and a partly arbitrary assesment of the 1969 stock size and catch leaving for 1970 nothing more than a feeling of the trends in stock size changes.

If the Comalssion by Junc in any given jear wishes to have reasonable accurate proposala for next year's cateh quota and some guidance on the next 2-3 years' catch it is obviously necessary to apeed up the circulation of sanpled data and statigties.
Re. b. Sampling: Although present knowledge of age composition of catches seems rather good more inteasive and especially better planned and co-ordinated sampling is required fer the managenent of a quota systom. Considering,
however, the very great progress already made in sampling it seems most likely, that an adequate intermational aampling routine can be achieved. Again, however, apedy analysis and exchange of data is required.
Re. c. Parareters: The knowledge of parameters is, of course, closely connected with items a. and b. mentioned above.
Re. d. Premrecruite: Previous and present aurveys on fish larvae and youngest age-groups of cod have given sone knowledge of the strength of the pre-recruit year-classes enabling us to predict recruitment of "poor", "medium", "rather good", "atrong" etc. year-classes and to predict upward and downard trends in stock aize. For catch quota management this broad knowledge may not be sufficient. It will, therefore, be necessary to extend field work on the pre-recruit, for example by research vessels trawling with fine meahed trewls at selected stations oach year at a certain time. Field work of this kind has been started by Denmark in 1968. Preliminary results seems promising but cannot be fully evaluated before the present pre-recruits have been exploited some years.

From what $1 s$ said above the best possible way of handing the biological side of the catch quota management may be to form a working group for each regulated aubarea. Such a working group would probably consiat. of one expert from each member country fishigg in the subarea. If the group meets in April every year national statistical offices and national fisheries laboratories should be able to provide data for the preceding year which their member of the working group could bring to the meeting. The findings of the working group could then be circulated in due time before the anmual meeting of the commisaion allowing countries to study the report and discuss the practical side of the catch quota managerent before and during the annual meeting.

Proposal for a model and a work sheet for stock size and catch quota assessment

The work. sheet for calcuiating stock size and catch shown in this paper has been worked out and filled in by the following procedure:

Annual landings broken dowa by age-groups have been calculated from existing samples and atatistics as mentioned in paper by Horsted (1967a). These figures are given for the years 1962-67 in line headed ${ }^{n 51}$, giving numbers $x 10^{-3}$ landed.

Supposing the annual value of F (taken from Horsted, 1968) given in uppermost heading of the sheet applies to all age-groups and setting in this example M=0.2C for all exploited age-groups one can readily calculate the initial numbers present per year-class at the beginning of the year (t),

$$
H_{t}=\frac{C_{t}}{\left(1-e^{-Z_{t}}\right) \cdot E_{t}}
$$

This calculated value (in thousands) is shown in line headed ${ }^{\prime \prime \prime}$.
The numbers left of the respective year-clasa at the beginning of next year $(t+1)$ is then

$$
H_{t+1}=H_{t \cdot} e^{-Z_{t}}
$$

This ilgure is given in line headed " 1 ".

For years on which information on catch and stock oomposition exists (the latest year at present being 1967) $\mathrm{F}_{\mathrm{t}+1}$ can, however, alao be caleulated in the aame manner ac juft mentioned for X_{t}

$$
耳_{t+1}=\frac{C_{t+1}}{\left(1-e^{-2} z_{t+1}\right)_{E_{t+1}}} \text {, again given in line } \mathrm{m}_{2} \text {. }
$$

The initial numbers present of the respective year-classes is thus (for years up to and including 1967) arrivad at in two ways, one figure (line "in) derived from observed catch and P last year, the other (Ine "2") from observed catch and estimated F in the considered year itself. These two figures should by adequate sampling and statistics be rather equal if all age-groups regarded were fully recruited and if our values of F and M applied to all age-groups in the respective years. The two values are, however, not equal. The ratio between them is given in line "3" and also shown in separate table at the bottom of the sheet. It will be noted that while the accordance between "1" and "2" is extremely good for age-groups 7 and older this is not the case for younger age-groups. In all cases younger age-groups are underestimated when the eatimate is based on figures for the preceding year. The explanation for this may be a combination of the following possibilities

1) a considerable migration of amall cod from Greenland coastal waters to offshore banks (Horsted 1967b) and in some years also from SE Greenland waters to Weat Greenland banks (e.g. Hansen, 1967; Meyor, 1965), ii) the slowest growing individuala of each year-class may not have reached the l_{c} value when data for calculation of figure "1" were aampled but so have when data for figure "2" were sampled, iii) information (sampling) on discard and industrial fish is insufficient, iv) F and I have quite other values for the founger cod than those used in the calculations. Long lines, for example, tend to catch rather big fish although set on places where also amaller fish are known to be present (being caught by trawl or by hand line).

The ratio between the two figures (" $2^{\prime \prime \prime}+{ }^{\prime \prime \prime} 1 \mathrm{~N}$) is close to but in all cases less than 1 for age-groupa 9 and older. This could probably be explained by spawning migration of big cod from West Greenland waters to East Greenland Iceland.

Some analyses should be made on these theories but lack of time and partiy of data has not permitted this for the present meeting. In an attempt to estimate the 1968 and 1969 catch by a given overall value of F the author has nevertheless used the mean ratio values given at the bottom of the sheet plus an arbitrary figure for recruite from the 1965 year-class which from most recent surveys seems a promi-sing year-claas.
raking numbers presont at the beginning of 1967 as given in line " 2 " and supposing $F=0.75$ in 1967, ($(M=0.20)$ the numbers present at the beginning of 1968 is readily calculated. These figures (line "1") are thenmultiplied by the mean ratio value thus giving initial exploitable stock in 1968 (line "4"). Same procedure is thenfollowed from 1968 to 1969 but of course with decreasing Iiability in the result since the figure for age-group 4 is quite abitrary.

Supposing $F=0.80$ in 1968 and 1969 and taking mean weight of the various age-groups as in paper by Horated (1967a) the e日timated 1968 catch is app. 349,000 tone while the 1969 catoh with present rather poor knowledge of prem recruith 18 expected to be 293,000 tons only, the reason for the decline being the apparent relative poor recruitment in most recent years.

Supposing one would aim at achieving a fishing mortality of $F=0.60$ (corresponding to a 25% reduction in the estimated present effort) by meane of a eatch quota the 1968 quota would have been recommended to be app. 285,000 tons (poseibly expressed as "not more than 300,000 tons") and the 1969 quota as "not more than 300,000 tons". A 25% reduction in effort in 1968 wouid thus have lead to a $14-18 \%$ reduction in catch while already in 1969 (provided 25% effort reduction did occur in 1968) the atabilized reduced effort would mean a catch nearly equal to what would have been taken by maintaining the estimated actual effort.

The uncertainty by which coming years' atock of youngest age-groups is set seems not to be a serious matter as long as this gtock is not very overeatimated because it has been demonstrated (Anon., 1967) that the highest bio-mass in a year-clasa occurs at an age of 6-7 jeara. A quota aet too low due to underestimated recruitmentythus be compensated by higher output in the next years.

It muat also be born in mind that introduction of a quota system could lead to some changes in the fishing operation, e.g. to concentrate fishery on special seasons and hence on special age-groups thus glving another variation in F between age-groupa than preawed in the calculations here. Also the exiatence of more than just one atock and possible density dependent changes in growth parameters and recruitment must be taken into account.

References:

Anon., 1967 (Gulland ed.). Heport of meoting of Greenland Cod working Group, Copenhagen, 21-25 Pobruary, 1966. ICNAF Redbook 1966, III:3-33.
Hansen, P.M., 1967. Danish Research Report, 1966. ICNAF Redbook 1967, II:26-34.
Horated, Sv.Aa., 1967a. Some observations on year-class fluctuations in the West Greenland cod atock. ICHAF Redbook 1967, III:26-33.

Ibid., 1967b. Posaible effect of a closure of Div. 1B to trawling judged by tagging experiments and other relevant data. ICNAF Redbook 1967, III: 48-81.

Ibid., 1968. Cod in Subarea 1. Review and revision of parameters. Reassessment. ICNAF Res.Doc. 68/57:1-9.

Heyer, A., 1965. German Research Report, Subarea 1, 1964. ICNAF Redbook 1965, II:52-63.

1: Xumbers $x 10^{-3}$ present at the beginaing of the year according to preceding year's oatch and F.
2: 耳rambera $\times 10^{-3}$ preseat at the begianing of the yoar according to same Jeare catch and P.
3: Relation 2+1.
4: Estimated numbers $\times 10^{-3}$ present at the beginning of the year based on figures in 1 and 3, the figure in 3 being mean of provious jears.
5: Numbers x 10-3 landed. 1962-67 baeed on samples and statistics, 1968-69 on estimated stock and asoumed F.
A: Nominal catch (thousand metric tons) in Stat. Bull.
B: Nominal catch calculated from 5 and Fable 2, Horated, 1967.
$+\quad$ including older year-classes.

Year- clase			$\begin{array}{r} 1963 \\ -.54 \\ \hline \end{array}$	$\begin{array}{r} 1964 \\ .59 \\ \hline \end{array}$	$\begin{array}{r} 1965 \\ .65 \\ \hline \end{array}$	$\begin{array}{r} 1966 \\ \quad .70 \\ \hline \end{array}$	$\begin{array}{r} 1967 \\ \hline .75 \\ \hline \end{array}$	$\begin{array}{r} 1968 \\ .80 \\ \hline \end{array}$	$\begin{array}{r} 1969 \\ .80 \\ \hline \end{array}$	$\begin{array}{r}968 \\ .60 \\ \hline\end{array}$	$\begin{array}{r}1969 \\ .60 \\ \hline\end{array}$
$\begin{array}{r} 1 \\ 2 \\ 19533 \end{array}$		$\begin{aligned} & 51605^{+} \\ & 18078^{+} \end{aligned}$									
1 $\left.1954 \begin{array}{r}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right)$	1 4 	$\begin{aligned} & 14772 \\ & 5175 \end{aligned}$	$\begin{gathered} 33627^{+} \\ 32983^{+} \\ 0.98 \\ 12590^{+} \end{gathered}$								
1955	1 2 3 4 5	$\begin{aligned} & 19671 \\ & 6891 \end{aligned}$	$\begin{array}{r} 9965 \\ 15187 \\ 1.52 \\ 5797 \end{array}$	$\begin{gathered} 22982^{+} \\ 21833^{+} \\ 0.95 \\ 8944^{+} \end{gathered}$							
1956	1 2 3 4 5	$\begin{aligned} & 80507 \\ & 28203 \end{aligned}$	$\begin{array}{r} 40785 \\ 57257 \\ 1.40 \\ 21856 \end{array}$	$\begin{array}{r} 27317 \\ 28998 \\ 1.06 \\ 11879 \end{array}$	$\begin{gathered} 23067^{+} \\ 20444^{+} \\ 0.89 \\ 8897^{+} \end{gathered}$						
1957	1 2 3 4 5	$\begin{aligned} & 271522 \\ & 95118 \end{aligned}$	$\begin{array}{r} 137553 \\ 149865 \\ 1.09 \\ 57206 \end{array}$	$\begin{array}{r} 71500 \\ 65344 \\ 0.91 \\ 26768 \end{array}$	$\begin{array}{r} 29653 \\ 38155 \\ 1.29 \\ 16604 \end{array}$	$\begin{gathered} 25045^{+} \\ 24209^{+} \\ 0.97 \\ 11205^{+} \end{gathered}$					1
1958	1 2 3 4 5	$\begin{aligned} & 30555 \\ & 10714 \end{aligned}$	$\begin{array}{r} 15493 \\ 68873 \\ 4.45 \\ 26290 \end{array}$	$\begin{array}{r} 32859 \\ 46669 \\ 1.42 \\ 19118 \end{array}$	$\begin{array}{r} 21178 \\ 22560 \\ 1.07 \\ 9818 \end{array}$	$\begin{aligned} & 9642 \\ & 9076 \\ & 0.94 \\ & 4201 \end{aligned}$	$\begin{gathered} 13534^{+} \\ 12772^{+} \\ 0.94 \\ 6188^{+} \end{gathered}$				'
1959	1 2 3 4 5	1456	$\begin{array}{r} 2105 \\ 30297 \\ 14.39 \\ \\ 11565 \end{array}$	$\begin{array}{r} 14455 \\ 32345 \\ 2.24 \\ \\ 13250 \end{array}$	$\begin{array}{r} 14678 \\ 20824 \\ 1.42 \\ 9062 \end{array}$	$\begin{array}{r} 8900 \\ 14404 \\ 1.62 \\ 6667 \end{array}$	$\begin{aligned} & 5856 \\ & 7222 \\ & 1.23 \\ & \\ & 3499 \end{aligned}$	$\begin{aligned} & 7732^{+} \\ & 0.94+ \\ & 7268^{+} \\ & 3675^{+} \end{aligned}$			2^{*}
1960	1 2 3 4 5	$\begin{array}{ll} \text { A } & 451 \\ \text { B } & 435 \end{array}$	6740	$\begin{array}{r} 8424 \\ 113245 \\ 13.44 \\ 46391 \end{array}$	$\begin{array}{r} 51391 \\ 24687 \\ 2.42 \\ 54261 \end{array}$	$\begin{array}{r} 53291 \\ 86596 \\ 1.62 \\ 40081 \end{array}$	$\begin{array}{r} 35210 \\ 50810 \\ 1.44 \\ 24618 \end{array}$	$\begin{array}{r} 19648 \\ 1.21 \\ 23774 \\ 12020 \end{array}$	$\begin{array}{r} 11420 \\ \\ 0.94 \\ 10735 \\ 5427 \end{array}$		$\begin{array}{r} 13947^{+} \\ 13110^{+} \\ 5414^{+} \end{array}$
1961	1 2 3 4 5		$\begin{array}{ll}\text { A } & 406 \\ \text { B } & 345\end{array}$	4393	$\begin{array}{r} 4866 \\ 20793 \\ 24.82 \\ 52566 \end{array}$	$\begin{array}{r} 51627 \\ 115916 \\ 2.25 \\ 53652 \end{array}$	$\begin{array}{r} 47131 \\ 121113 \\ 2.57 \\ 58680 \\ \hline \end{array}$	$\begin{array}{r} 46834 \\ 1.29 \\ 60416 \\ 30546 \end{array}$	$\begin{array}{r} 22227 \\ 1.21 \\ 26895 \\ 13598! \end{array}$		$\begin{array}{r} 27145 \\ \\ 51 \cdot 32845 \\ 13565 \end{array}$
									1		,

C 6

	Year	1963	1964	1965	1966	1967		
	age						mean	$\pm \mathrm{s}$
	9	0.98	0.95	0.89	0.97	0.94	0.94	0.04
	8	1.52	1.06	1.29	0.94	1.23	1.21	0.22
Relation	7	1.40	0.91	1.07	1.62	1.44	1.29	0.29
2+1	6	1.09	1.42	1.42	1.62	2.57	1.62	0.56
	5	4.45	2.24	2.42	2.25	8.97	4.07	2.90
	4	14.39	13.44	24.82	15.78(27.49) ${ }^{\text {x }}$	17.11	5.23
						t in	1n	

