THE NORTHWEST ATLANTIC FISHERIES
IONAF Res.Doc. 69/85

ANNUAL MEETING - JUNE 1969

A yield per recruit function for Subarea 1 ood

by
Sv. A.Horgted and D.J. Garroa

Introduction

At Its 1968 meeting the Subcommittee for Assessments prepared a review of the state of the ilaheries in the ICNAF area, and, with regard to Subarea 1 cod , it was concluded that this stook is' demonstrebly overexploited"/Redbook, part I, p. $30,1968 /$. This conclusion was drawn from assessments summariaed under Appendix 1,Annex 1 /p. 44 of that Redbook/ which were based on a constant parameter model using the parameters listed $/ M=0.2 /$ and assuming 'knife-edge recrum itment at specified levels $1_{c} / L$. Taking the threshold $1_{c}=35 \mathrm{~cm}$ indicated that yield per reomit would inerease with up to 60 per cent reduction in fishing mortality /F/: the altermative calculation using $1_{0} 45 \mathrm{~cm}$ suggested that the level of in in $1965 / 66 /=0.6 /$ was close to the optimum for the mesh size in use. In no case was the atock underexploited and the present situation was considered to lie within the range given. An alternative empirical analysis of the catoh statiatics for Subarea 1 cod also indicated the level of fishing to be close to the optimum and hence conformed more closely to the rigorous assessment using $1_{c}=45 \mathrm{om} /$ Carrod 1968/.

At its mid-term meeting in Iondon in January 1969 the Subcommittee made provisional eatimates of the satch quotas that should be set to achieve specitied reductions in fisining mortality in 1969,
though these were not related to stipulated managment objectives. These quotas were based on calculations prepared by one of ua /Horsted 1969/. The form of these calculations provided further information on the patterm of recruitment to this fishery, and so permits the assumption of 'knife-edge'selection to be replaced by variation of fishing mortality with age. A field per recruit curve has therefore been re-calculated to include this extra information In order to confirm the earlier conclusions of the Subcommittee. The estimation of partial recruitment values

The working paper referred io calculated the numerical abundance of each age-group at the beginning of each jear using a defined value of F for all age-groups and years. For each agegroup estimates were made in two ways:
/i/ as the survivors from the stock in Jear x;
/ii/ as the number of fish at the beginning of jear $x+1$ necessary to generate the catch observed in that year.

The difference between these estimates represents the
number of new recruits /immigrants ?/ entering the age-group $\mathbf{x}+1$, and the ratic between this and the number in the stock of a yearclass at the beginning of year x measures these new reomits as a proportion of the previous stock of that year-olass. These proportions are shown for pairs of age-groups in Table 1.

The ratio for agemgroups $9 / 8$ is negative in all casea and could be interpreted in terms of emigration of olcier fish /to Hast Greenland and Iceland/ or in terms of the variance of the estimates of mortality. It seems reasoneble to assume from the ratios of $8 / 7$ that recruitment is complete in the eighth year and from thia the proportion of total recruitment can be computed for
earlier ages. Thus, for example, if the ratio of new recruits at $8 / T_{r} N_{8} /$ to the stock of 7 -gear-olds $/ N_{7} /$, $T_{8}{ }_{8} / N_{7}=0.104$, and ${ }_{2} N_{8}+N_{7}=100$, then $N_{7}+0.104 N_{7}=100$ and $N_{7}=0.906$. The estimated proportions of the total year class recruit ed at each ago-group are shown in Table 2, the value for 3-year-olds having been interpolated from the illustration of these results in Figure 1. They are underestimates to the extent that $r_{r}{ }^{H} x$ has not been corrected for natural mortality during the year prior to recruitment.

The original derivation of these stock estimates from a constant value of F for all age-groups within one jear implies that all members of each age-group are equally available to the Ifshery; The new recrutits must therefore be immigrating into the area of the fishery. However, by definition, population models should consider a "unit stbck" which would initially contain all potential recruits to the fishery, but at varying degrees of availability. That means that the size of a year-ciass is determined before recruitmeat, and its recruitment over a range of ages is expressed in variations of the catchability coeffis cient giving a proportion of $\mathbb{F}_{\text {max }}$, the flahing mortality to which fully rearuited age-groups are exposed. This approach to partial recruitment has been checked /Garrod, unpublished/ by calculating variations of F'with age from the same original catch data using Gulland's modification of the 'Virtual population' technique /Gulland 1965/. The estimates so derived are compered with those estimated by assuming immigration of new recruits in Table 2.

In effect this comparison does no more than checir the . accuracy of the arithmetic, but it does illistrate the dual inter-
pretation of the same figures, neither of which can oe incorpurated in the constant perameter model. Note however that 50 per cent recruitment occurs at about five years of age, corresponding to an $1_{c} 50-60 \mathrm{~cm}$. This seems absurdly high in terms of the size of fiah caught : one wold expect all cod over 50 cm to be available to all gears. However, we are considering pariations of F with age and this is not only a function of aize, but also of the concentration of fleeta on particular parts of the stock. Thus, if immature and mature cod are intermingled in the autumn they will be subject to the same F in that part of the year; but, if fleets concetrate on prespawning or spawning aggregations of mature fish earlier in the year, one may suspect these older fish to suffer a higher mortality irrespective of their size in relation to a particular type of gear. The effectively high 1_{c} may therefore not be unrealistic.

Results

These estimates of fishing mortality, varied with age, have been incorporated in a population model which gives the variation in yield per recruit illustrated in Figure 2. Taking the level of fishing mortality to have remained at $F=0.6$, the ame as in 1965/66/the most recent Jears for which estimates are available at the time of writing/, this calculation suggests that the upper limit of recruitment $1_{c}=45 \mathrm{~cm}$ used in the 1968 assessment 1 was the more nesrly correct. It appears that the the level $F=0.6$ is close to that giving the maximum sustained yield: it is equally true that some reduction in effect would not have an appreciable effect on the total yield, except for the immediate losses in the years immediately following regulations. The connotation that
could attach to the phrase 'demonstrably overexploited' does seem to overestate the situation in this fishery as it was in 1966, especially since no evidence has been presented to show that fishing may have had a significant effect upon recruitment in this stock.

References.

Garrod, D.J., 1968. 'Schaefor-type' assessments of catch/offort in North Atlantic cod stocks. ICNAF Res. Doc. 68/51/mimeo/. Guiland, J.A., 1965. Estimation of mortality rates. Annex to ICES C.M. 1965, Doc. No. 3 /mimeo/.

Horsted, Sv. A., 1969. On the possibility of assessing stock size and catch quota for Subarea 1 cod. ICNAF Res. Doc. /mimeo/.
ICNAF, 1968. Redbook, Part I.
 age-group

Year-class	Calendar year					Mpan	Age-rroups i! ratio
	1963	1964	1965	1966	1967		
1954	\mathbf{x}						
195:	O. 265	x					
1296	0.205	0.029	\times				
1957	0.045	0.600	(1.130	x			
19;*	1.147	c. 201	1.1330	' \cdot ((4)	x	x	9/8
1959		0.190	0.190	0.264	0.095	0.104	8/7
1960			0.047	0.267	0.180	0.136	7/6
1961				0.132	0.638	0.268	$6 / 5$
1462					3.241	1.331	$5 / 4$

heg:ative ration $r^{N} x+\frac{1}{} \because x$ to re-iroups $9 / 3$ denoted x, and ne, ative ation for other tarempouph ane ansumad to bur zirc.

AEP	frrtisl recruitment (listrble proportion of eanh meerroup)	Variation of Faux owing to partinl recruitment
3	U. 160	+
4	$\cdots .267$	0.31
!	0.1\%\%	1.60
6	14.741	v.i6
i	i. 906	0.74
4	1.000	1.00

Figure $1 \quad \begin{aligned} & \text { Variations in } \\ & \text { asecruitment }\end{aligned}$
 Figure 2 Yield per recruit curve for Suberea 1 cod.

