1950

RESTRICTED

$\frac{\text { Serial No. } 2354}{\text { (D.c.8) }}$
ICNAF Res.Doc. 70/35

ANNUAL MEETING - JUNE 1970
FISHING UNIT MEASURES
VNIRO, Mosoow, USSR

by A.I.Treschev

Fisheries science is a comparatively young branoh of knowledge which has not yet developed unified methods of measuring even the most important quantities such as the fishing efficiency of the gear. It was not until quite recently that attempts to unify the international fisheries statistics were made by FaO ("Classification, definition and codification of fishing effort statistics", FAO Fisheries Circular N 229). According to this dooument the efficienoy of fishing gear is characterized in terms of fishing time and fishing power. The following measures are used:

Fishing time: Number of hours fished; number of hauls, drags or sets made; number of days fished; number of days on grounds; number of days absent from port and number of trips made.

The number of hours fished is defined in different ways for different kinds of ifsheries.

For trawl fisheries it is "the total number of hours during which the trawl was on the bottom and Pishing ${ }^{\prime \prime}$.

For dory fisheries this is "the number of hours the dory fleet is absent from the mother vessel times the number of dories".

For other fishing gear this is "the number of hours the nets, seines, traps, dredges etc. were used in the fishing operations".

The definition of fishing time is much too relative. The number of days (24 - hour periods) fished includes the time required to prepare the gear for fishing, the time spent on the main fishing
operations such as the shooting (setting) and hauling in of the gear, the actual fishing and the removal of catch from the gear, as well as the searching time.

The number of days on grounds consists of the time spent on fishing and searching, as well as all the other time during whioh the fishing oraft or gear was on the ground.

The number of days absent from port is counted from the day of departure to the day of arrival back in port and where the fishing ground is at a distance of more than 24 hours steaming from port the day of departure and the das of arrival are counted as one day absent from port, while where the fishing ground is close to the port both the day of departure and the day of arrival are counted as days absent from port.

The number of trips is defined as the number of voyages to fishing areas during which one or another gear was used for aotual fishing.

Fishing_power is measured, or; to use a more correct term, characterized by the type of craft (length) gross tonnage, main engine horsepower) and the type of gear (otter trawls, pair trawls, beam trawls, Danish seines, purse seines including ring nets, beach seines, drift gill nets, set gill nets, fixed gear, long lines, hand lines, dredges, harpoons and other gear). Neither the size of the gear nor any peculiarities in their use are taken into acoount.

It is easy to see that this system is nothing more than an arbitrary form for collecting statistical data. There is no scientific basis underlying this system of characterising fishing. It does not refleot the nature of fishing processes and cannot provide the adequate quantitative estinates of the fishing effect resulting from the ase of one or another fishing gear.

Some specific units for measuring the effeot of fishing are used in modern world fisheries partioularly when all kinds of calculations are made for determining the effect of fishing on the stock. The following units are used in trawl fisheries:
the British unit, which is 100 hours fished x average tonnage;
the German unit, which is $\overline{n u m b e r ~ o f ~ d a y s ~ i s h e d ~} \quad$ ton
the Soriet unit, which is number of hours trawling
the Norwegian unit, which is 24 hours fished x average tonnage;
These units have all the disadrantages inherent in measures intended for a special limited purpose. They are usually not universal even within the group of fishing gear for which they are meant.

Of all these units the British unit is formally the most refined because it incorporates not only the fishing time but also the tonnage of the fishing vessel. However Even this unit does not satisfy the present requirements.

In modern fisheries the vessels equal in tonnage use fishing gear different in size and towed at substantially differing speeeds. This depends on the horse power of the engines, the type of propulsion, design and material. Hence the tonnage and in general the dimensions of the ressel may only serve as an indireot indication of fishing efficiency.

The units used in the trawl fisheries of other countries are even less related to the fishing process. For other marine fishing methods the units of fishing efficiency have not been clearly defined at all. The modes of reporting fishing data differ not only between countries but even between areas of the same country.

From this it follows that at present no unified measures are available to measure the fishing efficienoy and to compare data obtained by different fishing fleets, and different countries use different artificial conversion methods abounding in conditions and Punctions.

The ohief cause of this situation seems to lie in the fact that attempts to work out the method of neasuring the effect of fishing have so far been made without proper regard to the prinoiples of fishing.

It seems that the problem of measuring fishing may be solved 1f, proceeding from a certain fishing gear olassifioation, two
groups of units are established. The first group will inolude units intented for the technical characteristic of fishing gear while the second group will consist of units intended for determining their fishing efficiency. As the base value for the teohnioal characteristic of the use of fiahing gear let us adopt the concept of "fishing power" by which we shall imply the zone of aotion of a unit gear in the process of fishing. The fishing power for each gear group will be established in accordance with the olassification of fishing gear (A.I.Treschev, 1958) based on the principle of action and specific features. Where the zone of gear action cannot be expressed directly proportional values will be taken to estimate the fishing power.

We shall now express "the fishing effort" as the fishing power of the gear multiplied by the time of their aotion. Then the fishing effort units which are different for different groups of fishing gear will be determined on the basis of units of fishing power.

Thus, "the fishing effort" and "the fishing power" in this system are not connected with the catch and characterize only the technical potentialities of the fishing gear. With the choice of appropriate units they assume quite definite dimensional expressions characteristic of each class or group of gear of the same type. The results of measurements obtained with the help of these units are universal within each class (group) of gear, i.e. are independent of their design, size or method of use.

As a unit for measuring the fishing efficienoy in this case a unified measure may be taken for all classes and groups, finnely the catch per unit effort. If the catoh is areraged over a sufficiently long period of time then the unit of fishing efficiency for each class (group) of gear will acoumulate all the peculiarities of the fishing process including fish behariour, the organization, teohnique and tactios of ifshing. Unlike the measures used, such as catoh per unit time, oatch per unit tonnage etc. which are not connected with the principle of fishing the new measure of fishing efficienos will incorporate both the effect of fishing and the degree of perfection of the fishing teohnique. With the unchanged

Pishing technique the fishing power remains the same and the fishing effioienoy of the gear will change in proportion to changes in the stock. Considering that fishing efficienoy is based on actual catch data over a long period of time it is also more acourate than other estimates arrived at theoretioally on the basis of various assumptions concerning fish behaviour. Thus the fishing power, fishing effort and fishing efficiency have become interrelated. It is sufficient to know the definition of the fishing power unit adopted for a flshing method to be able to determine the units for measuring the fishing effort and fishing efficiency.

Within the groups referred to above the size, fishing power and other characteristics of different gear may vary considerably which may sometimes make the use of the units proposed not quite convenient. For example, the otten trawls used by the BMRT- (big freezer trawler) and MRT- (small trawler) type of fishing vessels which are placed into the same group of gear differ significantly in the soale of their fishing oharacteristios and the measurement of these characteristios without applying a scale would not be convenient. In this connection it would be advisable to use the decimal system of the units for measuring the fishing characteristics, 1.e. to use the one-tenth, one hundredth and one - thousandth fractions of the basic units listed in the table below. The following system of units is proposed:

name	purpose	abbreviation	$\begin{aligned} & \text { Praction of the } \\ & \text { basic unit } \end{aligned}$
Promm	measure		
Decipromm	of	dpm	$1: 10$
Centiproms	Ifshing	cpm	$1: 100$
M1111promm	power	mpm	1 : 1000
Promus	measure	pu	
Decipromus	of	dpu	$1: 10$
Centipromus	fishing	opu	$1: 10$ $1: 100$
M11lipromus	effort	mpu	$1: 100$
Promef	measure		
Decipromef	of	dpe	$1: 10$
Centipromef	fishing	cpe	$1: 100$
Millipromef	efficiency	mpe	1 : 1000

The scale of the units in this system is ohosen so that the annual cycle of the most efficient fishing gear is approximately equal to one unit of fishing power. For example, in trawl fisheries the power developed during the annual fishing ojcle by the trawl used on the BMRT-tJpe ressels is taken as the unit of fishing power. The annual fishing power of the RT-type vessels (25 m long trawl) is approximately equal to 0.12 Ip and that of SRT-type vessels (23 m long trawl) is 0.1 Ip , t.e. the fishing unit for Class II, Group A, Type 1-3 gear (other trawl).

With this choice of the scale of the units the estimation of the total fishing power of the fleet becomes much simpler.

This method allows the determination in comparable units of the fishing power and other characteristios of fishing in earlier Jears. $O f$ special interest is the use of this method to estimate the dynamics of fishing effioienoy in relation to the dynamios of fishing effort in the most important fishing areas.

An important advantage of the proposed system of units for measuring fishing lies in the fact that it may be used to provide the basis for the quantitative characteristics of the operation of a fleet in working out future fishery plans on the basis of the rational exploitation of the stook and fishing technique.

The unification of fishing unit measures at present is equally important both for technical and biological purposes.

- 7 -

Fishing efriciency(e)
Definition
Average catoh
defined as the
ratio of catoh -100 kg
per time fished $40^{6} \mathrm{~m} \mathrm{hr}$
tofishing
effort in this
time interval.

4 0% 80 80

0
0
0
0
0
0

> U N I T S
> for measuring fisining conduciced with gear as classified by A.I.Tresohev (C.M., 1958, Comparative Fishing Committee, N 62)

Fishing_efrort (u)	
Definition	Unit
Product offishing	
power by the ti-	
me of trawling,	hr
during which the	
tingl marps are	
Inse stoppers.	

$10^{6} \mathrm{~m} \mathrm{hx}$ nox $10^{3} \mathrm{~m}^{3}$
$10^{2} \mathrm{~m}^{2} \begin{aligned} & \text { in days (2seared } \\ & \text { periods) }\end{aligned}$
$10^{2} \mathrm{~m}^{2}$ as above $10^{2} \mathrm{~m}^{2} \mathrm{x}$ day as above
8யएन7 9प7
0
Definition
Volume of water fished per
unit time. Defined as the pro-
duct of distance between the
otter boards by the veitical 106 m
opening and by the pesi
versed per unit tos.
Volume of water fían par
unit time. Defined 23 th:
product of horisontal by vertica opening and
by the path traversed.
Volume of water fished per
one haul. Defined as the
one haul. Defined as the
surrounded including drag
$10^{3} m^{3}$
$10^{2}{ }^{2}$
The area of the net, the
Class, group and
type of fishing
gear
II A, 1-3
(Otter trawls) II A, 4-8
(Paix trawls,
beam trawls
and towed
seines)
II B, 1-5
(pursing gear of (pursing gear of
ail types) (dragged gear of all types)
IV $C, 1-4$ (surrounding III A, 1-9 The area of guide wings
defined as the product
of total length by height and by the num-
ber of nets.
TABLE 1 (continued)
Fishing erriciency (e)
Definition
Average oatoh
defined as the
ratio of catch 100 kg
per time fish-no $\times 10^{9} \frac{\mathrm{~m}}{3}$
ed to fishing
effort in this
time interval

CTass, group and
tJpe of fishing
gear.
IVB, $1-5$
(drift gill nets)
III C
(drifting traps)
V A, 1-4 4
(hooked gear)
용
$\begin{gathered}\text { xnoy } \\ \underbrace{\text { nin }}\end{gathered}$
$\begin{aligned} & \text { The volume of water fished } \\ & \text { per one sinking. } \\ & \text { Defined as the product of } \\ & \text { the area oovered by the path } \\ & \text { traversed during one sinking } \\ & \text { or surfacing. } \\ & \text { Capacity with reference } \\ & \text { to water }\end{aligned}$
of the drift.
1000 hooks
$\frac{\text { Fisbing_efiort }}{\text { Definition }}$
The product of
fishing power by drifts.
Un1t
$10^{9} \mathrm{~m}^{3}$
Definition

The product of f drifts.

> d on a commercial scale.
one drift, i.e. the product of
length by height, by the num-
ber of nets and by the path
traversed defined as the dis-
tance in metres between the
points observed at the be-
ginning and the end of the
drift.
Volume of water fished per
drift, i.e. the produot of ho-
risontal opening by vertical
opening and by the path tra-
rersed defined as the distance
in metres between the points
observed at the beginning and
the end of the drift. no $\times 10^{2} m^{3}$

$$
\begin{aligned}
& \text { drift, i.e. the product of ho- } \\
& \text { risontal opening by vertioal } 10^{2}{ }^{3} \\
& \text { opening and by the path tra- } \\
& \text { rersed defined as the distance } \\
& \text { in metres between the points } \\
& \text { observed at the beginning and } \\
& \text { the end of the drift. }
\end{aligned}
$$

- 8 -

