

1950

International Commission
for the
Northwest Atlantic Fisheries

1970

RESTRICTED

Serial No. 2362
(D.c.8)

AMNUAL MEETING - JUNE 1970

Preliminary results of German mesh selection experiments on cod and redfish off Iceland and Newfoundland
by H. Boh1

This maper not to be cited without prior reference to the aution

International Council for the
Exploration of the Sea
C. M. 1969/b: 18

Gear and Behaviour Comatto

Preliminary results of German mesh selection experiments
 an cod and redfish off Iceland and Newfoundland
 by
 Hansjürgen Boh1*)

1. Introduction

Durinis the 30 th cruise of FMV "iYalther Hervig" (July 17th - Septenber 1st, 1969) rather extensive trawl mesh selection experiments were carried out off the rorth, west and southwest coasts of Iceland as well as off the east and south coasts of Newfoundland. Although the final results of these experiments are not yet available, it was thought worth-while to give a brief account of th provisional findings without delay. A final version of this paper - including relevant details such as length frequency distributions of cod and redfish catches, selection curves and plots of girth against length - will be submitted to the 1970 Annual Meeting of ICNAF.
2. Material and methods

FRV "Walther Herwig" - a diesel-electric stern trawler of 83.23 m total length, 1,987 gross tons, capable of developing $2,000 \mathrm{~h} . \mathrm{p} .8$. at $190 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{m}$. - enployed the German standard roundfish bottom tr:wl (140 ft . groundrope). During the course of the experiments four double-braided cod-ends were used; one of them was made of polyethylene nonofilanent and the other three were wade of polyamide multifilament. Some information about the physical properties of the cod-end netting yarns is given in Table 1.

Table 1: Properties of the cod-end netting yarn's

Cod-end material	Polyamide multifilament	$\begin{gathered} \text { Polyamide } \\ \text { multifilament } \\ \hline \end{gathered}$	Polyamide multifilament	Polyethylene monofilament
Htex (g/1000 m)	6,484	13,000	5,000	6,516
Runnage (m/kg)	154	56	200	15\%
Yarn construction	Twisted	Plaited	Twisted	llaited
Wet lnot breaking lo ad (kp)	299	777	103	120
Diameter (mm)	2.9	7.0	2.8	4.5
Blongation at half the wet knot breuking load (\%)	23.8	22		

The polyamide cod-end NG, 184 tex is made from that netting yarn which - accordins to a recomendation of the Joint ICBS/ICNAP Workine Group on Selectivity Analysis - should be introduced as a new standard for selectivity purposes. Although the report of the above-mentioned Vorking Group (comp. ICBS, C.i., 1969/13: 13) still needs the approval of the relevant comittees of ICES and IClAF, the Institut für Fangtechnik ordered this netting yarn as early as in the wouth of May. Thus, it was possible to collect the first selectivity data for the propose new standard material already during this sumer.
The polyamide cod-end 118,000 tex is also a new purchase of the Institut fur Fangtechnik. This type of an extremely robust cod-end which belongs to the
*) Dr.Hansjürgen 3oh1,
Institut für Fangtechnik, llaraburg 50, Palmaille 9.
standard equipaent of most of the large deram stern traviers for the last timee or four months, was chosen for the experiments because little is lnown about the selectivity of extra strong netting yarns.
The remaining two cod-ends have already been used several times on former cruises of German research vessels.
The selectivity was investigated by the covered cod-end technique. The topside covers were in accordance with ICES specificntions. They were made of single braided polyamide netting (23 tex $x l^{\prime} 63$, twisted) with a mesh opening of about 60 mm . The inner underside of the cod-ends was always lined with small-meshed netting similar to that of the cover.
The length composition of the catches was ascertained by measuring the total length of fish to the centimetre below. The mesh measurements were taken imediately after each haul using an ICES gauge with an operating pressure of 4 kg .
Whenever redfish were meshed in the cod-end, these fish were measured separately. However, when calculating the selectivity data, the meshed specimens were treated as part of the cod-end catch.
To study the girth/length relationships of cod and redfish, the unconstricted maximum body girth was measured to the nearest millimetre.
3. Selectivity results for cod

Selection experiments on cod were carried out on the southern Horn bank (North Iceland, ICES Div. Va), on the eastern edge of the Grand Bank of Newfoundland (ICNAF Div. 3L) and on the St.Pierre Bank (ICNAF Div. 3Ps). The results obtained are shown in Table 2.
Comparisons between the selectivity of the polyanide cod-ends R6,484tex (standard) and R18,000tex (extra strong) were made in ICES Div. Va as well as in ICNAF Div. 3L. In the latter division the selection factor for the cod-end R18,000tex was found to be 4.1 per cent lower than that for the cod-end R6,484tex, whilst in the former division the corresponding difference was only 1.5 per cent.

From Table 2 it can be seen that the selection factors abtained from the Horn Bank were lower than those obtained from the Grand Bank. This would lead to the assuaption that the fish off Iceland have been thicker than those off Newfoundland. However, the reverse is true: The relationships between maximum body girth (G) and total length (L) (which were derived from fish caught with the cod-end R18,000tex) are described by the regression equations

$$
\begin{aligned}
& \mathrm{G}=0.521 \mathrm{~L}-0.87 \mathrm{~cm} \text { for the Horn Bank cod }\left(\begin{array}{l}
634 \text { measurements }), \text { and } \\
\mathrm{G}
\end{array}=0.555 \mathrm{~L}-2.89 \mathrm{~cm} \text { for the Grand Bank cod }(757 \text { measurements })\right. \text {. }
\end{aligned}
$$

This implies that, at the 50% retention lengths ($41-43 \mathrm{~cm}$), the Horn Bank cod was thinner than the Grand Bank cod by 5.3 per cent.
In this connection it may be mentioned that the cod girth measurementa taken hitherto off N. \& NY. Iceland yielded rather similar results, viz.

$$
\begin{aligned}
& G=0.511 \mathrm{~L}-1.5 \mathrm{~cm} ; \text { "A.T.Cameron"; N.Iceland; VII 1962; (ICLS, 1965) } \\
& G=0.564 \mathrm{~L}-2.0 \mathrm{~cm} ; \text { "Maria Julia"; N.\&NW.Iceland;VII 1962; (ICES, 1965) } \\
& G=0.515 \mathrm{~L}-1.46 \mathrm{~cm} ; \text { "Anton Dohrn"; NW.Iceland; VI 1964; (Bohl, 1967) } \\
& G=0.521 \mathrm{~L}-0.87 \mathrm{~cm} ; \text { "Walther IIerwig"; N.Iceland; VII 1969; (this paper). }
\end{aligned}
$$

The unweighted averages of all the covered cod-end selection factors rejurted previously for N. \& NW. Iceland are as follows (experiments with topside chafers not included) : Double manila 33.21 (ICQS, 1964 and 1965), dovelyjurspylene multifilanent $=3.48$ (Bohl, 1967) and d.polyamide multifilanent $=3.3 ;$ (ICES, 1965). From 1962 to 1969 no selectivity data for cot in ICHAF viv. jL have been submitted, but in this period some selection factors for other divisions were reported. The unweighted averages of these factors are for d.manila
Table 2: Compilation of cod selection data for grouped hauls

rorking area Division Position Cod-end	S.Horn Bank (N.Iceland) ICLS Div. Va $66^{\circ} 43^{\prime} \mathrm{N} ; 21^{\circ} 17^{\prime} \mathrm{W}$		$\begin{gathered} \text { Grand Bank of Newfoundland } \\ \text { ICNAF Div. } 3 \mathrm{~L} \\ 47^{\circ} 25^{\prime} \mathrm{N} ; ~ 47^{\circ} 21^{\prime} \mathrm{W} \\ \hline \end{gathered}$		St.Pierre Sank ICNAF עiv. JPs
Cod-end 1969	PA R6,484tex 28.-29.7.	PA R18,000tex	PA R6,484tex	PA R18,000tex	PE R6,516 tex
Number of hauls	${ }^{28.70}$	29.-31.7.	14. -16.8	13.-14.8.	22.8.
Av.duration of haul (minutes)	70	90	111	7	3
Av, towing speed through water (kn) Depth range (m)	4.8	4.4	111.9	120	87
Depth range (m) ${ }^{\text {25-75\% selection range (cm) }}$	$110-130$ 13.1	110-180	260-320	-4.4	4.2 $50-60$
No.of cod in selection range	13.1	10.6	12.6	8.1	50,0
cod-end	5,456	3,448	448	1,434	
Total no. of cod	4,847	2,675	834	1,596	$\begin{aligned} & 1,170 \\ & 1,094 \end{aligned}$
	7,678	6,729	1,582		
Av.quantity of cod (baskets ${ }^{\text {coser }}$)	5,999	3,406	3,241	3,433 3,230	$\begin{aligned} & 2,794 \\ & 2,862 \end{aligned}$
cod-end cover	42 22	$\begin{array}{rr}16 & 3 / 4 \\ 5 & 3 / 4\end{array}$	$61 / 2$	8 3/4	
Av.quantity of by-catch (baskets)		$53 / 4$	$41 / 2$	4 4/4	$\begin{aligned} & 81 / 2 \\ & 41 / 4 \end{aligned}$
cod-end cover	$\left.{ }_{1}^{6} 1 / 2_{2}^{2}\right)$	$31 / 2^{2}$)	$73 / 43)$	63)	$102 / 3^{4}$)
Range of total catch/tow (baskets)		1/2 ${ }^{2}$	8 3/43)	43)	103/44)
cod-end	$241 / 3-82$	7 1/4-43 1/2	$71 / 2-311 / 4$		
Cod-end mesh size, mean (mm)	$82 / 3-38$ 136.3	$23 / 4-12$	$31 / 3-261 / 4$	$41 / 2-14$	$\begin{array}{r} 15 \\ 0 \end{array} 1 / 4-23$
Range (mm)	129-149	126.5 $112-140$	134.1	124.2	2114.3
No.of measurements			128-147	112-135	104-128
50\% retention length (mm)	449	$\begin{aligned} & (=6 \times 45) \\ & 410 \end{aligned}$	270 ($=6 \times 45$)	315 (=7x45)	174 ($=3 \times 58$)
Selection factor	3.29	3.24	485 3.62	430	369

[^0]ia ICNAF Div. 2J: 3.64, for d. polyamide multifilanent in ICNAF Div. 3M: 3.97 and for the same material in ICNAF Div. 3M-4W: 3.66 (ICNAF, 1967). In the light of this evidence the selection factors found for polyamide at Iccland and Newfoundland during this sumber appear to be unusually low.
Finally, it has to be mentioned that on the St.Pierre Bank (ICNAF Liv. 3Ps), where very small cod (most abumlant length 38.5 cm) were caught in 1969 , only the relatively amall-meshed polyethylene cod-end $16,510 t e x$ could be used. So it was not possible to establish directly a wesh differential for this net material. However, compared to the selection factor found for the polyamide cod-end R6,484tex (staudard) in ICNAF Div. 3L, the corresponding factor for the polyethylene cod-end was lower by 10.8 per cent. This finding is in agreement with the mesh differential prescribed at present for polyethylene in the ICNAF area and in the Arctic regions of NEAFC.
4. Selectivity results for redfish (type marinus)

Selection experiments on redfish were carried out off NW. \& SW. Iceland (ICES Div. Va) and on the eastern edge of the Grand Bank of Newfoundland (ICNAF Div. 3L). The results obtained are shown in Table 3.
During the course of the redfish experiments only polyamide cod-ends were used. The catches were relatively small and heterogeneously composed. Redfish were not always predominant; especially on the Grand Bank the bulk of the catches frequently consisted of species other than redfish.

The selectivity of the cod-end 1218 , 0ootex was compared (a) with that of the cod-end R5, (000tex at SW-Iceland and (b) with that of the cod-end RG,484tex on the Grand iank. In the first case the selection factor for the extra strong cod-end was found to be 8.9 yer cent lower than that for the cod-end ifj, (ia0tex, whilat in the second case the factor for the extra strong cod-end was found to be 6.6 per cent higher than that for the cod-end $\mathbf{H 6}, 484$ tex. These results make it impossible to elucidate the effect of the netting yarn properties on the selectivity. If there should have been such an effect, then it was probubly masked by the influence, which the catch size is known to excert on the selection of redfish: Table 3 shows that, in both working areas, the cod-ond with the smaller average redfish catch gave the hisher selection factor and vice versa.

In this context, attention should be drawn to the fact that, iudependently of the cod-end used and the area fished, very similar selection factors were calculated for average catches of the same size range, viz. 2.84, 2.38 and 2.88 for average redfish cod-end catches ranging from $81 / 2$ to $111 / 3$ baskets ($=456-606 \mathrm{~kg}$), and 3.07 and 3.16 for average catches of $21 / 4$ baskets ($=121 \mathrm{~kg}$) and $51 / 2$ baskets $(=295 \mathrm{~kg})$, respectively.
No attempt was made to draw a parallel between the redfish data reported previously and those reported in this paper. The reason for this is that only those aelection factors would be directly comparaille which are derived from catches of equal size.
Girth measurcments were made on redfish caught with the cod-end $\mathrm{n} 5,000 \mathrm{l}$, x off Sil. Iceland as well as on redfish caught with the cod-end R6,484tex on the Grand Banli. The relationships between the maximum body firth (G) and total length (L) are described by the following regression equations:

$$
\begin{aligned}
& \text { SiY. Iceland redfish : } G=0.728 \mathrm{~L}-1.33 \mathrm{~cm}(j \rho \text { measurements }) \\
& \text { Grand Bauk redfish }: G=0.810 \mathrm{~L}-2.07 \mathrm{~cm}(267 \text { measurements }) .
\end{aligned}
$$

These equations imply that, at the 50% retention lentha ($39-45 \mathrm{~cm}$), the SW. Iceland redfish were thinner than the Grand Bank redfish by 8. 3 -ijob, ex cent. This difference in girth corresponds to the difference in the acluctivity of the two cod-ends used. However, it must be left undecided whether the discrepancy between the selection factors obtained is attributable either to differences in girth or to differences in catch size or to both.

- 6 -

working area Division Position		SW. Iceland ICES Div. Va $63^{\circ} 22^{\prime} \mathrm{N} ; 24^{\circ} 39^{\prime} \mathrm{H}$		Grand Bank of Newfoundland ICNAF Liv. 3 L $47^{\circ} 25^{\prime} \mathrm{N} ; 47^{\circ} \mathrm{O} 1^{\prime} \%$	
Cod-end	PA R13,cootex	PA Rl8,000tex			
Date 1969	31.7	6.8	7.8	$13 .-14.8$	PA R6,484tex
Number of hauls ${ }^{\text {Av.duration of haul (ninutes) }}$	3	4	5	5	$\mathrm{I}_{4}{ }^{\text {c }}$
Av.duration of haul (minutes) Av.towing speed through water (kn)	60	120	132	120	113
Av.towing speed through water (kn) Depth range (in)	4.7 $220-250$	4.6 $250-270$	4.6	4.5	4.9
25-75\% selection range (cm)	$220-290$ 9.7	250-2?	$260-295$ 9.8	300-350	290-320
No, of redfish in selection range cod-end cover	262 311	?	214	280	1.039
```Total no. of redfish cod-end cover```	311 1,217 800	1,807 1,999	382 925 1,867	$\begin{array}{r}419 \\ 764 \\ \hline 564\end{array}$	1,346 2,250
```Av.quantity of redfish (baskets}\mp@subsup{}{}{1}\mathrm{ ) cod-end cover```	800 10 $21 / 3$	$\begin{array}{rl}1,999 & \\ 11 & 1 / 3 \\ 2 & 1 / 2\end{array}$	$\begin{array}{rl}1,867 \\ & \\ 5 & 1 / 2 \\ 2 & 3 / 4\end{array}$	2,564 $\begin{array}{rl} \\ & \\ 2 & 1 / 4 \\ 4 & 1 / 2\end{array}$	6,620 $\quad \begin{array}{rl} \\ 8 & 1 / 2 \\ 14 & 1 / 3\end{array}$
$\begin{aligned} & \text { Av. quantity of by-catch (baskets) } \\ & \text { cod-end } \\ & \text { cover } \end{aligned}$	51/3) 3 3	4 5) $11 / 43$)		$41 / 2$ 13	$41 / 3$ $81 / 2^{4} ;$
Range of total catch/tow (baskets) cod-end cover	 5 $1 / 4-22$ 2 $1 / 2$ 2	$\begin{array}{rl}12 & 2 / 3-173 / 4 \\ 21 / 4-6\end{array}$			
$\begin{aligned} & \text { Cod-end mesh size; mean (man) } \\ & \text { Range (mm) } \\ & \text { No of measurements } \end{aligned}$	$\begin{gathered} 126.6 \\ 114-140 \end{gathered}$	$\begin{gathered} 12-0 \\ 125.0 \\ 113-136 \end{gathered}$	$\begin{gathered} 51 / 2-10 \\ 142.1 \\ 134-151 \end{gathered}$	$\begin{gathered} 3 \text { 3/4-14 } \\ 124.1 \\ 112-135 \end{gathered}$	$\begin{gathered} 51 / 4-261 / 4 \\ 133.8 \\ 128-147 \end{gathered}$
No.of measurements 50\% retention length (mm)	$\begin{gathered} 135(=3 \times 45) \\ 360 \end{gathered}$	$\begin{gathered} 180(=4 \times 45) \\ 360 \end{gathered}$	$190(55 \times 38)$	$225(=5 \times 45)$	180 ($=4 \times 45$)
Selection factor	2.84	2.88	449.16	381	$\begin{array}{r} 387 \\ 2.88 \end{array}$

[^1]Table 3: Compilation of redifish (tyje marinus) selection dita for grouped hauls

Although the data collected for redfish meshed in the cod-cnds are not yot analysed, it can already be pointed out that the number of meshed fish increased with increasing mesh size. The meshed proportions of the total mumers of redfish held by the cod-end 1118,000tex (mesh size 125 mm) wore $2.3 \% \mathrm{at}$ NW. Iceland, 4.1% at SW. Iceland and 7.1% on the Grand Bank. The corresponding proportions for the cod-ends 16,484 tex (mesh size 134 mm ; used on the Grand Dank) and 155,000 tex (mesh size 142 mm ; used at SW. Iceland) were 10.0 and 13.7\% respectively. Appreciable meshing (i.e. more than 4% meshed at any centimetre length) was confined to length ranges extending over $4-12 \mathrm{~cm}$ (R18,000tex), 14 cm ($\mathrm{R} 6,484 \mathrm{tex}$) and 24 cm (R5,000tex).

5. Conclusions and Summary

(i) There is no significant difference between the selectivity of the extra strong polyamide cod-end (R18,000tex) and that of "normal" polyamide cod-ends (125,000 tex and 26,484 tex). It is much to be hoped that only the extra strong cod-end will be used on German stern trawlers in the future, because this would help to obviate the need for topside chafers.
(ii) The selection factors found for N-Iceland cod were lower than those found for Grand Bank cod. This is in contradiction to the results of girth measurements.
(iii) Compared to the cod selection factors obtained previously on both sides of the Atlantic, the factors obtained this year appear to be relatively low.
(iv) A comparison between the selectivity of St.Pierre Banis cod caught with the polyethylene cod-end 16,516 tex and Grand Bank cod caught with the polyauide cod-end 86,484 tex shows the present mesh differential for polyethylene to be justified.
(V) The regional difference found in the maximum body girth of redfish at lceland and Newfoundland is in agreement with the selection results obtained.
Vi) The number of redfish meshed in the cod-end increases with increasing cod-end mesh size.
heferences

Bohl, H., 1967.	Comparative selection experiaents with polyproplene and polyamide cod-ends. Int. Coinh. Northw.atlant. Pish. Redbook 1966, lart III, 85-92.
ICES, 1964.	Heport of the Hesh Selection Working Group, 1959-1960. ICES Coop.lles. Hep .No. 2 .
TCE: 1965.	iteport of the 1962 Iceland Trawl liesh Selection Working Group. IC ís Coop.iles.ilep. No. 3.
YCNAF, 1967.	Coupilation of selectivity data presented to the Coumisaion from 1962 to 1966. int. Cowheiortinv.Atl. Pish. Redbook 1967, Part III, lul-115.

[^0]:) The average net weight of one basket filled with cod was 68.5 kg .
 2) Mainly Melanogrammus aeglefinus, redfish (type marin , Pollachi
 A.minor, A.denticulatus, Brosme brosme, Molva molva, Pleuronectes plates and small quantities of Anarhichas lupus, platessoides, Hippoglossus hippoglossus, skates and rays

 Mainly redfish (type marinus), Macrouridae, skates and rays and small quantities of Glyntocephalus cynoglossus,
 and Melanogrammus aeglefinus, Hipoggossus hippoglossus, Reinhardtius hippoglossoides, A.Iupus, A.minor, Lycodes spec.
 and snoradically M. aeglefinus, Urophycis spec Mas scallops.

[^1]:) The average net weight of one basket filled with redfish was 53.6 kg .
) Mainly Argentinn suec. and sponges, but also Molva molva, Mobyrkelange, Pollachius virens, Brosme brosme, Gadus morhua, Anarhichns minor and sowe flatfish.

 Mainly Gadus rariual for the other by-catch see foot-note ${ }^{3}$) of Table 2.

