1950

RESTRICTED

ANNUAL MEETING - JUNE 1970
Some Biological Data of Argentine
(Argentina silus Ascanius) from the Nova Scotia area
by Czeslaw Zukowski
Sea Fisheries Institute, Gdynia

I. IFIPRODUCTIOX

Among the prablications dealing with axgentine the most notewoxthy are these by Borodulina /1964/, Boery /1966/, Keysler /1968/as well as Wood and Raitt /1968/: In these papers the problems connected with biology and diatribution of this species ane extensively drelt upon.

The present paper aime to add more information on the biology of asgentina, as well as to furnish further data for estimation of the abundance of the gtocks of this fish. As it is known actualIf thene is only limited exploitation of this species by fisheries. Therefore it is necessary; just now; to establish fundamental parameters of its rate of growth and total mortality, which in the present conditions of fishing seems to be almost equal to natural mortality.

II. MATHRTAT AID METHOD

The materials were collected Irom trawl catches campied out In the Pishing grounds of Sable Island Bank, Imerald Bank, Sambro Bank and Browns Bank. in the Jears 1964-1968. In total 10651 Pish were measured. Detailed analysie was performed on 1915 individuals anong which 1760 mere read for age. Back readings for the rate of growth mere performed for 479 individuals.

The measurements of Piah inoluded body length/longitudo comporis/. and were performad with the accuracy of 1 om. The age was read from concave surface of unpolished otoliths in refleoted light, immersed in $1: 1$ mixture of ethyl aleohol/96\%/ and giyoemine. Back readings for the rate of growth were based on otoliths readings. This served as a basis for calculation of theoretical growth by means of the ∇.Bextalanffy equation.

Mortality coefficient, corresponding to the slope of the straight, has been calculated by the method of least squares. Catches for sampling were made with trawle, adapted in such manner for the purpose as to eliminate as far as possible the effect of selectivity upon collected samples.

III. RPSUTAS OT INVASTIGAMTON

1. 48

The results of investigations on age in the years 1964-1968 are given in the Figure \mathcal{V}^{\prime}

In 1964 the most abundant were fish 4 and 5 years old, born in the jears 1959 and 1960. In total theix maber in the catohes exceeded 45\%. The participation of 3 years old fish and 6 to 11 years old amennted in total to abt. 50%. Only a small mumber of individuals represented older fish.

In 1965 predominant were fish 4; 5 and 6 years old. Hence we may conclude that the jear-classes boxn in the years 1959 - 1960 were abundant ones. Comparatively amall was the participation of older age groups, 8 yearg old.

In 1966 the participation of particular jear-classes did not show the predominance of whatever jear-class as was the case in previcus jears. The mest abundant were fish in the age from 4 to 13 jears. Also in this jears the fish of the age 6 and 7 Jears, liee, the yearmolasses born in 1959 and 1960, were abundant.'

In 1967 predominated older fish, of the age 11 and 12 Jeare. Fairly good was the participation of Pish 8 to 10 and 13 to 16 yeare old.

In 1968 ocourred in samples considerably jounger fish than in previcus jears. Most probably this jear were encountered ooncentrations of fuvenile fish which do not oocur along with adult fish and remain in different regions.

2. Length

The results of length measurements for the period of 1964 - 1968 are given in the Figure 1 .

A mumber of diatinctiy marked peaks may be noted in 1964: They were conneoted with length-olasses of 15, 19 and 28 om. It may be ascuned that the presence of three predominant length - classes was conneoted with the oocurrence of a muber of strong populations.

In 1965 most abundant were Pish in lengths from 19 to 23 cm. Modal value was established with the length-olass of 22 cm . In this jear cocurred fish of a relatively large range of lengths, from 14 to 42 cm . Similaneounly there could be noted aome increase of mean length in comparison to preceeding year /Table 1/.

In 1966 the abundance of particular length-classes of fish occuring in the oatches did not show any considerable differences. There was noted however slight predominance of fish in the length-olass 26-27 om:

In 1967 the majority of fish were in the length range Iron 30 to 35 an. The peak was noted in the length-class 32 am.

In 1968 the length of Ifsh was confinod to the range of 21-25 om, with a very distinct predominance of the length-olass of 23 01.

Following the changes in the length of axgentino within the period of sereral Jears, starting with 1965, we note the tendency of modal value to mhift towarde might hand side of the graph, i.e. towards the range of larger fish. This tendency remains unt11 1967.

The decrease of the lengths in 1968 seems to be accidental since it is based on comperatively scarce material, collected only in the $1^{8 t}$ quarter of this year.

Mean lengths of argentine from the fishing grounds						
of Heva Sootis						
0						
Year	0				$0+p$	
	n	am	\underline{n}	ax	n	am
1964	99	23.8	112	22,4	211	23,0
1965	257	23,3	243	25,5	500	24,3
1966	455	28,3	440	31,0	895	29,6
1967	173	30,5	78	32,0	251	30,9
1968	30	22,6	30	23,0	60	22,8

3. Thorateofgroth

In the papers Borodulina /1964, 1968/, by Imory and Mo Cracken /1966/ and Bom other the rate of growth of argentino was determined on the basis of mean lengths of fish in particular age groups.

In the present paper in order to obtain more representative data, partioularly for the youngest and oldest age groups - It was decided to deterrine the rate of growth of argentine also by the method of back readings of otoliths. To adopt this method the relationahip between rate of Growth of fish and length increase of its otolith was determined. In the iiteratare this problems is dealt with by Jetchen /1964/, Jensen /1938/, trout /1954/, Cieglewier et al /1969/: Depending on fish species and the section plane of otolith the ration of fish length and the length of otolith radius may be depioted either by curve or by straight line. As regards argentine the oonsiderations of this problen have not been encountered in literature and therefore before back readinge the above ration was subject to detailed exanination.

The meacurements of otolith radius along the axds connecting the mucleus with the odge of rostrum and the maleus with the edge of antirestruw showed that for back readings of the growth rate the first of the two axes is more suitable and this for the following reasons:

1. With the same length of fish any poasible error in the measurement of shorter radius effects in a greater extent the final result;
2. The zones /rings/ of anmal length increase on the rostrum ahow more contrast and therefore enable to obtain better acouracy of the measurement;
3. The distribution of the points in the graph, showinh the relation between the length of rostrum radius and the length of fish body is of the reotilinear character /Fig.2/

On the basis of empirical data was derived the following linear equation:

$$
R=0.16 \overline{8}+0.14
$$

where:

$$
\begin{aligned}
& R \text { - the length of otolith radius in mm } \\
& \text { I - the length of fish body in cm }
\end{aligned}
$$

This equation shows that the application of Einar Lea formula /Waluè-Karpinska, 1961/gives the results of back readings with a slight error only. An ideal equation for above relation should have the parameters: $b=0 / y=a x /$. The value of $b=0,14$ in above equation might be either the result of dism persion /scattering/ of empirical data or appears as the consequence of disproportion between the growth of otolith and the length increase of Pish body: For practical purpose there was made the assumption that both these characteristics are directly proportional.

The growth of argentine was finally characterized on the basis of back readings by means of the von Bertalanffy equation:

$$
\begin{aligned}
& I_{t}=L \propto / 1-e^{-K / t-t_{0} / / / B e v e r t o n ~ a n d ~ H o l t, ~} \\
& 1957 \text { / }
\end{aligned}
$$

where:
I_{t} - Length of fiah in the age t
Loc - asymptote of ourve of growth in length

- - the base of natural logarithm
t_{0} - arbitraxy oxigin of growth ourve
I - the parameter of katabolisie
The mothods of calculation of above paramoters have been described in detail in the papers by Allen /1966/, Cieglewice et al. /1969/ and Kotchen /1964-1966/. For this reason only the values of these paramoters are given in the Table 2 and graphic prosontation of the rate of gxbwth plotted on the basis of above -quation.

Table 2
The paranters for the reBoxtalanfiy equation

Region	Paramotera					
	$2 x$		I		t_{0}	
	6	9	0^{7}	9	0	9
Mova Sootia	37,9	41,4	0,145	0,129	-0,75	-0,75

Both the empirical data and the data calculated on the basis of paremoters / L \propto, K, $t_{\rho} /$ fairly woll coinoide. This fact apealce in faverr of the adoption of the viBertalanffy equation for the determination of the characteriatice of the rate of growth of argentine:

On the basis of obtained results we have to conclude that argentine from Heva Scetia region is aharacterized by relatively good length increace in the age Irom 1 to $\overline{8}$ years. In this period the anmal increase fluctrater within the range of $4.0-1.8 \mathrm{am}$. In older age the length increace trope markediy, being within the range $1.5-0.5$ an. per anmin /Fig. 5%

No easontial differenoes were noted in the length increase between males and females /Figure 4/\% Firnt in the age of $\overrightarrow{8}$ years and in eldor age the length inorease in fomales is greater than in males.
4.MoェtalitJ

It was found suitable to use data characterising age composition of argentine in particular years for determination of the coofficient of total mortality /Z/. This coefficient may be caloulated by means of the equation:

$$
z=I_{n} \frac{I_{0}}{\text { itt }}
$$

where:
No - abundance of fish at the time t_{0}
Wt - abundance of fiah at the time t_{1}

The application of this foxmula requires however further mumorical data on participation of fish in particular age groups, such as captruxed per one unit of fishing effort in consecutive years. Hence it appears that besides the knowledge of age composition of the catches it is alse necessary in this case to have detailed statistical data on the catches of the investigated species. Since such atatistios are not, as jot, available the determination of the index of total mortality was based on age composition.

If we assume the mortality of fich of different age to be siailar then the index according to Ricker /1958/ may be calculated from the catch curve:

When the participation of particular age groups is expressed in values of 1_{n} the right hand section of the curve thus obtained becomes approcimately linear. With the simplified assumption that the abondance of the stock in the region of

Browns Bank has not been subject to any considerable fluctuations in the recent jears - the slope of this straight may be interpreted as the coefficient of total mortality.

In order to apply this method there has been compiled data on mean age composition, from which it appears that starting with the fifth year of life the rate of mortality is higher than the rate of recruitment. The obtained mean age composition was recalculated in the values of 1_{n} The right hand slope of the curve is presented as a straight line by means of the method of least squares /Fig. 5/.

The ourve for the age conposition of the catohes, plotted on the basis of the data for the jears 1964-1967 may be not aufPiciently representative. This presents however the preliminary eftimation of the mertality for that perfod when the intencity of Pishing is atill very low. In such case the caloulated total mertality might give the value similar to that of natural mortality.

The slope of the straight for the age from 5 to 20 jears, obtained from the calculation by means of least squares, equals 0.280. This parameter is aimiltanecusly the coofficient of total mortality /Z/ for the period of one year and points to the reduction of the populations by 24.4\% per anmain.

From the value of the above parareter we may conolude that the stock of argentine is at the present time characterised by low total mortality.
4. 8 un maxy

As the result of investigations it was found that the most abundant were 1959 and 1960 jearmclasees. The age of fish ocourring in the catches ranged from 3 to 29 Jears, their lengths being fron 13 to 42 on. Sporadically ocourred larger fish, up to 52 on in length.

Argentine of the age of 1 to 7 Jeare shows relatively good growth. Gonerally females grew faster than males. This difference increases along with the age.

Natural mortality was found to be $10 w$ and the coefficient of total mortality -0.280 . Whis points to the fact that the increase of fishing offort ang effect the stock of this mpecies: An cxcessive fiahing intensity may therefore lead to fact decrease of the atook of this fiah. In viow, however, of a 10 w as Jet exploitation of this etock son expansion of the fishories for this species is undoubtediy pessible:

Fig. l. Age and length of argentine in the catches

Fig.4. Curves of growth for males and females of argentine plotted according to the v. Bertalanffy formulae.

Fig. 5. Mortality of argentine expressed in l_{n} plotted against age.

