AN INVESTIGATION OF THE ACCURACY OF VIRTUAL POPULATION ANALYSIS

by

J. G. Pope

Ministry of Agriculture, Fisheries and Food, Fisheries Laboratory, Lowestoft

Gulland's virtual population analysis (Gulland 1965) is an extremely useful technique when assessing a fishery, because it enables estimates of population at age and fishing mortality to be made independently of the measurement of effort. These estimates are however subject to various errors which might adversely affect an assessment. What causes these errors and how can their magnitude be calculated?

1. Cohort analysis as an approximation to virtual population analysis

Definition of symbols used:
M is the instantaneous coefficient of Natural Mortality:
F is the instantaneous coefficient of Fishing Mortality;
Z is the instantaneous coefficient of Total Mortality;
N_{i} is the population of a year-class at the ith birthday;
C_{i} is the catch of a year-class at age i;
t is the last age of a yearmclass for which catch data are available; exp is the exponential function.

Cohort analysis is a new form of virtual population analysis developed by the author. It is in fact an approximation to Gulland's virtual population analysis which is usable at least up to values of $M=0.3$ and $F=1.2$. A detailed explanation of the methad will be the subject of a later publication - this research document is intended only to give some indications of the results relating to errors. The method is based n the approximate formula

$$
N_{i}=C_{i} \exp \{M / 2\}+N_{i+1} \exp \{M\}
$$

Thus, using 1.1 as a recurrence relationship,

$$
\begin{gather*}
N_{i}=C_{i} \exp \{M / 2\}+C_{i+1} \exp \{3 M / 2\}+C_{i+2} \exp \{5 M / 2\} \ldots \\
\ldots N_{t} \exp \{(t-i) M\} \ldots \ldots
\end{gather*}
$$

As with Gulland's virtual population analysis H_{t} has two possible forms. The first form is when C_{t} refers to the catch in year t only, which is the case with the last year's catch of a year-class which is still being fished.
In this case

$$
\mathrm{H}_{t}=\frac{c_{t} Z_{t}}{F_{t}\left(1-\exp \left\{-Z_{t}\right\}\right\}}
$$

and consequently

$$
\begin{align*}
& N_{1}=C_{i} \exp \{M / 2\}+C_{i+1} \exp \{3 M / 2\}+C_{i+2} \exp \{5 M / 2\}+ \\
+ & \frac{C_{t} Z_{t} \exp \{(t-i) M\}}{F_{t}\left(1-\exp \left\{-Z_{t}\right\}\right)}
\end{align*}
$$

The second form is when C_{t} refers to the catch in year t and all subsequent years. This is usually the case with a completely fished year-class. In this case

$$
N_{t}=\frac{C_{t} Z_{t}}{F_{t}}
$$

and consequently

$$
\begin{align*}
& N_{i}=C_{i} \exp \{M / 2\}+C_{i+1} \exp \{3 M / 2\}+C_{i+2} \exp \{5 M / 2\}+ \\
& +\frac{C_{t} Z_{t} \exp \{(t-i) M\}}{P_{t}} \ldots \ldots
\end{align*}
$$

In either case

$$
F_{i}=\log _{e}\left\{M_{i} / H_{i+1}\right\} \quad-M
$$

The closeness with wich these formula approximate the reaults of virtwal population analysis can be judged from Table 1 where results of both methods are compared. It can be seen that in no case do the estimates given by the two methods differ by more than 2%. Consequently an investigation of the errors of cohort analysis is an approximate inveatigation of the errors of Gulland's virtual population analysis. It can be seen from equations 1.4 and 1.6 that errors in I_{i}, and consequently errors in F_{i}, can be introdueed by the incorrect choice of F_{t} and by the sampling errors in the C_{i}. These two souree of error are investigated in the next two sections. Rerors in M can also anose errors in H_{i} and F_{i}, but for the purpose of this docusent H will be considered as fixed.

If an incorrect value F_{t} is chosen for the terminal fishing mortality when its true value is \bar{F}_{t}, then the proportional error in $H_{t}, \rho_{f}\left(N_{t}\right)$, is given as follows in the case when C_{t} is the catch in year t only:
$\rho\left(N_{t}\right)=\frac{Z_{t} \bar{F}_{t}\left(1-\exp \left\{-\bar{Z}_{t}\right\}\right)}{Z_{t} \bar{F}_{t}\left(1-\exp \left\{-\bar{Z}_{t}\right\}\right)}-1$
2.1
since
$\rho^{\left(N_{i}\right)}=\rho\left(N_{i+1}\right) \exp \left\{-P_{i}\right\}$
it follows that
$\rho\left(\bar{I}_{i}\right)=\left(\frac{Z_{t} \vec{F}_{t}\left(1-\exp \left\{-Z_{t}\right\}\right)}{Z_{t} F_{t}\left(1-\exp \left\{-Z_{t}\right\}\right)}-1\right) \exp \left\{-F_{i}-F_{i+1} \cdots F_{t-1}\right\} ; \ldots 2.3$
for small values of Z this is approximately given by
$\rho\left(\mathrm{N}_{1}\right)=\left\{\frac{\bar{F}_{t}-\mathrm{F}_{t}}{F_{t}}\right\} \exp \left\{-F_{i}-F_{i+1} \cdots F_{t-1}\right\}$
while for larger values of Z this formula tends to overstate the error and is therefore still of some value.

A similgr formula to 2.4 gives $\rho^{\prime}\left(\mathrm{H}_{1}\right)$, the proportional error in N_{i} when C_{t} is the catch in year t and all aubsequent jears. In this case
$\rho^{\prime}\left(M_{i}\right)=\frac{M}{\gamma_{t}}\left(\frac{\bar{F}_{t}-F_{t}}{F_{t}}\right) \exp \left\{-F_{i} \ldots-F_{t-1}\right\}$
and therefore
$\rho^{\prime}\left(N_{i}\right)=\frac{K_{1}}{Z_{t}} \rho^{\left(N_{i}\right)}$.

It is therefore simple to convert a table of $\rho_{\rho}\left(M_{i}\right)$ into a table of $\rho^{\prime}\left(M_{i}\right)$. In either case the proportional error of $F_{i}{ }_{\rho}\left(F_{i}\right)$, is given approximately by the formula

$$
\rho^{\left(F_{i}\right)}=-\frac{\rho^{\left(H_{i}\right)}}{1+\rho^{\left(H_{i}\right)}}
$$

Figures 1 and 2 show graphs of $p\left(H_{i}\right)$ and ${ }_{p}\left(F_{i}\right)$ plotted against the sum of the fishing mortality from year 1 to year $t-1$ (cumulative fishing mortality). It can be seen that the underestimation of F_{t} results in estimates of N_{i} which are too large and estimates of F_{i} which are too small. whereas overestimating F_{t} has the reverse offect. It can also be seen that as the cumulative fishing mor-
tality Increases, both types of error decrease. As an example, if F_{t} was overestimated by 100% for a year-class and the cumulative fishing mortality from year 1 to year $t-1$ was 2.0, then the percentage error in N_{1} would at most be -7% and the percentage error in F_{1} would be $+7 \%$. If, however, F_{t} was underestima by 50% and the cumulative fishing mortality was equal to 2.0 , then the percentage
N_{1} would be at the most 14% and the percentage error in error in/ F_{i} rould be -12%. Thus, provided that F_{t} can be estimated within this range and provided that the cumulative fishing mortality is greater than 2.0 , the error in the estimates of X_{i} and F_{i} should be small enough for most uses. If, however, the cumulative fishing mortality is small, vhich is the case when the number of recruits to a yearmclass is estimated from the catches of partially recruited age groups, then the accurate estimation of H_{i} and F_{i} will require the accurate choice of F_{t}. It should also be realised that since the cumulative fishing mortality is the sum of the fishing mortalities from age i to age $t-1$ it must, for a particular year-class, be a monotonically decreasing function of age. Hence the bias in F_{i} caused by the incorrect choice of F_{t} will be greatest amongst the oldes. age groups and this may upset estimates of selectivity with age. Table 2 shows the reauls of a cohort analysis for the 1956 year-class of the Arcto-Norwegian cod. This assumes that the true values of H and F_{t} are 0.3 and 0.8 respectively and shows the percentage errore in M_{i} and F_{i} when F_{t} is overestimated by 100% or underestimated by 50\%. These errors were computed by remaning the data with the appropriate value of F_{t} and are therefore precise. It can be seen that these percentage errors are similar but, in general, smaller than their estimates in Figures 1 and 2.
3. Error in cohort analys is due to the aanpling error of C_{1}

Unlike the estimate of F^{t}, which is usually an arbitrary choice, each estimate of catch at age can be assigned a variance, although this is seldom available, due to the heavy work involved in its computation (see Gulland 1955). Assuming such variances to be available it is a siaple matter to compute the reaulting variance of N_{i} and F_{i}, aince
$\operatorname{variance}\left(N_{i}\right)=\operatorname{variance}\left(C_{i}\right) \exp \{M\}+\operatorname{variance}\left(N_{i+1}\right) \exp \{2 M\}, \ldots 3.1$ and this may be used as a recurrence relationship to obtain $\operatorname{variance}\left(\mathrm{H}_{i}\right)=\operatorname{variance}\left(C_{i}\right) \exp \{M\}+\operatorname{variance}\left(C_{i+1}\right) \exp \{3 M\}+\ldots$
$\ldots+$ variance $\left(C_{t}\right) \frac{\exp \{2(t-1) H\}\left(F_{t}+M\right)^{2}}{F_{t}^{2}\left(1-\exp \left\{-F_{t}-M\right\}\right)^{2}}$
which is a very similar formula to 1.4 .

The equivalent variance of F_{i} can be approximated, since

which yields approximately
$\operatorname{variance}\left(F_{i}\right)=\frac{\operatorname{variance}\left(\mu_{i}\right)}{n_{i}^{2}}-\frac{2 \operatorname{variance}\left(n_{i+1}\right) \exp \{n\}}{\bar{X}_{i} \eta_{i+1}}+$

$$
+\frac{\operatorname{variance}\left(n_{i+1}\right)}{\mathbf{s}_{i+1}^{2}}
$$

Equations 3.2 and 3.4 should be used to calculate the reapective variances of M_{i} and F_{i} in a particular case, but in order to appreciate the approrimate magnitude of these variances the following approximete formulae are ueful:

$$
+\left(\text { rariance ratio } \mathrm{H}_{i+1}\right)^{2}\left(\exp \left\{-p_{i}\right\}\right)^{2}
$$

(variance ratio $\left.F_{i}\right)^{2}=\frac{\left(1-\exp \left\{-F_{i}\right\}\right)^{2}}{F_{i}^{2}}\left(\left(\text { variance ratio } C_{i}\right)^{2}+\right.$
$\left.+\left(\text { variance ratio } N_{1+1}\right)^{2}\right)$.
Pigure 3 shows graphs of these formulae for each year from the final year, that is for the number of years from the estimate in question to the final year. The graphs are given for the case when the variance ratio of the catch-at-age data is constant, and when the fishing mortality is constant throuphout the life of the fish. Although these conditions are unrealistic, the rapid convergence of the graphs to asymptotic values does auggest that the graphs would indicate the approximate value of the variance ratio of the estimates of N_{i} and F_{i}, even when F_{i} is not constant from year to year. As an example of the use of the graph, the estimate of H_{5} (for a year-class with an oldest age group of 12 years old, experiencing a fishing mortality of 0.6 per year) would have a variance ratio of approximately 54% of the variance ratio of the catch data. Similarly the estimate of F_{5} would have a variance ratio of approximately 85% of the variance ratio of the catch data. Hence, if the variance ratio of the catch data was $100^{\prime \prime}$, then the variance rafios of N_{5} and F_{5} would be 5.4% and 8.5% respectively. As a result the approximate 95% confidence limits for the estimates would be $\pm 10.8 \%$ of the estimate of N_{5} and 17.0% of the estimate of F_{5}.

Table 3 shows the 1956 Arcto-Norwegian cod results, together with the standard deviations and variance ratios of \mathbb{N}_{1} and F_{i}. These were computed from equations 3.2 and 3.4 on the amamption that the variance ratio of the catch data
at each age was 10%. It can be eean that the variance ratios of these estimates are not very different from those which would have been prodicted by entering the graphs of Pigure 3 with appropriate values of P_{i} at the asymptotic parte of the graphs. Thus Figure 3 should prove to be of some value in providing quick estimates of the variance retios of I_{i} and F_{i} for my year-clase which has catch date which have approximately constant variance metios.

4. Summary

This document provides formulae for calculating the error introduced in cohort analysis (and therefore virtual population analyais) by errors in $\mathrm{F}_{\mathbf{t}}$ and by the sampling error of catch data. It also provides some quick estimates of the likely size of such errors. These estimate suggest that such errors converge to fairly small values, but they also suggest that a knowledge of the approximate value of these errors will always be a safeguard against misinterpretation of data!

GULLAND, J. A., 1955. Estimation of growth and mortality in commercial fish populations. Fishery Invest., London, Ser. 2, 18(9). GULLASD, J. A., 1965. Estination of mortality rates. Annex to Arctic Fisheries Working Group Report (ineeting in Hamburg, January 1965); ICES CM 1965, Gadoid Pish, Doc. No. 3 (nimeo).

Table 1 Comparison of the reaults of virtual population analysis and cohort analysis
Arcto-Norwegian cod, 1956 year-class
$\mathrm{M}=0.3$

1. Virtual population analyais
2. Cohort analysis

Age (years)	Fishing mortality, $\mathrm{F}_{\mathbf{n}}$			Population $\mathrm{N}_{\mathrm{i}} \times 10^{-6}$		
	(1)	(2)	\% error	(1)	(2)	\% error
12	0.8000*	0.8000%		0.2	0.2	
11	1.3400	1.3670	2	1.1	1.1	0
10	0.7826	0.7806	-	3.1	3.2	2
9	0.6768	0.6747	-	8.3	8.5	2
8	0.6582	0.6570	-	21.7	22.2	2
7	0.8636	0.8657	-	69.6	71.2	2
6	0.7341	0.7333	-	195.6	200.1	2
5	0.4289	0.4261	1	405.5	413.6	2
4	0.1874	0.1854	1	660.2	672.0	2
3	0.0411	0.0405	1	928.5	944.7	2
2	0.0024	0.0024	-	1256.4	1278.2	2
1	0.0007	0.0007	-	1697.1	1726.6	2

*assuned

- 8 -

*assumed

Table 3 Standard deviations and variance ration of I_{1} and F_{1} calculated for the 1956 Arcto-Norwegian cod, assuming that the variance ratio for the catch at each age ras 10% and that $M=0.3$ and $F_{t}=0.8$

$\begin{aligned} & \text { Age } \\ & \text { (years) } \end{aligned}$	$m_{i} \times 10^{-6}$	F_{1}	Standard deviation		Variance ratio (\%)	
			$H_{i} \times 10^{-6}$	F_{i}	H_{1}	F_{i}
12	0.2	0.8000*	0.01449			
11	1.1	1.3670	0.08361	0.09192	7.60	6.72
10	3.2	0.7806	0.20763	0.06801	6.49	8.71
9	8.5	0.6747	0.50349	0.05865	5.92	7.51
8	22.2	0.6570	1.26666	0.05601	5.71	8.53
7	71.2	0.8657	4.46487	0.06669	6.27	7.70
6	200.1	0.7333	12.01878	0.06134	6.01	8.36
5	413.6	0.4261	21.65851	0.04047	5.24	9.50
4	672.0	0.1854	31.37061	0.01910	4.67	10.30
3	944.7	0.0405	42.51186	0.00439	4.50	10.83
2	1278.2	0.0024	57.38580	0.00026	4.49	10.77
1	1726.6	0.0007	77.46281	0.00007	4.49	10.59

Figure 1 Graphs of the percentage error in N_{i} due to incorrect values of F_{t} plotted against the cumulative fishing mortalities from year i to year $t-1$.

Figure 2 Graphs of the percentage error in F_{i} due to incorrect values of F_{t} plotted against the cumulative fishing mortalities from year i to year $\mathrm{t}-1$.

Figure 3 Graphs of the percentage variance ratio of F_{i} and of N_{i} for various constant levels of fishing mortality plotted against the years of further exploitation.

