# ANNUAL MEETING - JUNE 1971 <br> Accuracy of ebundance indices for cod from St. Pierre Bank ICNAF Division 3Ps) based on Canada (Nfld.) research vessel surveys in terms of comparisons with commercial abundance indices 

by

A. T. Pinhorn<br>Fisheries Research Board of Canada<br>Biological Station, St. John's, Newfoundland

## Introduction

One of the chief objectives of research vessel surveys is to estimate the absolute or relative abundance of year--classes of fish several years prior to their recruitment to the commercial fishery. The surveys conducted by the St. John's Biological Station Laboratory have been no exception and the survival of year-classes of cod and haddock has been followed for many years, although no actual quantitative predictions have been made. The purpose of the present paper is to evaluate the survey data from St. Pierre Bank (ICNAF Uivision 3Ps) and to correlate abundance estimates of year-classes of cod at the pre-recruit stage with abundance estimates of these same year-classes after recruitment to the commercial fishery.

## Materials and methods

The sampling design traditionally used on groundfish cruises has been a standard line system. Lines and stations selected under this system are described by Pinhorn (1971) in a document presented to this meeting. Fig. 1 shows the lines and stations fished on St. Pierre Bank during 1957-70, the period considered in the present paper.

Temperature conditions in this area vary with season and even from year to year within the same season (Templeman and Hodder, 1965). Also, primarily as a response to these changing temperature conditions, cod are known to migrate between depth zones from season to season (Templeman and May, 1965) and even to migrate to the Newfoundland coast in this area in the May-June period (Templeman, 1962). In view of these facts and since the survey cruises in 1957-65 were conducted during May-June but in 1967-70 were conducted during March-May (Fig. 2), the length compositions of the catches from each cruise were combined by depth zones of 0-50 fath, 51-100 fath and 101-150 fath. These were then converted to number per hour fished for each depth zone and the results are shown in Fig. 2. It became obvious that very few cod were caught deeper than 100 fath and this depth zone is omitted from Fig. 2. Ir fact, movements of cod occurred within depths less than 100 fath. It is further obvious that, except for occasional years of peculiar hydrographic conditions (e.g. 1958), the young cod of $2-3$ years of age
( $<37 \mathrm{~cm}$ ) remained for the most part in the 51 - 100 fath depth zone during the entire period from March to June, whereas the older cod were found in the 51-100 fath depth zone during the early part of this period, but moved onto the top of the bank in depths less than 50 fath during the later part of this March-June period (Fig: 2).

To evaluate the similarity of abundance indices calculated from research vessel surveys in successive years, indices of abundance of 2 and 3-year-old cod of each year-class were compared with indices of abundance of 4 - and 5-year-old cod of the same year-class in later cruises. In view of the facts outlined above, three separate methods of computing these indices were used as follows:

1. Numbers of cod caught per hour fished for each year-class at each age were computed by applying an age-length key to numbers per hour length compositions as shown in Fig. 2 from sets made in 51-100 fath only for each cruise.
2. Numbers of cod caught per hour fished for each year-class at each age were computed for 2 - and 3 -year-old cod by applying an agelength key to number per hour length compositions from sets made in 51-100 fath only and for 4 . and 5 -year-old cod from sets made in 0-50 fath for the 1957-65 late spring to early summer cruises and from sets made in 51-100 fath for 1967-70 late winter to early spring cruises.
3. Numbers of cod caught per hour fished for each year -class at each age were computed by weighting the number per hour length compositions in each depth zone by the area of the depth zone as shown in Fig. l. These areas are as follows:

| $0-50$ | fath | - | 5749 | square miles |
| :---: | :---: | :---: | :---: | :---: |
| $51-100$ | $"$ | - | 2776 | $" 1$ |
| $101 \cdots 150$ | $"$ | - | 869 | $"$ |

In the above computations, in years where no survey data were available (1961 and 1966) and for year-classes at the beginning and end of the period, numbers caught per hour for the missing ages were calcucalculated by applying the average survival rates of the remaining yearclasses between successive ages to the known number per hour at the age immediately before or after the missing ages.

In comparing indices of abundance of 2 - and 3 -year-old cod from the research cruises with indices of abundance of 4 - and 5-yearold cod from the commercial fishery, the indices for 2- and 3-year old cod calculated by Methods $1-3$ above were used. The indices of abundance for 4- and 5-year-old cod from the commercial fishery were calculated in the following manner: Nominal catches and hours fished by Canada (Nfld.) side trawlers of 151-500 tons were tabulated for the spring fishery for the 1959-68 period. Average weight.. caught per hour fished was then calculated for each year and average number caught per hour fished calculated from this figure by using average weight values as determined from the Sampling Yearbooks for the respective years. Per mille length frequencies of catches of Canada (Nfld.) side trawlers of 151-500 tons, as well as length frequencies of other countries which appeared similar to Canada (Nfld.) frequencies, where the latter were lacking or few in number, were averaged and the resulting per mille length frequency adjusted to number per hour caught by these Canada (Nfld.) side trawlers in each year. Research age-length keys were applied to these length frequencies for each year and indices of abundance calculated for 4 - and 5 -year-old cod of each year class. For 1961 and 1966, in which no age-length keys were available, keys from the adjacent years were averaged and applied to the length
frequency in the particular year. Numbers of measurements used for each country are given below:

| Year | Country | No. of measurements |
| :---: | :---: | :---: |
| 1959 | Canada (ivfld.) | 204 |
| 1960 |  | 520 |
|  | U.K. | 2013 |
| 196.1 | Canade. (ivfld.) | 834 |
|  | Port. | 500 |
| 1962 | U.K. | 1890 |
| 1963 | - | 180 |
| 1964 | Canada (Nfld.) | 267 |
| 1965 | " | 999 |
| 1966 | " " | 2428 |
| 1967 | " | 600 |
| 1968 | " ${ }^{\prime}$ | 945 |

## Results

Logarithmic transformations best described the relationships betwean abundance indices of 2- to 3-year-old cod and 4- to 5-year-old cod in successive research surveys. Correlation coefficients ( $r$ ) were eererally larger than with the arithmetic straight line fits and were significantly different from zero in all cases except ages $2-3$ versus age 5 calculated by Method 3 (Table 1 and Fig. 3). Only two r-values were significant using arithmetic straight lines, between ages $2-3$ and age 5 and ages 2-3 and ages $4-5$ as calculated by Method 1.

On the other hand, arithmetic straight line fits best described the relationships between ages $2-3$ in the research surveys and ages $4-5$ in the commercial catches. Correlation coefficients were generally larger than with the logarithmic transformation and were significant in 211 cases except between ages ?-3 and age 5 calculated by Method 1 (Table 2 and Fig. 4). However, all r-values except two were still significant with the logarithmic transformation.

Except for the 1958 year~class, survival of the 1954-65 year-classes as determined from research vessel surveys fluctuated only moderately with the weakest year-classes being about $75 \%$ less than the long-term average and the strongest year-classes being about equal to the average (Fig. 5A). The 1958 year-class was represented in the 1960 research vessel catches in significant numbers but was only caught in small numbers in later research vessel cruises and in commer. cial catches. The catch of this year-class as 2 -year-olds was not considered representative of its abundance and consequently this yearclass is omitted from the above correlations. The 1966 and 1968 year-classes appear to be considerably strongar than average, while the 1967 year-class was slightly below average.

## Discussion

It appears from the results presented in this paper that indices of abundance as determined from survey cruises tc St. Pierre Bank are accurate enough, or at least consistent enough from year to $y \in a r$, to allow for prediction of relative levels of recruitment to the conmercial fishery ever with the present standard line system as used $D_{j}$ the St. John's Biological Station. However, attempts at estimating
absolute abundance levels of individual year--classes would be more difficult with this system since it does not allow for random coverage of the entire habitat of the species and hence any attempt at stratifying the area and using the stations fished on each line es random sets in the various strata would result in some strata having no sets at all and others with very few.

In considering the problem of stratifying the area according to the system of campling described by Grosslein (1968), if only the prerecruits of age groups $0-3$ are being considered, then it appears that the problem may be simplified since in most years these age-groups are confined larecly to the depth zone Sl-100 fath and a stratification syatem within this zone may be sufficient. However, if older agegroups are considered, then the fact that these age-groups migrate to the top of the bank and more important to the Newfoundland coast must be considered. Any survey then undertaken would have to be in winter or esriy spring before this migration takes place.

Comparison of year-class strengths with those given by Bulatova (1970) indicates some differences (Fig. 5C). Deviations from the long-term mean of the 1960-66 year-classes were similar in both sets of data for the $1960-63$ year-classes, ranging from $25-75 \%$ below this mean. Also, the deviations for the 1965 year-class was reasonably similar in both cases, being equal to the mean for Canada (Nfld.) and $25 \%$ above for Bulatova (1970). However, the strength of the 1964 year-class, whitie being $10 \%$ below the mean from Canada (Nfld.) data, was $125 \%$ abcve the mean from Bulatova (1970). Also, the 1966 year-class, while being $200 \%$ above the mean from Canada (Nfld.) data was only $60 \%$ above from Bulatova (1970) data. Bulatova (1970) also states that the 1967 year-class is probably not better than average, while the 1968 year-class was especially strong. This agrees favourably with the Canada (Nfld.) data (Fig. 5A), from which the 1967 year-class was judged to be about $25 \%$ less than the long-term 1954-68 mean and the 1968 year-class about $150 \%$ greater than the mean.

## References

Bulatova, A. Yu. 1970. Abundance of young cod in the waters of $f$ Newfoundland. Int. Comm. Northwest Atlant. Fish. 1970 Annual Meeting Res. Doc. 70/51, Ser. No. 2383.

Grosslein, M. D. 1968. Results of the Joint USA-USSR Groundfish Studies. Part II. Groundfish survey from Cape Hatteras to Cape Cod. Int. Comm. Northwest Atlant. Fish. 1968 Annual Meeting Res. Doc. 68/87, Ser. No. 2075.

Piuhorn, A. ' 1 '. 1971. Objectives and characteristics of existing and proposed groundfish surveys by the Fisheries Research Board of Canada, Biological Btation, St. John's, Newfoundland. Int. Comm. Northwest Atlant. Fish. Mid-term Meeting ICNAF Working Group on Co-ordinated Groundfish Surveys, 1971.

Templeman, W. 1962. Division of cod stocks in the Northwest Atlantic. Int. Comm. Northwest Atlant. Fish. Redbook 1962, Part III: 79-123.

Templeran, W. and V. M. Hodder. 1965. Distribution of haddock on St. Pierre Bank (ICNAF Division 3Ps) by season, depth and temperature. Int. Comm. Northwest Atlant. Fish. Special Publ. No. 6. ICNAF Environmental Symposium. pp. 189-197.

Templeman, W. and A.W.May. 1965. Research vessel catches of cod in the Hamilton Inlet Bank area in relation to depth and temperature. Int. Comm. Northwest Atlant. Fish. Special Pub1. No.6. ICNAF Environmental Symposium. pp. 149-165.

Whie 1 . Correlation coefficients and tests of significance betwor indices of abundace of ?- and 3-year-old cod and 4- and 5-yearold cod from Canada (Aflu.) ressarch surveys of St. Pierre Eank (IClNAF Division 3Ps), 1957-70. Indices of shundance are computed by three different methods which are described in text.

| Metnod | Ages rompared | Srithretic straight, line |  |  | LoE log atraight line |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | r | df | -1- |  |  |  |
| 1 | $\cdots \mathrm{mes}$ | 0.20 | 10 | 1.91 | 0.61 | 10 | こ0.)* |
|  | $\therefore-2$ ve ' | 0.83 | 10 | 4.73 ** | 0.7h | 10 | 315** |
|  |  | $0.7{ }^{\prime}$ | 10 | 3.20** | 9.7\% | 10 | $3 . .6$ \% ${ }^{\text {a }}$ |
| ; | $2-3$ ve 4 | 0.51 | 10 | 1.89 | 0.76 | 10 | 3.66** |
|  | $2-3$ vs 5 | 0.56 | 10 | 2.13 | 0.59 | 10 | 2.31\% |
|  | $2-3$ vs $4-5$ | 0.57 | 10 | 2.21 | 0.85 | 10 | $5.07 \% *$ |
| 3 | 2-3 vs 4 | 0.40 | 10 | 1.40 | 0.59 | 10 | 2.32* |
|  | $2-3$ vs 5 | 0.42 | 10 | 1.45 | 0.50 | 10 | 1.84 |
|  | 2-3 vs 4-5 | 0.45 | 10 | 1.60 | 0.59 | 10 | 2.31* |

[^0]Table 2. Correlation coefficients and tests of significance between indices of abundance of 2- and 3-year old cod from Conade (iffle.) :urvey catches und $4 .$. and 5-year-old cod from Canada (Nfle.) commercisl catches of 151..500 tons side trawlers, St. Pierre Eank (ICNAF Division 3Pss), 1959-68.

| Method | Ages compared | Arithmetic straight line |  |  | Log..log straight line |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $r$ | df | $t$ | $r$ | df | t |
| 1 | 2-3 vs 4 | 0.83 | 8 | 4.15** | 0.79 | 8 | 3.59** |
|  | $2-3$ vs 5 | 0.54 | 8 | 1.79 | 0.32 | 8 | 0.94 |
|  | $2-3$ vs $4-5$ | 0.88 | 8 | 5.29** | 0.67 | 8 | 2.57\% |
| 3 | $2-3$ vs 4 | 0.82 | 8 | 3.99** | 0.82 | 8 | 4.04** |
|  | $2-3$ vs 5 | 0.63 | 8 | 2.29* | 0.50 | 8 | $1.6 \%$ |
|  | $2-3$ vs $4-5$ | 0.88 | 8 | 5.33** | 0.76 | 8 | 3.29* |
| * significant at the $5 \%$ level <br> ** significert at the $2 \%$ level |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |



Fig. I. Chart of St. Pierre Bank showing depth zones used in calculation of indices of abundance of $\operatorname{cod}$ and lines and stations fished during the period considered. Solid lines marked $A, B$ and $C$ delineate sections used for determination of depth zone areas.


Fig. 2. Number caught per l-hour trawling in each 3 -cm length group in the two major depth zones from Canada (Nfld.) research vessel surveys, St. Pierre Bank (ICNAF Division 3Ps). Areas shaded and hatched to the left of vertical lines indicate cod less than 4 years old.


Fig. 3. Relationship between average indices of abundance of 2-to 3-year-old cod and 4-to 5-year-old cod of each year-class in successive research vessel surveys. See text for explanation of Methods l-3 of calculating indices.


Fig. 4. Relationship between average indices of abundance of 2- to 3-yearold cod from research vessel surveys and 4 - to 5-year-old cod from the commercial fishery by Canada (Nfld.) side trawlers of 151-500 tons for each year-class.


Fig. 5. Percent deviations by year-class of abundance indices of cod from long-term average of (A) 1954-68 year-classes from research data alone; (B) 1954-64 year-classes from research data and commercial data; (c) 1960-66 year-classes from Canada (Nfld.) research data and data of Bulatova (1970).


[^0]:    * sigrificant at the $5 \%$ level
    ** significant at the l\% level

