RESTRICTED
THE NORTHWEST ATLANTIC FISHERIES

Serial No. 2543
ICES/ICNAF Salmon Doc. $71 / 17$ (also ICNAF Res.DCC. 71/73)

# ANNUAL MEETING - JUNE 1971 <br> SOME ASPECTS OF CANADIAN ATLANTIC SALMON FISHERIES IN RELATION TO THE NEW GREENLAND AND HIGH SEAS FISHERIES 

by P.F. Elson
Fisheries Research Board of Canada Biological Station, St. Andrews, N.B., Canada


#### Abstract

The Fisheries Research Board of Canada has had continuing research programs on Atlantic salmon which involved marking seaward migratinq smolts since 1950. About 1960 the marking technique was altered from clipping finsto application of small external tans. In 1961 a tanged smolt from the Miramichi was taken in Greenland - the first record of a Canadian salmon caught there. In the next 3 years 8 more salmon were taken there. This period saw the rapid development of a commercial fishery for salmon along the West Greenland coast.


In 1965 the Board sent a scientist (Dr. R.L. Saunders) to Greentand as a first step in getting acquaintance with the fishery. In 1966, with recognition that the fishery was becoming well established and took fish from both Horth America and Europe, arrangements were made with the Danish and Greenlandic governments to send another St. Andrews scientist (Nir. J. Pippy) to study parasitolony of salmon in the Greenland fishery. Similar studies were carried on in home waters. The objective was to determine, through their parasites, the relative abundance of North American and European salmon in Greenland. These studies were coordinated with similar studies by European scientists.

In 1967 the St. Andrews Station sent another scientist. (Dr. P.F. Elson) in a larae rescarch vessel (the A.T. CAMERON to explore the feasibility of tagging salmon in
coastal and offshore waters using Pacific coast drift-netting techniques.

In 1968 the program of Greenland-hioh seas salmon research was transferred to the Board's St. John's Station, under Dr. A.W. May. Each year since the CAMRRON with one or more scientists has been in the Greenland area during salmon the season of active/fishery. Using North Atlantic techniques of drift-net fishing over 500 salmon have been taged and liberated in the last 3 years. There have now been over a dozen recaptures in home waters of North Anerica and Europe. about evenly divided between each continent.

Studies of comparative parasitology have continued and also indicate that about half (perhaps up to 60\%) the salmon in Greenland are of North American (this means largely Canadian) origin, and the balance from Europe.

Biochenical studies, developed at the St. John's Station in the last 3 years, also indicate that about half the salmon in Greenland are of North American origin, and tend to confirm results from parasitology.

Meantime smolt-tagqing studies have continued at St. Andrews, and have also been extended to include other agencies in Canada and in Mainc.
results from
Records of tag recaptures, like/horphonetric and aging studies in the Greenland area, indicate that nearly all Canadian fish taken there are post-grilse, i.e., would mostly return as 2-sea-year salmon, or "large" salmon as contrasted. to grilse, which are often most abundant in home waters.

Tag returns from the shore-based Greenland fishery are believed to be fairly complete. But it is a fact of life that the high seas fishery has not returned tags proportionate to its catch. At the same time some skinpers have frankly admitted reluctance to turn in tans because of possible implications for restricting their fishery. This is to be kept in mind in considering some of the figures which follow.

```
            For tagaed wild Northwest firamicini smolts liberated
froni 1964 through 1960:
    52% of the returns were as arilse in Canada
    (18% escapement, 19% analed, 15% commercial)
    for fish older than grilse.
    10% were taken in the Greenland area.
    38% in Canada (2% escapement, 3% anqled, 33% commercial).
            In another analysis of the same data, but for
smolts tagged in 1965 throuah 1968, and consiciering only
recaptures as large salmon:
    24% were taken in the Greenland area.
    9% were taken in Newfoundland (1% in Port aux Basques).
    27% in the iliramichi drift-net fishery.
    25% in the Miramichi set-net fishery.
    4% in Maritime and Quebec commercial fisheries more than
    50 miles from the Miramichi.
    7% were taken in fresh water (mostly anglina).
    4% were recorded as potential spawning escapement.
The figure for Greenland is minimal because of lack of returns
from tie drift fishery and should ne:haps be almost twice as
high as indicated because in recent years the drift fishery
has accounted for about half or even more of tine landings there.
    To understand the full significance of these returns
it is necessary to consider the results of taqging experiments
dealing with hatchery-reared smolts of selected parentage
(fish taken in Greenland are counted as large salmon rather
than grilse):
```

    For smolts of virgin 2-sea year parentage (s lots)
    40,838 smolts tagged; 648 returns - 37 as arilse; \(63 \%\) as salmon
    For smolts of l-sea-year (orilse) parentage (4 lots)
16,588 smolts tagged; 389 returns - $61 \%$ as grilse; $39 \%$ as salmor

The above data indicate a tendency for age at maturation to be at least partly dependent on the aqe of parent stocks at maturation. Hence commercial fishories which select large salmon and permit escape of grilse pose a threat of altering natural grilse-salmon ratios towards increased grilse and fewer salmon. This is the situation for the Greenland salmon fishery and all Canadian drift-net Atlantic salmon fisheries, as well as the New Erunswick inshore salmon fishery.

In some rivers with almost pure arilse populations the sex ratio is about $1: 1$. But in those with a natural mixed population male grilse are often more abundant than females. In the Miramichi the sex ratio for qrilse is about 2 males to 1 female, but Miramichi large salmon are about evenly divided between the sexes, or even have a slight preponderance of females. Fisheries which select for large salmon among such populations are likely to reduce the potential egg-escapement and thus effect spawning potential more than mere counts of escaping fish would indicate.

Such a condition appears to have been developing on the Northwest Miramichi since 1964 or periaps even 1962. In the last 7 years total runs counted into the river have averaged $2,2 \% 3$ ( $95 \%$ ) grilse and 122 ( $5 \%$ ) salmon; in the previous 14 years the comparable figures werc 2,663 ( $78 \%$ ) grilse and 740 (22\%) salmon. There is other evidence that Northwest Miramichi spawning escapement was sufficient to utilize the productive capacity of the river in earlier years, but recently falls substantially below that level. A parallel situation has been recognized on other miramichi streams during at least the last 2 years.

There is reason to believe that some of this change may be the result of environmental degredaiion in home waters. Forest spraying with poisonous insecticides and mining effluents have damaged some rearing grounds. Tiere is evidence that industrial pollution of large estuaries such as the iniramichi
may slow the riverward migration of adults.
If catch trends in selected Canadian fisheries are exanined in relation to the Greenland catch there are hints of an inverse relationshin. Studics of parasitology showed that Gulf of St. Lawrence large salmon irad a oarasite fauna closely resembling that of Greenland salmon, but bay of Fundy large salmon tended to support a different parasite fauna. Commercial salmon catches in the liaritime portion of tile Gulf (Cape Gaspe to Fourchu) show a tendency towards a decreasing trend from 1965 on, while from 1964 on (affecting the same year-classes) the Greenland catch shows an increasina trend and very hiah catches. Perhaps even more interesting is a comparison between Greenland catches and analina catches of larae salmon in the liramichi for equivalent periods. From 1965 on the anglina catch dropped when the Greenland catch was high in the previous year, and rose in years immediately after the Greenland catch dropped. Again, trends of the two fisheries appear to have an inverse relation.

While causes and effects are by no means firmly established, there is firm evidence that liranichi production of large salmon has diminished in recent years. For most Maritime large salmon there is a span of 6 to 7 years between spawning of the parents and return of progeny. Large salmon production will probably continue at a comparatively low level until some years after remedial measures are recognized and implemented.


