ICES/ICNAF Salmon Doc. $71 / 18$
(also ICNAF Res.Doc. 71/74)

ANNUAL MEETING - JUNE 1971
 The Danish Salrion Fishery in the Norwegian Sea in 1970
 by

O. Christensen.

Danmarks Fiskeri-og Havundersфgelser, Charlottenlund Slot, Charlottenlund, Denmark

1. Effort
1.1. Vessels
$F_{i}()$ Danish veoscle participated in the offshoro salrion fishery in the: Norwerfian sea for a longer or shortcr period of 1970. A few bonte (riainiy the bigger ones) started the fishery during the last hali of February. The majority operated from April to the end of May, while and insignificant number continued until mid June.

1.2. Gear

The fishery was exclusively carried out by means of long lines. About 1800 hooks were operated per boat. Both hooks nr. 3/0 and 6/0, with gaps between point and shank of 14 mm and 19 mm respectively were used.

A few trials were made with drift nets, but only with poor results.

The intensity of the fishery relative to the months of the season is shown in table 1 as number of hooks x shots. The figures of the table are estinated on basis of diary information from about half of the Danish total catches.

1.3.

Fishinf areas

Figs. 1-4, which show the geografical distribution of Danish catches per unit effort, also gives an idea of size, positions and ohanges of the exploited area. The catch distribution are worked out on basis of diaries of 20 vessels, i.e. one third of the Danish salnon fleet operating in the Norwegion sea.

As it appears from the charts the najority of the fishery was carried out within the limits of the latitudes $69^{\circ} 00^{\prime} \mathrm{N}$ and $74^{\circ} 00^{\circ} \mathrm{N}$ and the longitudes $10^{\circ} 00^{\prime} \mathrm{E}$ and $20^{\circ} 00^{\prime} \mathrm{E}$. In February the fishery was concentrated in the southem part of this area. During the followine month salmon fishing spread north- and eastward until lat. $74^{\circ} 00^{\circ} \mathrm{N}$ and lone. 36° oo E. At the peale of the season in ipril the fleet concentrated in the main fishinf area $50-300$ naut.ailes north of lofoten Islands. ilso in May lone lininf took place chicfly in thise aren. fit, the end of the zonth severnl boats roved southward to fisbing frounds between lat. $69^{\circ} 00^{\prime} \mathrm{N}$ and $65^{\circ} \mathrm{co} \mathrm{N}$ until loo naut.miles from the coast.

The offshore exploitation in June was negligible. Sone boats were operating in the main area the first two weeks of the month. On their way hone a few long line shots were nade far to the south.

In general the fishery was carried out with greatest effort, where nost profitable catches could be obtained, i.e. areas with a high value of catch per unit effort.

2. Yield.

2.1. Total yield

According to the fishery statistics the total yield of the Danisi salmon rishery in the Norwegian sea in 1970 amounted to 415 tons, estinated to a nuraber of about 146,000 salmon. Mean weight 2.8 A k .

The weight stated is gutted weight of frozen salmon after reduction of $4.0-4.5 \%$ for icing. Weighing of 200 salnon at sea before and after gutting and detemination of frozen weight with and without ice covering showed an average loss in weight frou round to londed, gutted and thawed salmon of 13.7%. To obtain round weight of the total yield, the statistical data on weight has to be increased with 15.9%.

An unknown number of salmon entering the catches was dischareed, being too small and too lean, Observations on long line hauling showed that 5% of a catch of 450 salmon was released into the sea fcr the reasons mentioned.

2.2. Market, categories.

In table 2 the total yield is distributed on market categories as well by number as by weight.

As an overall average the size of salmon that entered the catches did not show any great variations from nonth to month. In the main area lat. $69^{\circ} 00^{\circ} \mathrm{N}-74^{\circ} 00^{\circ} \mathrm{N}$, long. $8^{\circ} 00^{\prime} \mathrm{E}-22^{\circ}{ }_{0}{ }^{\prime} \mathrm{E}$ mean weight (gutted) per salnon remained between 2.7 kg and 2.8 kg during Febmary - May, but rose to 3.3 kg in June.

Fast of lat. $22^{\circ} 00^{\prime}$ E the average size of salmon was significantly larger during the whole season. One boat for exariple lonf lining between long. $26^{\circ} 00^{\prime} E$ and $36^{\circ} \circ 0^{\prime} E$, south of lat. $74^{\circ} 00^{\prime} \mathrm{N}$ fron mid March until second week of May recorded a yield, of which $3.4 .0 \%$ of the individuals belonged to the market categories $5-9 \mathrm{k}_{6}$; while 22.6% were. still bigger. In return the number of salmon caught por lono hook. averaged only 22.8 , i.e. one third of the number caught per unit effort in the nain fishing area at that time.

Salnon fron the area south of lat. $68^{\circ} 00^{\prime N}$ exploited in May and June were also relatively large. The average weight anounted to 4.5 kg .

Differences in the catches with respect to mean weight per salmon above all reflect diferences in age composition of the stocks exploited.

2.3. Catch per unit effort

Catch per unit effort varied significantly with time and fishine area. Table 1 shows the monthly average yield per unit of gear estimated fron catches of 72,000 salmon.
iccording to available infomation on drift net trials in May an averafe of 4.0 salmon were retained per 100 nets. Experiments with nets in the beginning of the season gave still inferior results.

Distribution of catch per unit effort by areas and months based on diary information is demonstrated in figs. 1 - A. Four hatchings are used, representing catches of less than 25 sainon, 25-50 salmon, 50-75 salmon and more than 75 salmon per loon hooks respectively.

3. Catch_Conpogition

Irvestications on the composition of the salmon catches from the Norwesian Sea as to size, age, condition and sex were carricd out by means of market examinations and sampling at sea from a cormercial vessel. A total of 3,814 salmon distributed on eight samples from different periods of the season were measured and weighed. As nearly 011 the salmon entering the Danish fishery in the Norwerian sea are landed in frozen and iced condition, scale sarples can only in a f.cw exceptional cases be coliected on the fishrarket. However fron a single landing of conled salmon and from the sampling at sen, scales of 923 salmon were collected by stratified samplinf.

The frozen salmon were ceasured to fork length and weighed with the ice covering. Fork lencth is converted to total length by adding. \therefore on to each 1 cm-eroup. Accordire to the investiemtion on loss of woinht. from catch to landing previously mentioned, weichts of frozen salwon are in relation to their size converted to round weight by the ran" of factors 1.096 - 1.122 . The weight of cooled salnon is likewise converted to round weight, hut with the factors 1.136-1.172. The cooled salmon as woll as the salmon examined at sea were measured to total loneth.

3.1. Leneth distribution.

Table 3 and figs. $5 a, 5 b$ and $5 c$ show the leneth-frequency distribution of salmon caught in different periods of the season. With reepect to time and fishing area the eight samples are grouped as follows:
a. Mid February - mid March: 60-150 naut. miles W - N of Andenes.
b. Mid April - end of April: 60-200 naut. miles W - NW of Andenes.
c. Mid May - mid June: $40-150$ naut. miles NW of Andenes.
(Andenes: $69^{\circ} 20^{\circ} \mathrm{N}, 16^{\circ} 10^{\prime} \mathrm{E}$)

During the period covered by the samples, the average growth judged fron the node of the length-frequencies amounted to about 7 cm .

3.2. fge distribution

Based on analysis of scale samples collected from catches made during the last half of April and the last half of May and on the assumption that average growth of salnon from February to June anounted to about 7 cm , an estimation have been made on the age composition of the three groups of catches mentioned in 3.1 ($t a b l \in 4$).

3.3.

3.4.

Length weight relationship
The length weight relationship of salmon exploited in the Norwegian Sea varies both with respect to size of individuals and to time of the season (fig. 6). The diagram shows the correlation between leneth and condition factor of salmon belonging to the three groups of catches examined. The condition factor $\left(K=\frac{w}{1}\right.$) is calculated as a mean of 5 cm length groups (w: round weight, l: total length).

An attempt has been made to estimate averace condition factors of each of the three sea age groups of salmon, that enters the high scas fishery (table 6). Owing to lack of age determination of overy sinile individual of the 3,814 salmon included in the length-weight measurements, the average condition factors of the age groups have been estimated on basis of a simple division of the catches accordine to their age composition (see table 4).

Salmon taken by the offshore fishery in the Norwegian sea show a remarkably wide range of condition at any rate in spring. The weight of specinens of a given length may vary nore than 100%. In figs. $7 a$, $7 b$ and 7 c is shown the percentage frequency distribution of condition
factors of individuals belonging to the length groups $64-74 \mathrm{~cm}$, $68-78 \mathrm{~cm}$ and $70-80 \mathrm{~cm}$ selected from the previously mentioned three groups of catches respectively.

The results obtained by analysis of the length weight relationship may possibly be explained when considered in the light of the spawing recruitment fron the offshore stock of salmon to the coastal areas.

According to table 6 and fig. 6 , the condition factor of the sea ag€ group $A . l$ seems to increase during spring, while the older specimens are on their hight in February and early March. The decreasine or stagnating mean condition of the A.2- and A.3-population micht be interpreted as a consequence of gradual migration from the feedine Grounds in the Norwegian Sea of individuals having obtained sufficient fat accurulation for spawning. The remaining population of more or less meager individuals of these age groups will not acquire spawning condition until later in the sumer or next year.

The reason why the average condition factor of Λ.l-salmon docs not show the same tendency, but on the contrary rises during sprinc, may be that grilse in relation to the older spawners run later and constitute a relatively smaller proportion of the age group to which they belong. Therefore the mean condition of pregrilse in the aca is angarently not affected by mieration during the lone linine poriod.

The shape of the condition factor-frequency distribution (fig. $70,7 b$ and 7c) supports the theory above. The skewness to the richt of the histograns especially b and c for the last two perinds af the season suggests removal from the offshore population of individuals with high mean condition factor as a consequence of spawning migration.

Table l. Monthly distribution of effort, catch and catch per unit effort of the Danish salmon fishery in the Norwegian sea 1970.

Months	Number of hooks x shots		Number of salmen caught		Number of salmon per 1000 hooks
		\%		\%	
February	100,000	3.3	4,200	2.9	42.0
March	679,000	22.7	33,900	23.2	49.9
April	1,018,000	34.0	68,000	46.4	66.8
May	988,000	33.0	34,500	23.6	34.9
June	208,000	6.9	5,700	3.9	27.4
Total	2,993,000		146,300		48.9

Table 2. Distribution on market categories of the Danish salmon catches in the Norwegian Sea 1970.

Market categories	Number		Weight	
		$\%$	$\mathrm{k}_{\mathfrak{E}}$	6
I $9 \mathrm{~kg}-$	1,600	1.1	16,800	6.1
II 7-9 kg	2,500	1.7	19,600	4.7
III 5-7 "	6,400	4.4	36,600	8.8
IV $4-5$ "	9,700	6.6	40,700	9.8
V 3-4"	24,300	16.6	82,900	2c,0
VI $1-3 "$	95,800	65.5	204,700	49.3
sec. ${ }^{+}$	6,000	4.1	13,500	3.3
Total	146,300		414,900	$\mathrm{k}_{\mathrm{f}} \mathrm{t}$

+) This category contains extraordinary lean salmon, but mainly small specimens of less than 3 kg .

Table 3. Leneth-frequency distribution in per cent of 3,814 salmon caught in the Norwegian Sea in different periods of the season 1970.

$\begin{gathered} 5 \text { cm length groups } \\ \text { (total leneth) } \\ \hline \end{gathered}$	Mid Februarymid March	Mid Aprilend of April	Mid Mayrid June
120-125 cm	0.1	-	-
115-120 "	-	0.1	-
110-115 "	-	0.1	$\bigcirc .1$
105-110 "	-	0.1	-
100-105 "	0.3	1.0	0.6
95-100 "	0.5	1.3	1.1
90-95"	0.7	2.3	2.1
85-90"	3.0	7.1	7.4
$80-85$ "	9.0	12.2	15.9
75-80 "	15.3	23.0	22.9
70-75"	26.7	26.6	17.8
65-70"	25.3	17.6	11.8
60-65 "	11.0	5.3	7.5
55-60"	1.8	1.9	6.0
$50-55$ "	3.6	1.2	5.4
$45-50$ "	2.4	0.2	1.3
$40-45 "$	0.1	-	-
Number of salmon exerined:	952	2,064	798

Table - Dea age omposition in per cent of 3,814 salmon caught in the Norwocjan Eet in different periods of the season 1970.

Sen age	Mid Fobruary- mid March	Mid April- end of April	Mid May- Mid June
A.3 (and older) A.2	0.7	3.1	2.7
A.1	91.7	93.0	80.2
	6.6	3.9	17.1

mable 5. Sex ratio in relation to length and age of $42 . \hat{i}$ salnon caught in the Norwegian Sea 22 - 31 May 1970.

5 cn length groups (total length)	80°			9%		
	A. 1	A. 2	4.3	A. 1	A. 2	1. 3
110-115 cm	-	-	1	-	-	-
105-110 "	-	-	-	-	-	-
100-105 "	-	-	3	-	-	-
95-100 "	-	-	-	-	-	3
90-95"	-	2	-	-	1	1
85-90 "	-	6	-	-	$10+1$ PS	S
$80-85 "$	-	19	-	-	38	-
75 - 80 "	-	26	-	-	66	-
70-75"	-	12	-	-	61	-
65-70 "	3	3	-	2	41	-
60-65"	11	6	-	8	16	-
55-60 "	23	-	-	11	1	-
50-55"	24	-	-	15	-	-
45-50"	4	-	-	6	-	-
Total number	65	74	4	42	235	4
Total \%	15.3	17.5	0.9	9.9	55.4	0.9

Table 6. Average condition factore of the sea age groups of salmon caught in the Norwegian Sea in different periods of the season 1970.

Sea are	Mid Februarymid March	$\begin{aligned} & \text { Mid April } \\ & \text { end of } \mathrm{f} \text { April } \end{aligned}$	Mid Mry${ }^{\text {mid }}{ }_{c}$ June
$\begin{gathered} \text { K.3 } \\ \text { (ane older) } \end{gathered}$	0.93	0.93	0.88
h. 2	0.77	0.74	0.75
A. 1	0.73	0.76	0.80

Pie. 7. Frequency distribution of condition factors calculated from 10 cm length groups of salmon caught in the Norwegian Sea in different periods of the season 1970.

$$
K=\frac{w}{L^{3}} \quad \begin{aligned}
& \text { (gutted, frozen weight) } \\
& \text { (total length) }
\end{aligned}
$$

