RESTRICTED

International Commission for

the Northwest Atlantic Fisheries

Serial No. 3178 (D.c.3)

ICNAF Res. Doc. 74/31

ANNUAL MEETING - JUNE 1974

Comparisons of Long-Term Yields from Catch Quotas and

Effort Quotas Under Conditions of Variable Recruitment

by

J. E. Reeves

National Marine Fisheries Service Northeast Fisheries Center Woods Hole, Massachusetts 02543

ABSTRACT

Simulation studies of a model of the Georges Bank herring stock and fishery were conducted to compare long-term catch rates from fixed catch quotas vs. fixed effort quotas, when recruitment varied from year to year.

Production capabilities of the population under varying spawner-recruit curves and catchability coefficients were determined using the general production model. Flat S-R curves caused relatively flat production curves and domed S-R curves gave more peaked production curves. The catchability coefficient had a significant effect on the peak of the production curve. Random fluctuations in recruitment did not substantially change estimates of harvest parameters (CMAX, fOPT). In general, the error of estimates of CMAX was greater than that for fOPT.

When recruitment varies and quotas are accurately set, effort quotas usually produce higher long-term CPUEs unless the production curve is flat-topped. Then, catch quotas give higher CPUEs. Effort quotas in general give higher CPUEs as the production curve becomes more peaked and variations in recruitment increase. Increases in the catchability coefficient do not alter these conclusions. When quotas are overestimated, effort quotas give higher CPUEs. When they are underestimated, catch quotas give higher CPUEs. The advantage of the catch quota in this situation is diminished as the production curve becomes more peaked. Increases in q do not alter these conclusions, either.

INTRODUCTION

Yields obtained from a fishery in which fishing mortality is controlled by a catch quota may differ from yields from a fishery regulated by an effort quota. Such a difference would occur because variable recruitment occurs in most fisheries. In simple terms,

annual yield		annual instantaneous		average population
	=		х	
to fishery		fishing rate		size during year

it can be seen that if a strong year class enters a fishery in which the annual yield is fixed by quota, the fishing rate will be decreased, the population increased, and the annual catch

Revision of Res.Doc. 74/31 presented to the Special Commission Meeting, FAO, Rome, January 1974.

will be below its maximum potential unless the quota is adjusted upward. On the other hand, as a weak year class moves through the fishery, a fixed catch quota would lead to an increased fishing rate. Even if it is possible to make adjustments in a catch quota, for example, by prediction of recruitment, errors of prediction of recruitment will always reduce the long-term yield below the maximum sustainable yield (MSY). Under a fixed effort quota, the annual yield will fluctuate with the size of the population, maintaining a constant exploitation rate which, if set at the right level, will increase long-term catch.

Examination of this formulation leads to the conclusion that if catch or effort are regulated by setting them at a constant amount over a period of years, and if they are set correctly at the MSY point, variations in recruitment will cause the average catch to be less than the long-term maximum yield when catch quotas are used. Even when the catch is adjusted for variations in recruitment, any errors in this adjustment will lead to average catch less than the maximum. This factor does not apply to regulation of effort. One may of course set both the catch and effort at the wrong level, but variable recruitment would still be a factor having consequences similar to those outlined above.

The purpose of this paper is to examine more exactly the effects of two regulatory methods, catch quotas and effort quotas, upon the long-term yield of a fishery, when recruitment varies. To do this a fish population and fishery were studied using a computer simulation model. This type of modeling greatly facilitates the bookkeeping necessary to keep track of the various age groups in a population which is increasing due to growth and recruitment and is decreasing due to natural and fishing deaths, over a number of years. Data from the Georges Bank herring stock and fishery were used as an example for the modeling. The intent has been to emphasize comparisons of regulatory methods, and not to account for all the details of the fishery itself. Thus, a rather simple representation of the fishery has been constructed which does not include all the possible complexities involved in the dynamics of the Georges Bank herring population and fishery.

THE MODEL

The model used for the simulations was modified from that described by Walters (1969) which was based upon the Beverton and Holt yield equation. The model assumes a unit stock with a specified stock-recruitment relationship. For any year of simulation, the following sequence is followed:

1. Fishing and natural mortality rates are applied to the initial age structure from the beginning of the year up until spawning time to determine the size and structure of the population at spawning time. The size of the spawning population is determined by multiplying the numbers in each age group surviving to spawning time by the age specific relative fecundity indices and summing over age groups.

2. The spawner-recruit relationship determines the number of young (recruits produced from this year's spawning population) to enter at the beginning of the next year. The age structure at spawning time is stored for future use in the event of a time lag between spawning and recruitment into the population.

3. Annual yield from the population is calculated employing the Beverton and Holt yield equation, using inputs of natural and fishing mortalities and growth parameters. Annual fishing mortality is adjusted to account for age-specific gear selectivity and is calculated from the input value of effort and the coefficient of catchability. The annual catch quota, also an input, is attained by incrementing effort up to a specified limit, which is used to prevent the population from going to extinction.

4. The population surviving to the end of the year is calculated by age group based upon fishing and natural mortality rates. This population structure is then advanced to the beginning of the next year, with the oldest age group being replaced by the recruits generated from step 2. The simulation continues with step 1 above.

Annual catches and CPUEs are then simulated over a specific number of years. The population information utilized by the model includes population size and age composition for the initial year of the simulation, growth parameters, age-specific natural mortality rates and relative fecundity indices and a stock-recruitment (S-R) relationship for the population. Fishery information required includes annual effort (days fished), catchability coefficients,

selection curves (percent retained by the gear by age group), and annual catch and effort quotas. Data pertaining to fishing effort and catchability coefficients are year-specific but not age-specific. The spawning time, the time lag between birth and recruitment and age of the youngest age group fished, the Von Bertalanffy growth parameters and the form and parameters of the spawner-recruit relationship are specified by the modeler. For this study, the model has been modified to allow the setting of annual catch quotas to control fishing mortality. An upper limit to fishing mortality is specified to prevent infinite fishing when low stock sizes make it impossible to reach a given annual catch quota. Also, provisions have been made for random recruitment variations in the stock-recruitment relationship; annual recruitment values are chosen at random from a normal distribution specified by the mean and standard deviation. Thus, recruitment variations during simulations may be attributed to two sources: (1) those due to spawning stock size, and (2) those due to random variation about the S-R curve.

DATA FOR THE MODEL

Most of the parameters and data for the model were taken from Schumacher and Anthony (1972) and are shown in Table 1. Estimates of natural mortality (M) were taken from their Table 12, and initial numbers from their Table 15, which gives calculated stock sizes based upon an increasing age-specific M schedule. The age composition shown in Table 1 represents an average over the years 1961-1971. Estimates of the percent retained in the gear by age are somewhat arbitrary, but based on the knowledge that age two herring are seldom caught in the Georges Bank fishery, ages three and four are recruiting, and age five fish and older are fully recruited to the gear. The estimated growth parameters (for Georges Bank) were used. A spawning time (expressed as a fraction of the basic time unit of one year) of .7 was used to represent the fall spawning habit of this stock. A lag of two years between birth and recruitment to the population was used, as little data is available on the population dynamics of the early life stages.

Age-specific relative fecundity values were calculated from information on fecundity and growth. The eggs-length relationship given by Perkins and Anthony (1969) for herring from Georges Bank was converted to eggs-at-age by obtaining length at each age from Von Bertalanffy parameters. Relative fecundity values were specified as the eggs at each age as a proportion of the total overall mature age groups, multiplied by a scaling factor of 10. This factor was necessary since the "effective" size of the spawning population each year is calculated by multiplying the numbers in each age group by the relative fecundity index. Age four was taken as the age of first maturity.

Two estimates of the catchability coefficient were made from the data given by Schumacher and Anthony. One estimate was taken from data on fishing effort (adjusted for learning and for the years 1965 and 1966) and instantaneous fishing mortality (F) from their Tables 3 and 8. Annual values of q were computed as the ratio of annual F to annual effort. These values were then averaged to obtain an overall figure. The other estimate was obtained from the fit of the general production model (Fox, 1973) to data in Schumacher and Anthony's Table 3, using PRODFIT (Fox, 1972), which provides estimates of q. Since the estimates obtained from the two methods differed substantially, both values were used during simulations. In all runs an arbitrary upper limit of F=2.0 was set to prevent continued fishing when catch quotas could not be reached because of low stock size.

Least known of all the data input requirements for the model is the nature of the spawnerrecruit curve. Thus, two different curve forms were chosen to provide a range for study. These are shown in Figure 1; the asymptotic-shaped curve of Beverton and Holt, and the domed-shaped Ricker-type curve. The values on the axes of the curves in Figure 1 were established by assuming that the initial population age composition used for simulations represents a stable population, whereby recruitments are just sufficient to maintain the spawning population at a constant level. That is, 330x10⁷ spawners (population total, ages 4 through 10 from initial age composition weighted by relative fecundity indices) continually produce 170x10⁷ age two recruits (from initial age composition) under natural or preexploitation conditions. This point was taken as the start population level for simulations, and served as a common point for the spawner-recruit curves. The spawner-recruit parameters for the simulation model were estimated by reading values of corresponding spawning stock and recruitments from the curves, and then fitting these values by the Beverton-Holt model,

- ጌ

$$R = \frac{1}{a + b/S},$$

and by the Ricker model,

where R = recruits, S = spawners, and a and b are constants, by least squares techniques after linearization to the forms

- 4 -

$$S/R = a S + b and$$

$$\ln (R/S) = \ln(a)-bS$$
, respectively.

The parameters a and b (Table 1) were used as inputs to the computer model.

ESTIMATION OF POPULATION PRODUCTION

The production model (e.g., Pella and Tomlinson's, 1969) provides a logical framework for the comparison of catch and effort quotas. The actual production capabilities of the computer population and the effort required to harvest this production must be determined before comparisons of regulation methods can be made, and the general production model provides a ready means of doing this.

Values of maximum sustained yield (CMAX) and the effort required to harvest it (fOPT) were estimated, for four sets of data from the simulated population by fitting the generalized production curve to the data sets using the computer program PRODFIT (Fox, 1972). The four data sets were generated by simulating yields from the population, using the two spawner-recruit curves just described (but without random variability), each with two values of the catchability coefficient. Average annual catches were determined from 32-year simulations for ten levels of constant effort for each data set.

Use of the general production model approach requires that equilibrium conditions prevail, i.e, that the rate of harvest each year removes the surplus not needed for reproduction of the stock. While effort levels did not change, disequilibrium was inherent in the simulations owing to fluctuating recruitment. These fluctuations are caused by the nature of the Ricker-type spawner-recruit curve, where compensatory mortality operates to cause fluctuations in recruitment due to spawning stock-size. In addition, random fluctuations in recruitment, to be introduced later into the simulation study, also contribute to disequilibrium conditions. In order to fulfill the equilibrium conditions of the yield model, average annual potential yield (Shaeffer, 1957) was estimated from annual catches and changes in stock size, where annual potential yield is equal to the annual catch plus the change in stock size during the year (see Appendix Ib). Thus, potential yields, instead of annual catches, were used in the production model analysis. Average annual efforts associated with potential yields were also calculated as shown in the appendix. This was done so that potential yields could be related to effort (instead of stock size, as is usually done) so that fOPT could be estimated from the fits of the general production model.

Predicted yield curves are shown in Figure 2 and the estimated harvest parameters given in Table 2. The influence of the spawner-recruit curve and the catchability coefficient can readily be seen. The Beverton and Holt-type S-R curve with essentially constant recruitment at most stock sizes gives a very flat-domed production curve. As q is increased the curve takes on a more pronounced peak with fOPT occurring at a lower value, which is to be expected since fishing mortality has been increased by the increase in q. The Ricker-type S-R curve produces a more domed-shaped production curve with a more steeply ascending right-hand limb. As before, an increase in q produces a more pronounced peak, with a shift in fOPT. It should be pointed out that the extremities of the right-hand limb of the predicted curves are somewhat overestimated, and probably drop off to zero yield sooner than is indicated in the figure. Each point on the potential yield curve represents the average yield for a 32-year simulation. The "accumulated stock" present in year one of a simulation is included in the average and tends to give high estimates of potential yield, especially for the higher values of effort where stock sizes contributing to the average potential yield are low. The values shown in Table 2 were obtained in the absence of random fluctuations in recruitment. These values are used as catch and effort quotas in the following sections for comparing the two regulatory methods. For these comparisons, recruitment is allowed to vary. Thus, the affect of random recruitment variations on the stability of the estimates of CMAX and fOPT obtained as described above is of interest. In order to study these effects, simulation runs with random recruitments were condusted to estimate the production curves of the population. Procedures similar to those described above were used, except that random error was introduced around the spawner-recruit curves to produce fluctuations in annual recruitment. Three estimates of CMAX and fOPT were made for each set (S-R, q combination)¹. Each estimate was calculated from simulations with different random recruitment sequences, but with each sequence having the same standard deviation.

The results of these fittings are shown in Table 3 and Figure 3 by run. The position of the estimates of CMAX and fOPT change only slightly within a set indicating that random recruitment changes do not greatly affect estimates of these parameters. The intervals around the estimates in the figure are precision intervals which incorporate the variance indices (Table 3) which are calculated by the PRODFIT program. Ratios of these indices to their respective values of CMAX and fOPT (Table 3) suggest that there is greater relative error around the estimates of CMAX than around fOPT estimates, especially for the more dome-shaped production curves.

COMPARISONS OF CATCH AND EFFORT QUOTAS

CMAX and fOPT Known Without Error

Let us assume that the productive potential of the population, and the effort required to harvest it, is known without error. Let us further assume that catch and effort are set at CMAX and fOPT and remain fixed through the duration of the fishery. That is, no adjustments are made in the harvest parameters for changing recruitment. Several stocks under quota management by the International Commission for the North Atlantic Fisheries are currently managed on this basis because detailed annual assessment studies are lacking (e.g., cod in Division 5Y and redfish in Subarea 5). Under these conditions we would expect that an effort quota would be superior, in terms of CPUE, to a catch quota, owing to the advantage of effort regulation in allowing automatic adjustment of catches with changing recruitments.

To test this premise, 16-year simulations were run whereby, for each of the previously described four data sets, catch and effort quotas were set equal to respective estimates of CMAX and fOPT and random annual fluctuations in recruitment were introduced at three levels of magnitude (standard deviation). Thus, three simulations were made for each type of regulation for each of the data sets.

The introduction of random recruitments precludes exact comparisons between catch and effort quotas. This is because the patterns of fishing mortality generated by the two types of quotas are different. This results in different spawning stock sizes, which results in variations in yearly recruitment levels predicted by the spawner-recruit relationship. With the method used for random number generation, for any year the predicted value of recruitment influences the random value picked for that year's recruitment. Unless the values of recruitment predicted from the S-R curve are precisely the same, the sequence of random recruitments for any two simulation runs will be somewhat different. Unless predicted recruitment is constant for all spawning stock sizes, differences in fishing mortality patterns caused by the different quota regulations (i.e., the exploitation rate will change under a catch quota and remain fixed with an effort quota when recruitment. Because of this problem, some simulations were rerun, using different random number sequences, to obtain closer comparability between quota types in terms of average recruitment levels, and their standard deviations.

 $^{^{\}rm l}\,$ One of the four sets (Ricker, q=.000025) could not be successfully fitted with PRODFIT.

Results of these simulations are shown by run in Table 4 with corresponding population time paths given in appendix II. CPUE's are in general higher for effort quotas as compared to fixed catch quotas and average stock sizes are in general higher for effort quotas (appendix II). The notable exception is for the data set representing the Beverton and Holt S-R curve with q equal to .000014. Here we see that for all levels of variation in recruitment that catch quotas have higher CPUEs than effort quotas, owing to the fact that an effort significantly less than fOPT is required to obtain the catch quota. This can be explained by the shape of the production curve. When recruitment varies, the flat-topped dome of this data set's production curve allows a greater chance that the catch quota will be reached with an effort less than fOPT. This characteristic of the production curve affords the advantage, in terms of long-term CPUE, to catch quota regulation by allowing an economy of effort which overshadows the advantage of flexible yields inherent in the effort quota.

When the production curve is more peaked, the possibilities for catches within the range of CMAX, and yet with efforts below fOPT, are reduced. This allows the advantage of effort quotas in responding to fluctuating recruitment to come into play. Thus, we see that for the more peaked curves effort quotas in general produce higher CPUEs than catch quotas. Also, the differences between CPUEs increases as the production curve becomes more peaked. This advantage should be amplified with greater variations in recruitment. Although somewhat obscured by lack of exact comparability of recruitment patterns, there does appear to be a trend in this direction (Table 4). Differences between CPUEs also become greater in general with the more peaked production curves, and lesser with the flat curve as recruitment variations increase. For the second data set, represented by a moderately dome-shaped production curve, lower variation in recruitment results in a slight advantage for a catch quota. With greater variations in recruitment the advantages of an effort quota become more apparent. There appears to be no consistent pattern of difference between catch and effort regulation in terms of average annual yield. In most cases yields are similar.

One obvious disadvantage to effort regulation is that, even though a prescribed level of effort remains the same, the mortality exerted by it on the stock may increase because of increases in the fishing efficiency of the fleet or because of changes in availability. This may lead to a less-than-optimum regulatory situation. The effect of the above results of increases in fleet efficiency have been examined by rerunning some of the simulations of Table 4, allowing the catchability coefficient to increase by various amounts. It is realistic to believe that increases in q would in time be detected by the management agency and that corrective adjustments would be made. To simulate this situation, q was increased over a two-year period by 20, 40, and 80%, was allowed to remain at that level for five years, and was then reduced to its original level for the remainder of the 16-year simulation.

The results are given in Table 5 with corresponding stock sizes in appendix IIIa. While the complicating effect of non-comparable recruitment patterns hamper these comparisons also, some general conclusions can be made. Average annual stock size decreases with increases in q, because of increased fishing mortality. The maximum decrease in biomass, taking into account varying recruitment levels, is approximately on the order of 15-20%. However, these increases in q, even up to 80%, cause little change in the long-term CPUE values for effort quotas. In some cases, CPUEs increase somewhat. It is thus concluded that increases in fleet efficiency of this magnitude and form and at these stock levels do not detract from the conclusions regarding comparisons of quota methods.

Effects of Error in CMAX and fOPT

Let us now relax the assumption of no error in CMAX or fOPT. In its place we shall presume that the management agency's estimates of these parameters are 50% off the true value, plus or minus. Predicted catch and effort quota values were altered by this amount. In the simulations for each data set, quotas were set 50% too high for the length of a run; in the next run, 50% too low.

The results can be seen in Table 6 with stock trends given in appendix IV. The general result is that when quotas are overestimated, effort quotas give higher CPUEs; when quotas are underestimated, catch quotas give higher CPUEs. This can be explained again by the shape of the production curve. The region of fOPT is the region of the curve with least slope. Therefore, errors in fOPT will have less effect on obtaining optimum catches than will equivalent errors in CMAX. When CMAX is overestimated initial catches are high but the long-term effect on CPUE is to depress it. However, when quotas are underestimated, catch

quotas produce higher CPUEs, because effort is reduced substantially. Catch is also, of course, reduced substantially and average stock sizes are higher. When underestimated by a given percentage fOPT changes less than CMAX and the higher effort produces a lower CPUE. The advantage of a catch quota when underestimation occurs is reduced, however, as the production curve becomes more peaked in shape. Effort quotas give relatively higher CPUEs because of the interaction between recruitment variations and the shape of the curve. Theoretically, we would expect the advantage of effort quotas in the overestimation situation to be diminished as the production curve becomes more peaked because errors in fOPT would produce greater changes in catch. This result is not seen in the data of Table 6 partly because of the confound-ing effect of variations in recruitment pattern and partly because of the above-mentioned interaction between recruitment and shape of the production curve.

The effect of increases in fleet efficiency were examined in the same way as described previously for the case of no error in the harvest parameters. However, only the case of an 80% increase in q was studied. The results, shown in Table 7, are similar to those found previously. CPUEs decrease only slightly as average stock size is decreased by roughly 10-20%. Thus, again, increases in fleet efficiency of this magnitude don't alter the conclusions reached regarding the effect of errors in the parameters CMAX and fOPT.

DISCUSSION

This study indicates that an effort quota in general produces higher CPUEs than a fixed catch quota when the stock being fished undergoes random variations in recruitment. This conclusion depends to some degree, however, on the shape of the production curve for the population. Thus, if the production curve is quite flat-topped (implying that the underlying relationship between the size of recruitments and the parent spawning population is essentially constant at most stock sizes) and the catchability coefficient is small (usually implying a large stock), a catch quota will yield higher long-term catch rates. Under these conditions, a catch quota would be advisable if the objective is to obtain the greatest catch with the least effort. If other objectives are viable, e.g., maintaining a certain level of effort, then an effort quota would be a better management action. However, for domed-shaped production curves, effort quotas produce higher long-term CPUE's than catch quotas, when recruitment varies.

When recruitment varies randomly, fOPT is less subject to error (and thus less subject to change) than CMAX. Unless the production curve is very peaked, there is less to be lost in long-term CPUE by maintaining a constant fOPT in the face of changing recruitment, than by maintaining a constant CMAX. Also, errors in determining fOPT will be less crucial to long-term CPUE than corresponding errors in CMAX, because a given change in fOPT will exert a less than proportional change in the catch. This feature is pertinent to the effect of increases in fleet efficiency. An increase in the catchability coefficient has the effect of increasing fishing effort above fOPT, but the effect of the increase is moderated by the production curve if it is moderately dome-shaped or flat.

REFERENCES

- Fox, W. W., 1972. Dynamics of exploited pandalid shrimps and an evaluation of management models. Ph.D Dissertation, Univ. of Washington, 193 p.
- Pella, J. J., and P. K. Tomlinson, 1969. A generalized stock production model. IATTC, Bull. 13(3): 420-496.
- Perkins, F. E., and V. C. Anthony, 1969. A note on the fecundity of herring <u>(Clupea harengus harengus L.)</u> from Georges Bank, the Gulf of Maine and Nova Scotia. ICNAF Res. Doc. 69/60, 6 p.
- Schaefer, M. B., 1957. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocean. Inter. Amer. Trop. Tuna Comm., Bull. Vol. II, No. 6: 246-285.
- Schumacher, A., and V. C. Anthony, 1972. Georges Bank (ICNAF Division 5Z and Subarea 6) herring assessment. ICNAF Res. Doc. 72/24, Ser. No. 2715, 38 p.
- Walters, C. J., 1969. A generalized computer simulation model for fish population studies. Trans, Amer. Fish. Soc. 98(3): 505-512.

Age	Initial numbers	Instan t aneous natural mortality	Rel ative fecundity	Percent retained by fishing gear
2	1700 × 10 ⁶	.20	0.00	0
3	1210 × 10⁶	.15	0.00	33
4	1216 x 10 ⁶	.15	0.60	67
5	1007 x 10 ⁶	.23	1.00	100
6	655 x 10 ⁶	.36	1.30	100
7	257×10^{6}	. 50	1.60	100
8	88 x 10 ⁶	. 64	1.70	100
9	44 x 10 ⁶	. 83	1.90	100
10	20 x 10 ⁶	1.03	1.90	100

Table 1. Georges Bank herring population information used in computer simulations.

Von Bertalanffy growth parameters: $N_{\infty} = 380$ grams

	k = .347	
Catchability coefficient	= .000014, .000025	
Youngest age fished	= 3 years old	
Lag between birth and recruitment to the simulated population	= 2 years	
Spawning time, as a fraction of the year	= .7	
	Beverton & Holt	<u>Ricker</u>
Parameters of the spawner- recruit function:	a = 6 x 10 -1 b = .1 x 10	a = 5.5 -10 b = 7 x 10

Table 2. Estimates of CMAX and for derived from simulations for four date sets for Georges Bank herring.

	CMAX (mr.at.)	f0PT (days)
Beverton and Holt q = .000014	183000	68000
Beverton and Holt q = .000025	210000	41000
Ricker q = .0000 14	281000	46000
Ricker 9 = .0000 2 5	290000	22000

Data Set	Run	(a) CMAX m.t.	(b) Vartance <u>1</u> ndex	<u>(b)</u> (a)	(c) FOPT (days)	(d) Variance <u>index</u>	(d) (c)
Beverton & Holt, q=.000014	1 2 3	169568 173959 176921	.132x10 ⁸ .397x10 ⁸ .357x10 ⁸	78 228 202	65251 62897 61109	.208x10 ⁸ .260x10 ⁸ .200x10 ⁸	319 413 327
Beverton & Holt, q=.000025	1 2 3	189938 194113 197005	.129x109 .201x109 .273x109	679 1035 1386	33536 35771 34564	.151x10 ⁸ .223x10 ⁸ .293x10 ⁸	450 623 848
Ricker, q≖.000014	1 2 3	269461 272286 267195	.458x109 .975x109 .377x109	1700 3581 1411	49376 41999 44044	.228x10 ⁸ .389x10 ⁸ .161x10 ⁸	462 926 365
AVG. RATIO			· · · · · · · · · · · · · · · · · · ·	1144			526

Table 3. Comparisons of estimates of CMAX and fOPT and their errors for three random simulations for each of three data sets for Georges Bank herring.

Table 4. Comparisons of yields under catch and effort quotas known without error, for four data sets.

		Average	Annua 1			Recruit	ment	
	Quota*	Yield	Effort	CPUE	Diff-	(Nos, x10	<u>./)</u>	Run
		(m.t.)	(days)		erence	Average	S.D.	
	183000-C	185616	35714	5.20	2.21	179 -	29	1
Beverton	68000E	203352	68000	2.99		182	29	2
& Holt,	183000-C	185929	45 4 08	4.09	1.39	157	62	3
q=.000014	68000-E	183523	68000	2.70		164	84	4
	183000-C	185396	53 571	3.46	1.00	165	109	5
	68000-E	167114	68 000	2.46		173	129	6
	210000-C	212017	36143	5.87	1.25	169	38	7
Beverton	41000- E	189215	41000	4.62		164	52	8
& Holt,	210000-C	180733	61285	2.95	-1.48	142	68	9
q=.000025	41000-E	181596	41000	4.43		176	94	10
	2100 00- C	184076	60828	3.03	-1.65	157	94	11
	41000-E	191982	41 00 0	4.68		162	79	12
	281000-C	276906	82755	3.35	-2.91	277	60	13
Ricker,	46000-E	287829	4600 0	6.26		282	42	14
q = .000014	281000-C	284792	45306	6.29	-0.17	315	104	15
	46 00 0 -E	297 028	46 0 00	6.46		283	65	16
	281000-C	273894	92652	2.96	-2.90	233	119	17
	46000-E	269752	46000	5.86		265	123	18
	290000-C	292154	30771	9.49	-3.46	278	56	19
Ricker,	22000-E	28 49 13	22 00 0	12.95		278	47	20
q=.000025	290000-C	292106	33000	8.85	-3.26	271	63	21
	22000-E	2 66 368	22000	12.11		273	59	22
	290000-C	292454	36714	7.97	-4.64	242	114	23
	22000-E	277361	22 00 0	12.61		290	113	24

*C = Catch quota, E = Effort quota

1

	Quota	Run	CPUE (q constant)	Avera Recruits (Nos.x1077)	ge Annual Stock (m.t.x10 ⁻³)	% Increase in q	CPUE	Average Recruits (Nos.x10+7	<u>Annual</u> Stock)(m.t.x10 ⁻³)	% Change In stock	Run
Beverton & Holt q = .000014	68000-E	4	2.70	164	281	+20 +40 +80	3.01 2.82 2.75	164 159 164	301 272 250	+ -3 -16	25 26 27
Beverton & Holt, q = .000025	41000-E	10	4.43	176	269	+20 +40 +80	4.17 3.36 4.89	150 119 178	245 199 258	-9 -31 -4	28 29 30
Ricker, q = .000014	46000-E	16	6.46	283	559	+20 +40 +80	6.51 6.31 5.97	274 271 255	533 498 446	-5 -11 -20	31 32 33
Ricker, q = .000025	22000-E	22	12.11	273	574	+20 +40 +80	13.64 13.67 14.49	300 281 304	601 580 563	+ + -2	34 35 36

Table 5. Effects of increases in the catchability coefficient on the comparisons of Table 4 (runs 4, 10, 16, 22).

Table 6. Comparisons of yields under catch and effort quotas, set with \pm 50% error, for four data sets.

	Quota*	Average Yield (m.t.)	e Annual Effort (days)	CPUE	Diff- erence	Recruit (Nos.x10 Average	ment -7) S.D.	Run
Beverton & Holt, q≖.000014	275000-C+50% 102000-E+50 92000-C-50 34000-E-50	207624 186134 99712 142961	127039 102000 11735 34000	1.63 1.82 8.50 4.20	-0.19 4.30	160 156 169 147	95 89 81 53	37 38 39 40
Beverton & Holt, q=.000025	315000-C+50 62000-E+50 105000-C-50 21000-E-50	186756 171855 111639 154849	78599 62000 7571 21000	2.58 2.77 14.74 7.37	-0.19 7.37	165 140 186 149	80 55 82 70	41 42 43 44
Ricker, q≖.000014	422000-C+50 69000-E+50 141000-C-50 23000-E-50	168265 249603 149050 219769	144283 69000 13673 23000	1.17 3.62 10.90 9.56	-2.45 1.34	138 235 234 265	94 78 64 78	45 46 47 48
Ricker, q=.000025	435000-C+50 33000-E+50 145000-C-50 11000-E-50	148298 292552 150203 167941	80599 33000 9400 11000	1.84 8.87 15.98 15.27	-7.03 0.71	119 279 226 219	96 87 107 81	49 50 51 52

*C+50% = catch quota, overestimated by 50%

E-50% = effort quota, underestimated by 50%

Quota*	Run	CPUE (q constant)	Average Recruits (Nos. ×10 ⁻⁷)	Annual Stock (m.t.x10-3)	% increase in q	CPUE	Average A Recruits (Nos.x10 ⁻⁷)	nnual Stock (m.t.x10 ⁻³)	% Change in stoc k	Run
102000-E+50 34000-E-50	38 40	1.82	156 147	2 29 368	+80 +80	1.84	155 161	210 389	-8 +	53 54
62000-E+50	42	2.77	140	202	+80	2.47	137	1 68	-17	55
21000-E-50	44	7.37	149	366	+80	6.46	124	282	-23	56
69000-E+50	46	3.62	235	367	+80	3.55	202	315	-14	57
23000-E-50	48	9.56	265	739	+80	10.29	261	645	-13	58
33000-E+50	50	8.87	279	468	+80	8.66	259	391	-17	59
11000-E-50	52	15.27	219	657	+80	20.47	259	696	+	60

- 11 -

Table 7.	Effects of increases in the catchabilit	y coefficient
	on the comparisons of Table 6.	

*E+50 = effort quota overestimated by 50%

E-50 = effort quota underestimated by 50%

Appendix Ia. Simulated data used to estimate CMAX and FOPT for four data sets for Georges Bank herring.

			Beverton and Holt	-type Spawner-Re	cruit Curve	
Effort	Catch	$\frac{q = .00001}{Potential}$	f Calculated	Catch	<u> </u>	Calculated
(davs)	(m.t.)	vield (m.t.)	effort (davs)	(m.t.)	vield (m.t.)	effort (days)
10000	87550	88800	10142	127500	125000	9804
30000	162500	157000	28983	188600	179000	28471
50000	186600	177000	47428	194200	182000	46859
70000	193700	182000	65775	188700	175000	64911
90000	194200	182000	84337	179000	164000	82453
110000	191700	178000	102123	165800	150000	99536
130000	187300	174000	120749	148200	132000	115789 [·]
150000	182000	168000	138500	126100	110000	130797
170000	175900	161000	155556	100900	83800	141077
190000	168400	153000	172686	77850	60400	147317
				an Deswitt Curve		
		a = 00001	a spawn	er-Recruit Curve	9 = .000025	
Effort	Catch	Potential	Calculated	Catch	Potential	Calculated
(days)	(m.t.)_	yield (m.t.)	effort (days)	(m.t.)	yield (m.t.)	<u>effort (days)</u>
10000	105500	110000	10010	170000	3 7 7 0 0 0	10070
10000	105500	112000	10010	172200	177000	10279
30000	248400	251000	30314	308300	300000	29/70
50000	305400	304000	49608	221500	210000	4/404
70000	28/500	281000	68420	11/900	102000	70025
90000	218300	207000	85235	77400	42000	70035
120000	151100	130000	30901	51460	43000	700 40 94606
150000	109100	93000	120400	31400	33300	04030
150000	85/00	58500	120490	43640	27500	90401
170000	/18/0	54500	120042	41080	23400	10000
190000	03290	40000	130331	23100	20000	100000

Appendix Ib. Method of calculating effort corresponding to potential yield, for estimating harvest parameters for production curves for Georges Bank herring.

Potential yield,

 $PY_{i} = C_{i} + (W_{i+1} - W_{i})$, where W_{i} is the population biomass at the beginning of year i, and the effort corresponding to PY_{i} is calculated as

$$f_{i} = \frac{PY_{i}}{C_{i/f_{i}}}$$

assuming $PY_{i} = qf_{i}W_{i}$ and $W_{i} = \frac{C_{i}}{qf_{i}}$, then $f_{i} = \frac{PY_{i}}{qf_{i}}$, $\frac{C_{i}}{qf_{i}}$

Appendix II.	Average annual biomass $(m.t.x10^{-3})$ at the midpoint of each simulation year
	for comparisons of yields under quotas known without error (Table 4).

Simulation	CĂTĆH QUÔTA RUNS											
year	1	3	5	7	9	11	13	15	17	19	21	23
1	590	592	597	581	572	583	553	554	550	551	549	553
2	541	560	572	51 6	486	528	462	449	446	454	446	447
3	493	554	551	456	395	487	426	394	382	410	396	371
4	447	569	519	409	3 36	442	443	414	357	421	406	337
5	404	576	460	376	318	356	478	482	354	452	439	350
6	375	550	377	357	311	231	493	528	377	472	455	396
7	309	494	288	344	277	144	466	518	426	479	447	441
8	385	426	233	324	222	156	415	503	464	492	446	465
9	414	368	245	292	172	189	372	550	459	513	473	481
10	443	344	295	265	152	177	354	655	420	524	512	526
11	466	355	321	261	134	149	352	750	360	518	537	601
12	480	372	315	281	111	130	345	796	300	515	544	649
13	485	353	311	304	109	142	320	802	265	533	536	617
14	478	293	317	307	134	190	275	794	240	563	513	517
15	462	225	308	281	163	249	222	808	212	579	492	401
AVG.	455	442	381	357	239	<u> 277 </u>	398	600	374	498	479	<u> 47_7 </u>
					EF	FORT QU	OTA RUN	<u>s</u>				
	2	4	6	8	10	12	14	<u> 16 </u>	18	20	22	24
1	505	499	489	487	493	485	543	542	546	555	552	557
2	368	333	309	322	328	320	454	448	484	493	4/3	499
3	334	259	225	283	261	275	449	440	502	507	459	505
4	318	236	201	305	231	270	479	488	528	548	503	531
5	297	243	217	323	230	265	510	541	557	579	574	536
6	282	250	232	300	237	275	534	564	588	599	628	525
7	279	239	203	254	246	284	554	558	575	615	648	529
8	284	212	178	227	290	246	572	547	496	636	641	576
9	283	186	205	230	345	192	593	543	399	670	617	669
10	278	179	244	248	334	204	611	554	360	702	585	745
11	274	215	257	265	261	266	609	570	410	707	575	754
12	274	293	252	258	197	297	583	590	515	687	592	710
13	279	362	235	234	170	284	559	63Z	600	652	600	638
14	288	373	262	217	180	271	563	682	607	614	584	582
15	291	335	360	221	226	264	582	685	<u> </u>	<u> </u>	576	<u>587</u>
AVG.	309	281	258	<u> 278 </u>	269	280	546	559	515	610	574	561

Simulation			a. El	FFORT C	UOTA RUI	VS (wit	hout err	or, tab	le 5)			
year	25	26	27	28	29	30	31	32	33	34	35	36
1	506	496	490	485	489	495	543	553	535	555	557	558
2	377	327	312	313	315	357	450	502	428	487	507	511
3	356	256	242	258	248	322	426	537	392	484	542	563
4	34 6	237	253	257	219	283	443	571	· 406	521	607	654
5	299	262	305	248	190	259	501	564	437	570	661	716
6	224	304	322	207	157	281	578	521	436	607	698	69 8
7	196	302	281	171	134	280	618	471	402	630	689	611
8	227	263	223	179	147	224	598	466	387	662	605	540
9	255	242	195	212	178	178	547	488	403	684	479	511
10	277	245	186	229	169	158	503	468	414	668	415	482
11	311	244	169	218	126	149	493	413	403	629	461	441
12	346	257	171	209	100	173	536	408	437	613	580	457
13	337	268	185	217	114	218	590	460	511	625	676	529
14	269	222	197	232	170	241	597	513	550	633	661	582
15	188	159	224	239	225	248	570	534	545	649	567_	592
AVG.	301	272	250	245	199	258	533	498	446	601	580	563
			Ь. В	FFORT	QUOTA RU	JNS (<u>+</u>	50% erro	r, tabl	e 7)	-		
	53	54	55_	56	57	58	59	60				
1	462	561	441	554	503	606	518	607				
2	294	469	231	454	366	623	407	626				
3	278	404	192	390	342	681	399	671				
4	266	372	200	347	358	736	433	710				
5	217	386	187	309	403	756	467	732				
6	142	419	138	257	427	716	454	728				
7	130	414	102	205	381	634	406	712				
8	158	375	116	1 9 7	307	584	396	686				
9	160	344	139	225	253	573	394	633				
10	167	33 7	132	227	220	554	350	581				
11	185	335	105	189	207	522	293	580				
12	214	361	103	163	241	549	289	658				
13	215	394	128	180	2 71	638	329	766				
14	160	366	152	235	241	724	353	851				
15	105	300	160	303	19 8	<u>777</u>	375	900				
AVG.	210	389	168	282	315	645	391	696		-		

Appendix III. Average annual biomass $(m.t.x10^{-3})$ at the midpoint of each simulation year for runs demonstrating the effects of increases in q (Tables 5 and 7).

Simulation	CATCH QUOTA RUNS							
year	37	39	41	43	45	47	49	51
1	561	617	542	618	505	613	498	602
2	474	609	408	635	345	627	324	592
3	421	585	282	662	290	672	253	607
4	378	576	174	712	272	741	229	666
5	304	607	132	767	217	817	191	760
6	192	676	154	795	146	887	147	848
7	148	753	195	767	107	937	121	898
8	178	799	197	684	130	962	94	916
9	187	802	154	589	159	961	63	910
10	197	774	133	518	140	923	77	873
11	221	722	148	482	106	863	116	796
12	227	659	166	483	93	815	135	692
13	191	598	168	533	88	789	118	599
14	127	551	149	632	87	788	82	537
15	80	535	159	736	94	803	76	519
AVG.	259	658	211	641	185	813	168	721
				EFFORT	QUOTA RUNS			
	38	-40	42	44	46	48	50	52
1	452	563	443	556	500	598	521	605
2	244	475	239	464	349	588	432	616
3	187	416	199	406	305	617	46 8	658
4	179	386	209	357	317	672	528	713
5	208	374	230	321	356	737	531	766
6	256	375	228	308	385	818	485	814
7	269	382	200	296	378	895	457	838
8	243	371	172	273	333	926	483	805
9	227	327	157	255	291	892	539	713
10	233	275	155	272	305	822	562	600
11	233	249	170	324	371	76 0	508	519
12	231	268	177	390	434	721	406	492
13	217	311	155	433	440	700	339	516
14	158	355	144	435	389	682	350	571
<u>15</u>	103	394	155	400	345	658	411	629
AVG.	229	368	202	366	367	739	468	657

Appendix IV. Average annual biomass $(m.t.x10^{-3})$ at the midpoint of each simulation year for comparisons of yields under quotas set with \pm 50% error (Table 6).

Fig. 1. Spawner-recruit curves used in simulations studies of catch and effort quotas for Georges Bank herring.

Fig. 2. Production curves estimated from simulations using four data set combinations for Georges Bank herring.

- 16 -

Fig. 3. Comparisons of estimates of CMAX and FOPT and their errors for three random simulations for each of three data sets for Georges Bank herring.