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INTRODUCTION

Ages of harp seals (Pagophilus groenlandicus) are estimated by counting
dentinal annuli in tooth sections iFlsﬁer 195%4). The accuracy of the method has
been validated up to age 12 with known age animals (Oritsland pers. comm.).
However, inconsistencies in the ages read for individual teeth frequently occur
(Benjaminsen and Qritsland 1975). Estimated age compositions of catches and of
the population are important in estimating pup production, mortality rates and
mean age of maturity. Hence variability in age determination may have important
consequences in estimating abundance, and trends in abundance which ultimately
form the basis of scientific advice for management of this species. This paper
examines the extent of such errors, the impact on estimates of pup production,
mortality rates and mean age of maturity and proposes a means of eliminating the
resultant biases.

AGE READING ERRORS

One of the authors (Bowen) investigated age-specific variation of age
determination of 202 harp seal teeth by reading each tooth himself in five blind
replicates. The sample, collected in April 1979 about 40 km east of Fox Harbour,
Labrador, consisted of 68 females and 134 males. A 100, section was cut from a
Tower canine of each specimen at a point slightly below the gingival-enamel
junction. Cross sections were examined under polarized Tight with a 6 to 50
power binocular microscope.

The results are shown in Table 1 which gives the frequency of age read
in years against the mean age rounded to the nearest year for each tooth. It is
evident that single readings of teeth from a seal aged two or older give
unpredictable results. The scatter of ages read increases with mean age read.
Close examination of these data indicates that the probability of a single age
reading being equal to the mean age reading decreases Tlinearly from almost 1 at
age one to about 0.15 at age 23 (Fig. 1). The coefficient of variation of thel
deviations of read age from mean age is approximately constant, at Tleast up to’
age 10 (Fig. 2). ,

Since the number of teeth aged never exceeded 30 in any age group, and
in some age groups was as low as 1, Table 1 shows a large number of scattered
entries. Table 2 is a smoothed Table of probabilities of reading a tooth from an
animal aged i as aged j where i is the row number and j is the column number.
These probabilities were derived by subjectively smoothing the empirical
frequencies of Table 1 and assuming mean age read is the "actual" size. We shall
refer to the body of Table 2 as a matrix P. -

The impact of age reading inconsistencies with these probabilities,
ignoring sampling variability, is easy to see. If a collection of one million
teeth of aged 1 seals and 100,000 of aged 2 seals was read once, the age
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distribution as read would have 992,000 aged one seals and 106,000 aged two seals
and 2,000 aged 3 seals. Thus, the age distribution as read is a smoothing of the
actual age distribution of the animals whose teeth were aged.

Again, if sampling fluctuations are ignored, the expected distribution
of ages in the sample as read can be determined by matrix multiplication. If the
numbers at age (actual) are represented as a row vector and then multiplied on
the right by the probability matrix P (= Table 2), then the resulting row vector
is the expected age distribution as read. It is this linear connection between
the "actual" age distribution and the age distribution as read which enables
systematic effects resu]tin? from these ageing errors to be adjusted for. If the
matrix P has an inverse (P~*'), then multiplication of the age distribution as
read by P~' returns to the initial (actual) age distribution. Table 3 is the
inverse of the matrix of Table 2.

IMPACT OF AGEING ERRORS

The impact of ageing errors on estimates of vital rates was examined by
comparing calculated estimates for examples with an "actual" age distribution and
an expected age distribution as read and by simulating the effects of age reading
errors.

Winters (1978) estimated natural mortality rates using catch curves for
ages 5-17 for samples of male moulting harp seals. For the 1973 sampling year
and 1956-68 year-classes, he calculated a slope of catch curve of -.126 leading
to an estimated natural mortality rate of 0.109. Carrying out the same
calculations using the combined large vessel sample.from Lett and Benjaminsen
(1977) (see Tables 4 and 5) gave a slope of -0.143 with unadjusted ageing and
adjusting that age distribution by P-1 resulted in a slope of -0.183 for the
catch curve and corresponding natural mortality rate estimate of 0.166. The
difference of 0.040 is small but important, since small variations in the natural
mortality rate have a substantial impact on calculations of sustainable yield.
Since the purpose of this paper is to examine the consequences of age reading
variability, not to recalculate all earlier estimates of vital rates for harp
seals, the authors have not determined whether all estimates of M would be
increased by applying this adjustment. Qualitatively it is clear that the
smoothing effect of ageing errors would tend to increase the estimated numbers of
the less abundant older age classes thereby underestimating the slope of the
catch curve, a difference of one or two percent in general seems reasonable.

The impact on estimates of mean age of sexual maturity using a
reproductive sample for moulting seals in April 1953, from area east of Labrador
called the front (Fisher 1954). De Master's (1978) formula for the calculation
of average age of sexual maturity was used. X = x (F(x) - F(x-1)) when x is
age, F is fraction mature at age x in the sample. It was assumed that immature
and mature animals of the same age had identical distributions of age reading
inconsistencies as in Table 2. The mean age of sexual maturity for the sample as
reported by Fisher, and as adjusted for age reading frequencies are shown in
Table 6. The adjusted sample has a mean age of maturity of 5.87 if negative
numbers in the adjusted age composition are used in the formula or 6.07 if
calculated negative adjusted values are set to 0. These values are less than the
reported mean age of first maturity of 6.23 for the unadjusted sample. The
impact of age reading variability on this sample was examined further, assuming
that the sample reported by Fisher represented "actual" ages and determining
"read" ages using the probability matrix P. The expected "read" sample is shown
in Table 6 under the heading "Fisher times P" it has a mean age of sexual
maturity of 6.40. The following five columns represent simulated age readings of
the Fisher sample each one corresponding to single, statistically independent
readings of teeth from the sample. The calculated mean age of sexual maturity in
the simulations varied from 5.35 to 6.63 and averaged 6.19. Large sampling
errors due to the small number of animals are evident. If the results of the
five simulations are combined, corresponding to reading each tooth five times,

the simulated mean age becomes 6.42, which is very close to the expected value.
Adjusted values of mean age of first maturity estimates for the individual
simulations were very unstable but the adjusted value for the combined sample was
6.24 which compares favourably with "actual" value of 6.23. In this example, age
reading errors tend to bias upwards the estimated mean age of sexual maturity by
about a fifth of a year. Due to the small number of samples, ageing variation
can cause the calcuated mean age to fluctuate widely. In general, age reading
variations cause the mean age of maturity to be overestimated due to young,
immature animals being aged as older, immature animals, and young, mature animals
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being aged as older, mature animals. This means that in the crucial ages where
maturity is between 30 and 70%, age distributions as read contain too many
immatures and too few matures.

D. Rivard calculated the effects of age composition adjustments for
survival indices of the 1966-1974 year-classes. Survival indices calculated by
Winters (1978) and those calculated by Rivard are shown in Table 7. Survival
indices were calculated as follows:

is_the number of seals aged j one year; from Table 4 (unadjusted),

If n;s
indib%dua] survival indices were calculated for ages 2 to 8 using the formula
i:ZS_jw: 1977
booNij
Si; = mX' i= 1) = 1968
Sy ¢ T e
L0 YoONij
= j= 1968

Individual estimates of the survival index for each cohort were then weighted by
the number of seals in the sample at that age to produce a weighted average
survival index for that year-class. These calculations were then repeated after
adjusting samples using the matrix P-1 of Table 3. Samples used were the total
large vessel samples from Lett and Benjaminsen (1977) and from Sargeant (1977).

The calculated survival indices differ from those calculated by Winters
since insufficient information was given in his paper to permit exact
reconstruction of his results. Figure 3 plots adjusted and unadjusted survival
indices as calculated by Rivard against pup kill and shows the predictive
regressions of survival index as a function of pup kill before and after
adjustment. The unadjusted median year pup production estimate is 423,000 while
the adjusted estimate is 398,000.

The survival index for the strong 1968 year-class increased from 1.69
to 1.84, due to the adjustment for ageing inconsistencies, while the survival
index for the weak 1969 year-class was adjusted downwards from 0.66 to 0.53. For
theoretical reasons, adjustment for ageing inconsistencies tends to increase
estimated survival indices for abundant year-classes and reduce those of less
abundant year-classes, having little effect on average year-classes. This tends
to reduce estimates of pup production. Survival indices based only on two or
three young age groups are not affected because of the low rate of ageing
inconsistencies for the very early ages. In this example, pup production
estimates decreased by 25,000 when the age composition was adjusted, this
represents. a 6% change.

Roff and Bowen (1980) have developed another estimator of pup
production which, like the survival index method, uses variation in the pup

harvest and future catches of these cohorts. By the new method, the ratio of
catches of two adjacent cohorts in which pup kills are very different is used to

estimate p, given as

n
p= Ct, t + 1

i=1 (Ct, t +i)+(Ct+ 1, t + 1)

where Ct, t + j is the catch of cohort t in year t + i and Ct + + i is the
catch of cohort t + 1 in years t + i. Error{ in age determiﬁati%ﬁ &i]]lhave a

direct influence on the estimation of p and thus pup production. We use the 1967
and 1968 cohorts to illustrate this effect.

Norwegian samples of moulting male harp seals taken in 1970, 1971 and
1973 were used to estimate p (Table 8). The 1967 cohort is represented by ages
3, 4 and 6 and the 1968 cohort by ages 2, 3 and 5. No heterogeneity is
detectable (G test) and hence p is estimated by pooling all samples. Unadjusted
for.errors in age determination, p = 0.29. The 95% confidence limits on the
estimated 1967 pup production with this value of p are 353,000 and 595,000.
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Adjusting these moulting samples for errors in age determination, p is estimated
to be 0.25 (Table 9). The resulting 95% confidence Timits on 1967 pup production
become 335,000 and 475,000.

THEORY

Observed inconsistencies in age reading can be modelled using
probability theory. It is assumed that successive independent blind replicates
of age readings for a single tooth would build up an observed probability
distribution of age readings for that tooth which converges to a "true"
distribution. If each tooth is routinely read only once, the average of these
probability distributions over teeth of all seals in a population is a
probability distribution of "read" age for a tooth of a given "actual" age chosen
at random. It is assumed that age reading variations are statistically
independent from tooth to tooth and have the same probability distribution for
animals of the same age.

Under these assumptions the distribution of numbers at age as read for
a given sample of animals with a given true age is a multinomial distribution.
The overall age distribution for a given sample of teeth is the sum of
multinomial distributions, one for each "actual" age group. Of course, the
"actual" age composition of the sample of seals is also subject to random
variation and there is a corresponding variance/co-variance matrix C associated
with the distribution of “true ages" of the sample. If a sample of a fixed
number of seals is taken at random with replacement from the population, such
that each seal of age one and older has the same probability of being included,
then the distribution of the "actual" numbers at age within the sample is also‘a
multinomial distribution with. probabilities proportional to the abundance of each
age group in the ages 1+ population. In practice, the variances and co-variances
associated with the actual ages of the sample will be different from the
multinomial model, with higher variances due to the way in which samples are
collected.. Sampling is not completely at random since clusters of animals are
included in the age sample. There may also be biases in the sampling procedure,
but these are not considered in this paper. The following formulas show the
effect of the age reading variation on expected age composition of the sample as
read and on the variance/co-variance matrix of numbers at age as read in the
sample relative to the "actual" ages.

“Actual” numbers at age in sample = A (1)
Sample size = A.1 = N (2)
Expected "Actual" numbers at age in sample =a (3)
Expected "read" numbers at age = o P (4)
Variance/Co-variance matrix of A = C (5)
Probability of reading "actual" age i as j = Pij (6)
" If sample is completely random, Cij =24 xo N ik (7)

Cii =ai (1-aj ¢ N)
P' = transpose of P (8)

Variance/Co-variance Matrix of "read" ages of sample A is

Sij = - E Pki Pkj Ak if idj (9)

T Ak Pki (1-Pki) i=1
K -




Total Variance/Co-variance Matrix as read is

CR = P'CP + ) where ) ij=-% Pki Pkj &k it
K "

i' MPki (1-Pki) =]

It is clear that if a matrix P-1, which is the inverse of P exists
then multiplying the "read" age distribution by this inverse matrix results in an
expected age distribution equal to the "actual" distribution.

a pp-l= ¢ (11)

The effect of this inverse transformation on the variance/co-variance
matrix is as shown in the following formula:

CA=C+ (P-1)' | p] (12)

where CA is the variance/co-variance matrix of the adjusted age distribution.

The above theory is appropriate when each tooth is aged only once and
when all teeth with the same "actual" age have the same distribution of
probabilities for "read" ages. In fact, some teeth are easier to read than
others and this means that the variance/co-variance matrix associated with
repeatedly ageing the same sample of teeth is different from the variance/
co-variance matrix obtained by taking a larger sample of teeth from the animal
population and reading them each once. On the average, the variances of the
numbers at age as read tend to be less with multiple readings of the same teeth
than with equivalent numbers of age readings of entirely different teeth. The
reason for this is the Cauchy-Schwartz inequality as shown in the folllowing

formula:

Probability seal k in total population "actual" age i
has "read" age j = kj» K= l,eee, M

Probability a-seal chosen at random from all seals age i is read as
age j

Pij=1 1 pkj (k = 1...1) (13)
Mk

Variance of number read as age i from I seals "actual" age i randomly
chosen with replacement and aged once:

I x P‘ij (1-Pij) (14)

Average variance of number read age from a single randomly chosen seal
"actual" age j read I times

(15)

1 I i (1= kj)
# i x pkj (1-pkj

Now I X Pij =1 x % ﬁ o kj (16)
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and T x Pij=1x (1x okjl2 (17)
A ™

2

Ix 1x(Zpk5)x (5 1) Cauchy-Schwartz (18)
M2 k k
; (19)
=Ix1 x T Pkj .
# ko

Therefore for one tooth read I times, variances < variances for I teeth
of same "actual" age read once. It follows, on the average, that variances
associated with repeated readings of the same sample are less than those
resulting from an equivalent number of single readings of seals from a larger
sample with the same "actual" age distribution.

This effect has been neglected in the calculations which follow since
it does not impact expected values but only variances and it does not seem
practicable, at this point, to classify teeth into easy and hard to read
categories apriori. Should this become possible, the methods outlined here could
be refined to take advantage of possible extra readings of more difficult teeth.

While the above mathematical formulae are very concise, they do not
indicate intuitively the impact of the age reading variation or trade-offs
between leaving the biases and removing them at the cost of higher variances.
Therefore, we have included a concrete example using ages 1-10 and a truncated
version of the P matrix of Table 2. The truncated matrix up to age 10 is
contained in Table 10 and its inverse is shown in Table 11. An initial age
distribution was chosen based on the 1973 large vessel sample of Lett and
Bejaminsen. The number of ten year olds was increased relative to the actual
observation in order to suggest the impact of a "plus group". Table 12 shows
various quantities which were calculated for this example. It was assumed that
each tooth would be read once and two simulations were carried out by the
Monte-Carlo method to obtain simulated age distributions as read.

For most ages the expected bias introduced by the ageing
inconsistencies was small, of the order of 2. or 3% up to age 5. However, large
biases of 11 and 20% occurred for ages 5 and 6 and for ages 7 to 9, biases were
of the order of 10%. The increased standard deviation of the adjusted age
distribution relative to the age distribution as read was very small for ages 1
to 4 but represented 5% of the mean through ages 5-8 and 10% for age 9. Thus,
for some ages, added variation expressed as a co-efficient of variation was
greater than the reduction in bias.

In general, it is the exceptionally large and exceptionally small year
classes which are substantially systematically influenced by the age reading
variability. Age 5 being substantially reduced and age 6 being substantially
increased. We note that small numbers of animals and high age reading
variability imply that age compositions for ages 12 and older are frequently
little better than "random numbers".

Qualitatively, theoretical results agreed with the simulation
experiment as shown in Figure 4. Sampling errors associated with the ageing
variability are increased by the adjustment but biases are eliminated. From this
example, a general rule becomes clear: when the number at age read is large so
that sampling errors are small (relatively) and the true age distribution is very
uneven so that large biases are introduced by the ageing variability, then the
adjusted age distribution is clearly superior to the unadjusted. If the actual
age distribution is smooth and the number of ages read is small, then the
increase in sampling variability frequently exceeds the decrease in bias
associated with the adjustment. In specific instances, the pros and cons can be
calculated using the formulas provided above. [n any event, whether or not the
adjusted numbers are closer to the true value, the systematic effect may have a
cumulative importance in analyses such as survival index calculations.




Table 13 shows the variance/co-variance matrices associated with the
"actual" age distribution assuming random sampling of the herd, the variance/
co-variance matrix of the ageing inconsistencies, the contribution of variance in
"actual" ages to the co-variance matrix of the age distribution as read, the
co-variance matrix of the "read" age distribution, the co-variance matrix of the
adjusted age distribution and the increases in variance and co-variances due to
adjustment for ageing inconsistencies. Finally, the contribution of ageing
inconsistencies to the co-variance matrix of adjusted age distribution is shown.
Ageing inconsistencies become about half of the variance of "actual" ages at age
4 and for some older ages are comparable to the variance in the actual ages. For
older ages, adjusting for ageing inconsistencies increases the variances of
numbers at age estimates by about 50% in this example.

There exists a "stable" age distribution which is not systematically
influenced by age reading variations. In mathematical terms, this corresponds to
the existence of an eigenvector V such that

If P is given as in Table 2, the V, expressed as proportions to three
significant digits reading 25 age groups from left to right with 0.399 at age 1
to 0.000368 at age 25+ is:

0.399 0.200 0.0697 0.0505 0.0459 0.0437
0.0409 0.0351 0.0303 0.0230 0.0177 0.0132
0.00932 0.00683 0.00478 0.00343 0.00231 0.00193
0.00109 0.000686 0.000432 0.000316 0.000216 0.000176
0.000368

Cross year mortalities calculated for this distribution are unlikely to
arise for harp seals since they decline from 0.693 and 1.05 for ages 1-2 and 2-3
to 0.05 for ages 5-6 and then rise over 0.25 for ages 9-10 to 22-23.

ERRORS IN ESTIMATION OF AGE READING PROBABILITY MATRIX P

Must the matrix P be precisely estimated for practical application of
the adjustment? Clearly, the adjustment depends on P and the age reading
probabilities P depend on the reader as well as varying from year to year. For
the adjustment to be usable, it must not be sensitive to small changes in P.

Suppose the matrix P is used for the adjustment of an observed age
distribution Y but the "actual" matrix of age reading probabilities is P +4 .
Instead of the correction X = YP-1 obtained using P, the correction
X* =Y (P +a )-1 corresponds to the "actual" situation. Since the read age
distribution is the same,

XP = Xx (P+s4 ) (20)
Writing s = X - X‘and simplifying,

s =xb (P+s)-1 (21)
(if P +4 has an inverse)
For small & , s & X Ap-1 (22)
Thus, sensitivity of the adjustment to small changes in P is determined by the
magnitude of the elements of P-1,

The adjustment Y (P-1 - I) differs by Y& (P + )-1 from the
adjustment associated with a precisely estimated age reading probability matrix.

Thus, the adjustment is justified if Y P-1 is closer than Y to Y (P + & )-1.
This is equivalent to comparing the magnitudes of



Yo (P+a )landy (I-(P+a)ly=y@P+a -1)(P+4)l (23)
If o 1is close to a zero matrix, then equation (23) approximates a comparison of
Yo P-landy (1-p1) =y (-1 pl

Thus2 to a first order approximation, the use of the estimated matrix P is
Justified if P is a better estimate than the identity matrix (perfect age
reading) of the age reading probability matrix.

As an example, we consider the implications of replacing the matrix of
Table 10 with an alternative "actual" age reading probability matrix shown in
Table 14. The changes are highlighted in Table 15. The adjustment to the
inverse matrix on Table 1l is shown in Table 16 and the approximation for "small"
A is shown in Table 17.

~ Applying the adjustment Y& (P +2 )-1 to the two simulated age
distributions of the example discussed above gives adjustments of

1) -0.585 0.46 4.21 -3.23 1.87 -9.92 6.6 -0.645 0.565 -3.33
2) -0.655 0.469 4.22 -3.71 1.92 -9.35 6.88 -0.522 1.04 -4.3

while the approximate formula Y P-1 gives adjustments of

1) -0.594 0.393 4.26 -3.38 2.05 -5.75 6.66 -1.03 0.496 -3.09
2) -0.665 0.397 4.28 -3.86 2.11 -5.2 6.92 -0.432 0.934 -3.99

In this case, the first order approximation of equation (22) gives a
good modification of the impact of changing P. Comparison with figure (4) shows
that adjusting with P is better than accepting age as read except for ages 3, 7
and 10+ despite the fact that errors in estimating P are assumed to be almost as
large as the difference between P (Table 10) and perfect age reading.

From formula (22) we conclude that it is desirable to reduce errors in
estimation of the matrix P to the order of one percent, but P need not be well
estimated for this contribution to error to be less than other sources of error.
The use of P-1 to adjust -ages as read is ‘justified if P is a better approximation
than perfect aging to the "actual" age reading probabilities.

NUMBER OF AGE READINGS FOR A SINGLE TOOTH

Two obvious questions arise in planning age sampling and age reading
programs.. One is for a fixed budget - how should resources be divided between
collecting samples and ageing repeatedly the same sample? Two, for a given
sample, how much reduction in variance can be expected by repeating the readings
one, two, three, or more, times.

If these questions are looked at from the point of view of minimizing,
or reducing, the variance of a linear contrast of the age distribution vector
i.e., the number at some age or some other one-dimensional linear combination of
numbers at age for different ages, then the problem can be analysed
mathematically as outlined below.

Cost of collecting 1 seal a
Cost of reading 1 tooth b
Total budget B

If n seals are sampled and each tooth is read in times, then
an + bnm =B , m>1 ' (23)
and the variance/co-variance matrix of the adjusted proportion at age is

c+ () 1p7h) | (24)
n

nm




If the variance of a linear combination (contrast in experimental
design litterature) is to be minimized,

vy s v (et prly (25)
n nm

is minimised where the vector V defines the linear combination.

This is minimised when

AN rp-1) -1
m /gx/v(PV'cvz Pty | (23)

Example, minimise variance of numbers at age 5 in previous example

m=/"ax/133
b /73

= 0.77%”

Since the number of times a tooth should be read to minimize variance
under a fixed budget varies as a square root of the ratio of sampling to ageing
costs and the square root of the variance ratio of ageing to sampling errors,
adequate estimates can be obtained for planning purposes withing knowing
precisely what the variances are. The reduction in target variances or
co-variances associated with an additional reading of available teeth can be
calculated straightforwardly from the following formula:

cA=c+ (pl)r z pl (24)
m

No matter how many times available teeth are read, the C component
remains - corresponding to the "actual" age variance of the sample.

CONCLUSIONS

It has been demonstrated that age reading variations can bias estimates
of pup production by as much as 10% and natural mortality rates by a comparable
amount. Ageing inconsistencies also tend to result in overestimated mean age of
first maturity. The size of these biases is sufficient to have a serious impact
on management advice for harp seals in the Northwest Atlantic.

Age reading variability is an important source of variance in estimated
age composition. With single readings and historical sample sizes, age
compositions above age 12 bear little relation to year class strengths.

A method has been presented which permits read age compositions to be
adjusted to unbiasedl age compositions. The removal of bias is associated with
an increase in variance. When age distributions are smooth and samples are
small, the reduction in bias is less than the increase in variance associated
with the adjustment process while, if the age composition is uneven and numbers
sampled are large, the reduction in bias is greater than the increase in
variance. Specific instances can be studied using the formulae for means and
variances presented above in order to determine whether the adjustment is likely
to add more variation than it removes. .

1 Only bias due to age reading variability is adjusted.
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Even if the overall impact on a read age distribution of ageing
variability is not large, there is a systematic tendency for abundant
year-classes to appear less abundant and weak year-classes to appear stronger.
This tendency results in overestimates of pup production from survival index
methods, underestimates of natural mortalities estimated by catch curve methods
and overestimates of mean age of first maturity. When samples from many years
are combined to give estimates as, for example in Winters (1978), the persistent
effects of these biases in the same direction-are particularly significant since
random variation between years is unsystematic and tends to cancel out in such an
analysis.

In view: of the small number of specimens involved, multiple "blind" age
readings for maturity samples are desirable.
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0.00

0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

70.02
0.04
“0.01
0.19
0.60
T1.u49
5.04
T1.%€
70.31
"0.38
~0.60
0.05

Table 3

INVERSE OF MATRIX

0.00 0.00 0.00

70.01  _0.00 0.00

0.00 0.00 0.01
0.00 0.00 T0.01

0.00 0.00 . 0.00

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.01
0.00 70.02 0.00
0.01 T0.01 70,02
0.00 0.13 0.07
0.41 0.0u 0.17
70.97 0.34 0.28
“1.77  T1.66 0.06
6.37 "1.70 T2.31
T1.48  7.61 1.47
T0.62 "2.28 10.26
T0.68 T0.57 u4.82
“0.08 T0.26 0.25

0.00
0.00
0.01

T0.01

70.05

70.32
1.86
0.28
0.29
0.02

0.02

0.01
70.01
70.05

0.04

0.02

0.02

0.02
70.03

0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.00

“0.15
0.03
0.32
1.43

71.75

76.01

“4.95.

21.97

72.83

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
T0.01
0.02
0.11
70.13
70.36
70.60
2.39
3.43
T0.u47
“14.73
4.53

0.00
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Table 4

CNTCH AT AGE( LARGE VFSSFLS )

|

.
11 226 458 239 239 12 175 360 464 292 232
2 | 155 58 210 66 9 237 227 223 112 122
31 91 46 45 53 3 188 86 102 6O 95
4 | 47 33 46 19 24 178 65 67 35 78
S| 49 45 33 18 9 299- 67 57 24 76
6 | 43 3 30 11 10 81 88 57 13 137
71 75 33 41 10 13 68 21 28 18 .20
8] 77 51 23 8 9 85 21 23 13 17
9| 54 41 35 17 6 42 36 29 11 31
101 5 29 31 16 6 1. 21 17 6 10
11| 42 27 20 10 4 48 16 28 6 8
12 | 30 19 26 12 5 30 24 .17 5 10
131 32 23 23 8 2 3 23 20 8 15
| 42 26 16 " 2 24 19 15 5 17
151 35 26 24 6 6 37 30 15 5 9
6 | 34 18 17 6 4 33 16 13 5 13
17 | 28 24 15 6 3 26- 16 13 s 9
18 | w21 17 9 2 24 14 10 3 5
19 | 38 22 14 6 0 30 12 8 2 3
201 27 20 12 8 5 33 10 6 1 2
21 | 17 1u 8 5 1 18 8 5 1 4
22 | 24 12 7 9 3 18 9 7 2 2
23] 1y 11 3 7 1 20 7 5 1 2
2u-) 10 6 n n 2 15 11 6 0 2
25+] 5 7 1 7 0 17 9 5 0 2

Table §
ADJUSTED CATCH=AT=AGE

| 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
e - - s . e o - b > ot o 8 b - o
1] 225 w62 237 2u0 12 172 359 464 293 . 232
2| 154 53 214 63 9 233 228 221 110 119
3 | as 48 u2 56 8 191 86 104 62 a8
u | 45 31 48 17 27 169 64 67 35 78
5 | 50 48 32 19 7 - 243— 66 57 25 82
6 | 36 31 28 10 9 57 103 62 11 35
71 79 36 46 3 14 58 8 23 20 16
8 | 83 57 15 5 9 97 16 20 13 13
g | 45 41 38 19 5 29 43 32 12 41
10 | 63 27 33 18 6 38 18 10 4 5
11 | 39 27 12 7 3 55 8 35 5 3
12 | 17 11 30 16 7 22 28 12 n 6
13 | 26 21 3 7 1 38 22 2u 11 19
1 | 49 28 7 2 0 6 12 11 3 21
15 | 28 27 3y 7 10 46 45 14 5 1
16 | 21 1 10 3 [ 32 K] 12 5 22
17 | 5 30 11 2 3 10 - 17 17 8 10
18 | 81 18 26 14 0 11 16 9 2 2
19 | 52 29 16 2 T8 45 12 7 1 1
20 | 20 33 18 1 21 70 7 2 1 3
21 | 10 12 8 s g 13 2 0 0 15
22 | 8l 13 16 29 10 n 18 22 11 1
23 | 37 41 11 29 Te 73 10 3 6 1
24 | 11 6 34 17 26 87 130 52 17 12
2541 w1 7 T2s 5 20 T79 T8s Tag 8 7
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TABLE 7

SURVIVAL INDEX

Year Class Winters Unadjusted Adjusted Reported Kill (1,000)
1966 0.79 0.75 - 0.74 235
1967 0.62 0.66 . 0.53 280
1968 1.65 1.69 1.84 160
1969 0.98 1.13 1.13 237
1970 0.71 0.93 0.91 220
1971 0.91 0.84 0.83 213
1972 1.41 1.29 1.30 120
1973 1.62 1.49 1.51 103
1974 1.68 1.56 1.56 118

TABLE 8

TESTING FOR BIAS IN THE ESTIMATION OF p FOR THE 1967 AND 1968 COHORTS
NUMBERS-AT-AGE UNADJUSTED FOR ERRORS IN AGE DETERMINATION

Sample 1967 cohort 1968 cohort
Year Age Number Age Number
19701 3 11 2 25
1971 4 15 3 26
1973 6 31 5 89
140

Total 57

1 Moulting samples from Benjaminsen and Pritsland MS.
G=1.73, df = 2, P 0.05
p = 57/197 = .29
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TABLE 9

TESTING FOR BIAS IN THE ESTIMATION OF p FOR THE 1967 AND 1968 COHORTS

NUMBERS-AT-AGE ADJUSTED FOR ERRORS IN AGE DETERMINATION

Sample 1967 cohort 1968 cohort
Year Age Number Age Number
1970 3 12 2 27
1971 4 15 3 29
1973 6 26 5 104
Total 53 160
G = 4.30, df = 2, P 0.05
p = 53/213 = .25
Table 10
SMOOTHFD AGF KFADING INCONSISTFNCIES )
| 1 2 3 N 5 6 7 8 3 10t
1] 0.99 0.01 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00
2 | 0.02 0.96 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
31 .0.00.0.05 0.90 0.05 0.00 0.00 0.00 0.00 0.00 0.00
4 | 0.00 0.01 0.05 0.85 0.07 0.02 0.00 0.00 0.00 0.00
5] 0.00 0.00 0.01 0.07 0.82 0.07 0.02 0.01 0.00 0.00
6 ] 0.00 0.00 0.00 0.02 0.08 0.78 0.09 0.02 0.01 0.00
7 ] 0.00 0.00 0.00 0.00 0.03 0.03 0.7% 0.10 0.03 0.01
8 | 0.000.00 0.00 0.00 0.00 0.04 0.11 0.70 0.11 0.0u4
9 | 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.11 0.67 0.16
104] 0.00 0,00 0.00 0.00 0.00 0.00 0.01 0.06 0.12 0.81
Table 11
INVERSE ‘MATRIX OF AGE-READING -INCONSISTENCIES
| 1 2 3 n 5 6 7 8 9 104
ot ot et P ok ek 2 8 o kD Bt otk P 8 8 e S S 08 o o 8 D e 2 e Ak e A e b 0
1] _1.01 "0.01 _0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2| 70.02 _1.04 T0.02 _0.00 0.00 0.00 0.00 0.00 0.00 0.00
3] 0.00 "0.06 _1.12 "0.07 0.01 _0.00 0.00 0.00 0.00 0,00
4% |. 0.00 70.01 T0.06 _1.13 T0.10 "0.02 0.01 0.00 0.00 0.00
5] 0.00 0.00 70.01 "0.10 _1.24 0.11 0.02 0.61 0.00 0.00
61 0.00 0.00 0.00 70.02 “0.12 _1.31 T0.15 —0.01 0.01 0.00
71 0.00 0.00 0.00 0.01 70.04 0.15 1.40 ~0.13 0.03 0.00
8 | 0.00 0.00 0.00 0.00 0.01 0.05 0.20 .1.50 70.23 0.03
g1 0.00 0.00 0.00 0.00 0.00 0.00 70.07 ~0.21 1.58 ~0.30
10#] 0.00 0.00 0.00 0.00 0.00 0.01 0.01 ~0.08 ~0.22 1,28
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TABLE 12 -

EXAMPLE OF THEORY

“Actual” Age Distribution of Sample

175 237 188 178 299 81 68 85 42 51

Expected Age Distribution as Read

177.99 240.45 185.83 183.25 266.16 97.61 75.55 78.59 46.46 52.11 -

("Actual" - Expected) + "Actual", i.e. relative bias.

-0.017 -0.015 0.012 -0.029 0.110 -0.205 -0.111 0.075 -0.106 -0.022

(Standard Deviation (adjusted) - Standard Deviation (read)) + "Actual" Age
Distribution. i.e. increase in coefficient of variation of adjustment.

0.001 0.003 0.009 0.016 0.013 0.042 0.056 0.055 0.103 0.045

Simulated "Read" Age Distributions

1) 181 239 183 180 262 104 68 92 47
2) 177 242 189 179 269 90 74 82 41

Adjusted Simulated "Read" Age Distributions
1) 178.1 235.6 185.1 174.6  293.8 90.3 53.7
2) 174.0 238.5 191.7 172.6 . 304.0 70.9 66.7

Sampling Errors

1) Read 3.01 -1.45 -2.83 -3.25 -4.16 6.39 - 7.55
Adjusted 3.01 -1.40 -2.90 -3.40 -5.20 9.30 -14.30

2) Read -0.99 1.55 3.17  -4.25 2.89 -7.61 - 1.55
Adjusted-1.00 1.50 3.70  -5.40 5.40 -10.10 - 1.30

48

61

106.7 -40.8
90.9  30.8
13.41  0.54
21.70 -1.20
3.41 -5.46
5.90 -11.20

- 45.3

-4.11
-5.70

8.89
12.9
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TABLE 13

13.a Variance/Co-variance Matrix of "Actual" Ages
153 -29.5  -23.4 -22.2 -37.3 -10.1 - 8.48 -10.6 - 5.24 - 6.36
-29.5 197 -31.7  -30 -50.5 -13.7 -11.5 -14.3 - 7.09 - 8.61
-23.4 -31.7 163 -23.8  -40 -10.8 - 9.11 -11.4 - 5.62 - 6.88
-22.2 -30 -23.8 155 -37.9 -10.3 - 8.62 -10.8 - 5.32 - 6.47
-37.3 -50.5 -40 -37.9 235 -17.2 -14.5 -18.1 - 8.94 -10.9
-10.1 -13.7 -10.8 -10.3 -17.2 /6.3  -3.92 -4.9 - 2.42 - 2.94
- 8.48 -11.5 - 9.11 - 8.62 -14.5 - 3.92 64.7 - 4,12 - 2.43 - 2.47
-10.6 -14.3  -11.4 -10.8 -18.1 -4.9 - 4.12 79.9 - 2.54 - 3.09
-5.24 -7.09 -5.62 -5.32 -8.94 - 2.42 - 2.03 - 2.54 40.7 - 1.53
- 6.36 -8.61 -6.83 - 6.47 -10.9 - 2.94 - 2.47 - 3.09 - 1.53 49.1
13.b Variance/Co-variance Matrix of Ageing Inconsistencies

6.38 -8.28 -0.0948 0 0 0 0 0 0 0

-6.28 21.5 -13.1 - 1.98 -0.125 -0.035% O 0 0 0

-0.0948 -13.1 33 -16.2 -3.07 -0.387 -0.0598 -0.0299 O 0

0 -1.98 -16.2 52.7  -27.9 -5.75 -0.564 -0.242 -0.0162 O

0 -0.125 -3.07 -27.9 63.7 -22.6 -7 -2.79 -0.125 -0.0204

0 - 0.0356 -0.387 -5.75 -22.6 46.1 -11 -4.51 -1.47 -0.264

0 0 -0.0598 -0.564 -7 -11 36.4 -12 -4.08 1.63

0 0 -0.0299 -0.242 -2.79 -4.51 -12 35.5 -10.2 -5.67

0 0 0 -0.0162 -0.126 -1.47 -4.08 -10.2 25.8 -9.85

0 0 0 0 -0.0204 -0.264 -1.63 -5.67 -9.85 17.4
13.c Contribution of Variance in "Actual" Ages to Co-variance of "Read" Age

Distribution

149 -24.2 -23.5 -23.2 -33.7 -12.4 - 9.58 - 9.96 - 5.89 - 6.61
-24.2 178 -18.7 -29.4 -45.5 -16.7 -12.9 -13.5 -7.96 - 8.92
-23.5 -18.7 128 - 8.02 -32.2 -12.5 -9.94 -10.4 - 6.15 - 6.9
-23.2 -29.4 - 8.02 107 - 6.86 -6.99 - 9.3 -10 - 6.05 - 6.8
-33.7 -45.5 -32.2 - 6.86 152 4.15 -7.33 -12.1 - 8.68 - 9.86
-12.4 -16.7 -12.5 - 6.99 4.15 44,7 5.78 - 0.953 - 1.76 - 3.36
- 9.58 -12.9 -9.94 -9.3 -7.33 5.78  35.1 7.82 1.58 - 1.18
-9.96 -13.5 -10.4 "~ -10 -12.1 -0.953 7.82 38.7 7.63 2.75
-5.89 -7.96 -6.15 - 6.05 - 8.68 - 1.76 1.58 7.63  19.1 8.13
-6.61 -8.92 -6.9 -6.8 -9.86 -3.36 - 1.18 2.75 8.13 32.7
13.d Co-variance of "Read" Age Distribution
155 -30.5 -23.6 -23.2 -33.7 -12.4. -9.58 -9.96 - 5.89 - 6.61
-30.5 199 -31.8 -31.4 -45.6 -16.7 -12.9 -13.5 -7.96 - 8.92
-23.6 -31.8 - 161 -24.3  -35.2 -12.9 -10 -10.4 - 6.15 - 6.9
-23.2 -31.4  -24.3 159 -34.7 -12.7 -9.86 -10.3 - 6.06 - 6.8
-33.7 -45.6 -35.2 -34.7 216 -18.5 -14.3 -14.9 -8.81 - 9.88
-12.4 -16.7 -12.9 -12.7 -18.5 90.9 - 5.25 - 5.46 - 3.23 - 3.62
- 9.58 -12.9 -10 -9.86 -14.3 - 5.25 71.5 -4.23 - 2.5 - 2.8
- 9,96 -13.5 -10.4 -10.3 -14.9 - 5.46 - 4.23 74.2 - 2.6 - 2.92
-5.80 -7.9 -6.15 - 6.06 - 8.81 - 3.23 - 2.5 - 2.6 44.9 - 1.72
- 6.61 -8.92 -6.9 -6.8 -9.88 -3.62 - 2.8 -2.92 - 1.72 50.2
13.e Co-variance of Unbiased Adjusted Age Distribution
160 -36.7 . -23 -22.2 -37.3 -10.1 - 8.48 -10.6 - 5.24 - 6.36
-36.7 222 -49.4 -31 -49.9 -13.7 -11.5 -14.4 -7.09 - 8.61
-23 -49.4 207 -51.5 -40.5 - 9.77 - 9.21 -11.4 - 5.63 - 6.82
-22.2 -31 -51.5 = 240 -92.1 -15.1 - 5.97 -10.2 - 5.47 - 6.5
-37.3 -49.9 -40.5 -92.1 348 -66.8 -23.2 -20.2 - 7.25 -11
-10.1 -13.7 - 9.77 -15.1 -66.8 168 -38 -10.1 - 2.93 - 1.79
- 8.48 -11.5 - 9.21 -5.97 -23.2 -38 151 -47 - 6.62 -0.827
-10.6 -14.4 -11.4 -10.2 -20.2 -10.1 -47 176 -44.2 - 8.25
-5.24 -7.09 -5.63 -5.47 -7.25 - 2.93 - 6.62 -44.2 122 -37.8
-6.36 -8.61 -6.82 -6.5 -11 - 1.79 -0.827 - 8.25 -37.8 88
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TABLE 13 (cont'd)

13.f Increase in Co-variance Matrix due to Adjustment for Ageing Inconsistencies

4.55 -6.25 - 0.524 1.06 -3.54 2.28 1.1 -0.632 0.655 0.249
-6.25 23 -17.6 -0.385 -4.33 -3.03 1.44 -0.893 0.869 0.315
-0.524 -17.6 46 -27.2 -5.24 3.15 0.7858 -1 0.516 0.0734

1.06 0.385 -27.2 80.6 - -57.4 -2.37 © -3.89 -0.0654  0.59 0.299
-3.54 -4.33 -5.24 -57.4 133 -48.3 -8.88 -5.29 1.56 -1.16

2.28 3.03 3.15 -2.37 -48.3 7.5 -32.7 -4.64 -0.299 1.84

1.1 1.44 0.785 3.89 -8.88 -32.7 79.3 -42.7 -4.12  1.98
-0.632 -0.893 -1 -0.0654 -5.29 -4.64 -42.7 102 -41.6  -5.33

0.655 0.869 0.516 0.59 1.56 0.299 -4.12 -41.6 77.3° -36
0.24 0.315 0.0734 0.299 -1.16 1.84 1.98 -5.33  -36 37.8

13.g9 Contribution of Ageing Inconsistencies to Co-variances of Adjusted Age
Distribution

6.790  -7.19F0  3.99E-1 1.67E-2 -1.11E-2  2.90E4  4.00E-4 8.64f-5 -4.05E-5 _1.22F6
-7.1980  2.53B1  -1.76f1 -9.51E-1  5.s8E-1 -1.20E-2 -2.04E-2 _4.426-3  2.02E-3 -7.21f5

3.99E-1  -1.76E1 4.44fF1  -2.76E1  -4.36E-1  1.08E1  -1.09E-1 -2.46E-2 -9.45E-3 5.29E-3
1.67E-2 -9.51E-1 -2.76E1  g.4581  -5.42B1  _4.84F1 2.650  5.84E-1 -1.49E-1 _3.65(-2
-1.11E-2  5.58E-1 -4.36E-1 -5.42E1 1.13E2  -4.86E1  -g.7280  -2.08B0  1.70F0 1.80E-1
2.90E-4 " -1.20E-2  1.08E0  -4.84E0 - -4.96E1 - 9.20F1  -3.40E1 -5.20E0 -5.08FE-1 1.16F0

4.00E-4 -2.04E-2 -1.09E-1 2.65t0 -8.72E0  -3.40E1  8.60E1 -4.28F1 -4.59Eg 1.64E0

8.64E-5 -4.42E-3 _2.46E-2  5.84E-1 -2.08B0 -5.20B0 -4.28E1  9.64E1 -4.16E1  -5.16f0
-4.05E-5  2,02E-3 -9.45E-3 _1.49E-1 1.70E0 -5.08E-1 -4.59E0 -4.16E1 8.14E1 - -3.62F1
-1.228-6  7.21E-5  5.29E-3 _3.65E-2  1.80E-1 1.16F0 1.64E0  -5.16E0 -3.62E1 3.88E1

Table 14

Alternative Age Reading Probability Matrix for
Sensitivity Calculations (see text).

0.00FO  0.00FO

1.00F0 8.€7F 19°0.00E0 0.00FC 0.00(0 O 0.00£0 0.00F0  0.0070
1.00£72 9.70E"1 2.00F"2 0.00F0 0.G0F0 0.0CL0  0.00/0  0.00F0  0.0CKO  0.00F0
0.00F0  4,00F"2 9.10F 1 4.00F 2 1.00£"2 0.00F0 - 0.00E0 0.00(0 0.00F0 . 0.COFO
0.00£0 2.00F 2 4.,00F"2 8.60F 1 6.00/"2 1.00/72 1.00F 2 0.00£0 0.00£0. 0.00LO
0.00f0  0.00/0 2.00F° 2 5.00/"2 8.20F 1 7.0CF 2 3.00/"2 1.00/"2 0.00F0 . 0.00FO0
0.00F0O ~ 0.00£0 1.00E"2 23.00F 2 8.007° 2 7.60F"1 -8.00F 2 3.007°2 1.00F 2 0.G00
0.00£0  0.00/0  0.00/0 1.00F"2 #.00f 2 9.00/72 7.40/"1 '8.060L°2 3.00/ 2 1.00:72
0.00E0  0.00F0  0.00F0 1.00Ff 2 0.00E0  3.00/72 1.10£71 6.90F° 1 1.20471 4.00F 2
0.00F0  0.00F0 -0.00E0  0.00F0 1.00F 2 2.00/°2 6.00F 2 1.10£°1 6.40F71 1.60k 1
0.0070 0,00F0 0.00F0 0.00F0 0.00/0 1.00F"2 2.00/72 8.00F 2 1.30F"1 7.60F 1
Table 15

Difference between probabilities in Table 14 and Table 10.

0.01 T0.01 © 0 0 0 0 0 0 0

“0.01 0.01 © 0 0 0 0 0 0 0

0 “0.01 0.01 0.01 0.01 O 0 0 0 0

0 0.01 T0.01 0.01 "0.01 0.01 0.01 O c 0

0 0 0.01 T0.02 0O 0 0.01 0 0 0

0 0 0.01 0.01 0 - T0.02 70.01 0.01 0 0

0 0 0 0.01 0.01 O 0 T0.02 0 0

0 0 0 0.00 0  T0.01 0 0.01 0.01 0

0 0 0 0 0.01 0.01 0.01 O 0.03 0

0 0 0 0 0 0.01 0.01 0.02 0.01 0.05




1.01672
T1.01F 2
1.05F 1y
T1.05F 7y
1.95F78
6.86E 6
2.04F76
2.37t76
73.88F77
T1.80F77

. -1
Chanae in Adjustment matrix P
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Table 16

1.03672  2.27E7% T1.05/75 T2.04F76  3.04/°7 1.93F77 T3.91879
_1.03F 2 T2.27FT4 1.05ET5  2.04F76  3.04E77 1.93F77  3.91£79
1.05F 2 1.1572 T1.29F°2 _1.31F 2 T1.01873  T2.34F 4 T1.27F7y
_1.05F° 2 1.1k 2 1,32F72  T1.24472 T1.40FT2 1,552 T9.52pTy
_1.95F & 1.20F 2 "2.40F 2 1.05F°3 T1.39/73  1.u42F72 T1.54773
_6.861 4 1,070 2 1.19K72  2.19K°3 T2.57t72 Ti.awiT2  1,75F72
_2.08F 4 7.34ETH 1.13F°2  1.12F72 TS.4METH 3,52FT3 T3.05E72
2.370 4 3.89F 4 1.23F 2 6.31F75 T1.3u5°2  2,30F 3 T1.69F72
3.88E 5 3.A4F 4 1.25F 3 1.11E 2  1.14F72  1.50F"2  4.50F"3
1.80F'5 5.52/75 "7.61F° 4 T1.72E73  1.15F 2  7.59F73  3.23E72
Table 17

Approximation to Table 16 using formula 22 (see below)

1.03F 2 T1.058°2 2.35F 4

T
2

2
2
1
1
1

72

i3

L03E7 2
L20F b
L20F
.98F 6
L3UETS
.53F 6
L84E 6
L98F 7
L49r79

T1.09F72

T3.95F 4
“6.66F 4 -
T7.56F°5 7.27E 4
T9.117°5 6.71F 4

1.05F72 T2.355 4
1.20F72
1.09F72 T1.20F72
1.25F 2
1.05F"2

1.47E°5 "S.67F S

3.21E77 2.18F°5 T1.40F 4 "1.26F 3

39F°5

36F°2
38F 2
2. uuE"2
1.16F 2
1.09F2
1.21672
T1.13F 3

1.
1.
T1.
1.

1.17576 2.60177 ©

39F75 T1.17E76 T2.60/77 6.098 -
1.24772 T8.2uF70 T2,45F 7% T1.41F 4 4,62F 5
1.58172 T1.64F 3
1.39F72 T1.93773
1.71672 ©

T1.26F 2 T1.28F2
1.67F 3 “1.03F°3
1.97/73 72,5572
1.11F72 T2.45F 4
1.14F7y 71,2872
1.07F72 1.06/72

1.03E°2

6.09F78 "1.57(78

1.29172 _ -
3.87E°3 “3.01F2
2.88/73 T1.70F 2

1.44F72 4,23E°3 ~

7.34F°3 2.96F 2

1.576°8 ©

using Table 14 instead of Table 10

T1.32678  4,341710
1.32E78 4,347 10
_5.07F°5 T9.08+77
T3.13F 4 TB.83ES
T3.48F 4 T3.24k7s
2.20E°3 T2.83Fu
S.47E73 4,05F 4
_1.96F 2 T3.26173
5.07572 1.02E72
2.38F°2 T7.26F2
1.19079 1.29K 9
1.19F79 T1.29F°9
8.u7F77

2.195"4 T7.06L° 5
2.86:74 T1.,967°5
1.80573 T3.32E 4
4.67F 3 5.13E 4
1.83F72 T2.81F 3
4.79572 9.07E3
2.17E72 T6.76F 72
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Fig. 1. Probability of a single age reading being equal to the
mean age reading as.a function of age. (Line fitted by eye.)
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Fig. 3. Effect of agéing errors on estimated pup production using
the survival index method.
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| Fig. 4 Example showing simulated effects of
| age reading variations and adjustments
| ’ (see text). :
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