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Introduction

Abundance and biomass est1mates from acoust1c surveys may be use@ as relative indicators of -annual
_trends in-stock size (Carscadden. and M111~r, 1980; - Miller and Ca den, 1980) : However, the inability
to determine biases associated with eachfpoint estimate prec]udes the: 1nterpretat10n of ‘acoustic data into
absolute. estimates of stock size. Taylojgand Kieser (1980) recognized four sources of error relating to
1) extrapolation, 2) spec1es composition@3) calibration; :and: 4) .sampling variatien: To -date only the
latter source, i.e. variance related to samp11ng design, can be measured w1th any degree of certa1nty

Several recent studies have recognizwd that variation estimates from line transect and re]ated
survey -designs must account for the non-ga@ndom distribution of marine mammals and fish populations (Dark
et. al. 1980; Kimura and Lemberg, 1981; fQuinn, 1977; Shotton and Dowd, 1975; Taylor-and Kieser, 1980).
Generally, as populations exhibited strogger aggregating tendencies, the variance of the sample mean which
assumes random distribution becomes more Biased from-the true popu]at1on variance (Sh’;ton and Dowd, 1975)
Recognizing that fish populations are: rarslw random]y distributed, “Shotton dnd Dowd (fo%) proposed using
the c1uster1ng samp]e method of Hansen, eﬁg A (]953) to estimate var1ance Compareg to other variance
h st ' ]
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Acoust1c Data Ana]ys1s

3LNO 198Q acoustic survey‘used in this ana1ys1s were des-
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Clustering Sample Model

The clustering sample model used to estimate the relative variance (Vy?) associated with the mean
sample density was

V2 = %f-\‘/z [+ s (R-1)] (1)

where f-is the sampling fraction, t is the number of transects in the sample, n represents the mean number

‘of observations (i.e. intervals) per transect, and & indicates the degree of intra-transect variance. The

parameter V2 is calculated using
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For both (3) and (4) Xjj is the jth density estimate in the ith transect, x; is the total density of the
ith transect, X; is the mean density of the ith transect, X is the mean density for all transects in the
sample, X is the mean sample density, nj is the number of observations in the ith transect, and N is the
total number of observations in the sample.

Within transect variation is estimated by
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The parameter & can be employed as an indicator of variance heterogeneity.

The relative variance estimated by equation 1 is analogous to the clustering sample variance and is
defined as the coefficient of variation squared (Hansen et. al., 1953). To apply the variance model
(equation 1) to acoustic data Shotton and Dowd (1975) assumed that transects were equivalent to clusters
and intervals or observations were primary sampling units. For a detailed account of the method, the
reader is referred to Hansen, et. al. (1953)

To compare the results of this study- to published studies, normality of the mean was assumed and 95%
confidence 1imits were constructed by multiplyina the coefficient of variation by 1.96.

Results

The relative variance for each survey area was calculated assuming that f was negligible. This can
be observed by comparing the cruise track lengths (Tables 1, 2) to the total area surveyed (Fig. 1, 2, 3,
4). For surveys 1d, 2, 3, and 4, W2 was approximated by assuming W2 = 0 since the n, )
by (xi.—x.)z's per
=t
transect were small.

The mean densities for each survey and their relative variances and 95% confidence intervals were
summarized in Table 3. These results demonstrated that a large proportion of the variance observed in
survey 1 can be attributed to the sampling variance of survey 1b. The n.'s and X;i's also tended to be
more variable in survey 1b than in surveys la and 1d (Table 1). The dif}erence among the four surveys was
probably due to the presence of four size groups occurring.in the survey 1 area.  The post-stratification
of the large initial survey into four strata on biological grounds (Miller and Carscadden, 1981) resulted
in separate density and variance estimates per strata. The cluster sampling analysis can then be applied
to consider a survey design to reduce variation where possible.

The comparison of the effect of survey pattern on sampling variation suggested that the parallel and
zigzag patterns were equally applicable since the mean densities, confidence intervals, and coefficients
of variation were similar between surveys 2 and 3 (Table 3). Further, these two surveys were similar to
the results from survey 1d which was over a significantly larger area. Survey 4 density estimate was 50%
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Discussion
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biological observations (Shotten and Dowd,
for Div. 3LNO capelin densities were simil

While .some suggestions for future sun
are - strongly influenced by the low densiti
can be employed without any reduction in p
(1981) have demonstrated through simulatio
sampling intensity. According to their st
intervals than for the parallel design. T
parison since the estimated densities were
distribution in the area. The behaviour o
higher population levels where serial corn
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could substantially bias the biomass est
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d suggest high within transect variation thus indicating a need
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he results to plan future surveys. The model appears to fit the
1975; Taylor and Kieser, 1980). . The 95% confidence intervals

ar to those reported in other studies (Table 4).

vey design can be made from this analysis, the overall results
es encountered. Either the zigzag or parallel survey design
recision according to this study. However, Kimura and Lemberg

n analysis that the choice of survey pattern is dependent on
udy, the zigzag pattern would have resulted in lower confidence
he choice of transect cannot be made on the basis of one com-
small (<0.002 fish m~2) and the fish appeared to have a uniform
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he assumption of:-unchanging distribution during the.survey

ding to biological characteristics of the population allowed
urvey 1 into smaller components. However, the influence of
unknown. The results of this analysis may be employed to
apelin stock using an a priori survey design which would parti-
expected distribution of capelin in the area.

he low densities encountered, especially for the spawning adults,
elatively small. However, our earlier caution still applies.
urce of the total variation associated with acoustic surveys and
here is to help in designing acoustic surveys. Furthermore,

ent prevented sampling to a depth of 20 meters below the trans-
Presence of fish concentrations in these zones
imate downward from the true value.
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’Table 1.~ Model parameters for survey 1, June 14-29.

Transect n -

Transect Length (km) i %
1 124.1 66 0.006
2 179.6 103 0.006
3 109.3 59 0.009
4 100.0 59 0.005
5 103.7 59 0.015
6 81.5 47 0.008
7 177.8 94 0.008
8 198.2 118 0.006
9 270.4 129 0.004
10 277.8 154 0.026
11 276.0 155 0.139
12 287.1 164 0.119
13 290.8 155 0.503
14 279.7 156 0.212
15 283.4 151 0.331
16 211.1 112 0.251
17 187.1 95 0.091
18 151.9 89 0.078
19 138.9 74 0.025
20 103.7 56 0.022
21 101.9 60 0.025
22 94.5 56 0.002
23 96.3 50 0.003
24 94.5 56 0.002
25 113.0 59 0.002
26 77.8 50 0.003
27 81.5 49 0.003
28 741 44 0.002
29 77.8 39 0.003
30 741 42 0.002
31 75.9 41 0.002




‘Table 2. Model parameteks for surveys 2, 3 and 4.

Transect n M

Transect Tength (km) i i

Survey. 2 1 29.6 15 0.002
July 1-2 2 51.9 40 0.002
3 51.9 26 0.002

4 51.9 25 0.003

5 55.6 29 0.001

6 46.3 26 0.002

7 50.0 30 0.002

8 50.0 30 0.002

9 55.6 31 0.001

10 51.9 26 0.002

11 55.6 32 0.002

12 51.9 27 0.002

Survey 3 1 55.6 29 0.002
July 3-4 2 54.2 35 0.002
3 52.3 3] 0.002

4 64.8 38 0.002

5 61.1 33 0.002

6 57.4 36 0.001

7 48.2 24 0.002

Survey 4 1 74.1 38 0.001
July 4-6 2 79.6 43 0.001
3 741 39 0.002

4 77.8 42 0.001

5 79.6 42 0.001

6 79.6 43 0.001

7 79.6 45 0.001

8 55.6 29 0.001

Table 3. Relative variance (V. 2), intra-transect homogeneity (s), coefficient
of variation (Vg),|and 95% confidence. intervals (C.I1.) for estimated
densities (X).

Survey t N X Vr2 § Vs c. I

la 9 734 0.007 0.017 ~ 0.047 12.8% +25.1%

1b 7 1047  0.224 0.301 0.506 54.7% +107.2%

lc 5 374 - 0.054 0.067 0.423 26.2% + 51.4%

1d 10 486 - 0.002 0.004 1.000 6.5% + 12.7%

1 31 2641  0.099 0.100 0.422 31.6% + 61.9%

2 12 337 0.002 0.007 1.000 8.4% + 16.5%

3 7 226~ 0.002 0.008 - 1.000 8.9% + 17.4%

4 8 321 0.001  0.009 0.995 9.5% +18.6%




Table 4. Comparison of 95% confidence intervals for the Div. 3LNO 1980
capelin surveys to previously published acoustic estimates.

Species 95% CI (%) : Source
Capelin £12.7 to + 107.2  survey 1; this study
+16.5 to + 18.6 surveys .2, 3, 4; this study
Walleye pollock +22.0 to + 87.2 Taylor and Kieser (1980)
Pacific hake +16.0 to +.97.0 Dark and Nelson (1977) cited
» in Taylor and Kieser: (1980)
Pacific hake +12.8 to + 66.7 Dark et. al. (1980)
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