NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N349

NAFO SCR Doc. 81/VI/65

SCIENTIFIC COUNCIL MEETING - JUNE 1981

Surplus Production Analysis for the Cod Stock in NAFO Divisions 2J+3KL

by

Stratis Gavaris Department of Fisheries and Oceans Research and Resource Services P.O. Box 5667 St. John's, Newfoundland AlC 5X1

DATA

Catch and effort data for 1959-78 was obtained from ICNAF Statistical Bulletins. For 1979, data from some countries was available in preliminary form from NAFO. Data for 1980 came from the Economics Branch and from the Foreign Observer Program. Preliminary reports from the Economics Branch provided the information for 1981.

ANALYSIS

The catch rates were standardized through the use of a multiplicative model (Gavaris 1980). The individual data points were weighted by (Catch X Effort)⁰⁻²⁵. The model indicated distinct seasonal and spatial heterogeneity, high catch rates being associated with the winter months and with Div. 2J respectively (Table 1). In general, country-gear categories showed greater fishing power for larger vessels.

The standardized catch rates show a definite stabilization followed by an increasing trend in the last few years (Fig. 1). The corresponding effort series is provided in Table 2 with an indication of the proportion of the total catch which was used in standardization. As standards Can (N) OT-5, Div. 2J and February were selected because they represent the bulk of the fishery in recent years.

The catch and effort data for 1959-80 were fit to a nonequilibrium surplus production model. The 1981 datum point was excluded because of its preliminary nature and its extreme value. The model formulation presented by Fletcher (1978) was employed. The difficulty in estimating all five parameters of the nonlinear model using least squares dictated that another tact be used. The parameters of the model are maximum sustainable yield (MSY), catchability coefficient (q), shape parameter (n), unfished biomass (B_{rr}) and biomass at the beginning of the year in the first year of the data series (B_{c}) .

Given q, parameter Bo can be effectively approximated using the formula:

where

 $\overline{B}_i = Y_i / q E_i$ Y_i = yield in year i $E_i = effort in year i$

 $B_0 = 1.5 \overline{B}_0 - 0.5 \overline{B}_1$

An estimate of q was obtained using the mean exploitable biomass from cohort analysis for the years 1962-77 in the estimator;

 $q = \Sigma y_i / \Sigma B_i^* E_i$ B^{*} = exploitable biomass

This formula was used because the variance was expected to increase as B_i and E, increased. The shape parameter was not very well determined, therefore MSY and B_{r} were estimated using a nonlinear least squares algorithm for a range of fixed values of n. The smallest sums of squares for biologically reasonable results were obtained with a shape parameter of 3.75.

Examination of the predicted and observed yield (Fig. 2) indicated that there was substantial serial correlation which implies that the variance estimates of the parameters are not reliable (Ostrom 1978). The model, however, tracks the observed yield fairly well. Fishing mortality during 1968-74 was sufficiently high to bring the stock to extinction had it been sustained at that level indefinitely (Fig. 3). The equilibrium curves show that the stock has been overfished but that there is good evidence of recovery. The equilibrium sustainable yield at 2/3 effort MSY was about 488,000 t. The predicted catch rates for 1981 and 1982 were 2.58 and 3.02 t/hr respectively with projected yields at 2/3 effort MSY of 306,000 and 359,000 t.

- 2 -

- 3 -

Fletcher, R. I. 1978. Time dependent solutions and efficient parameters for stock production models. Fish. Bull. 76: 377-388.

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37: 2272-2275.Ostrom, C. W. 1978: Time series analysis: Regression techniques. Sage Univ.

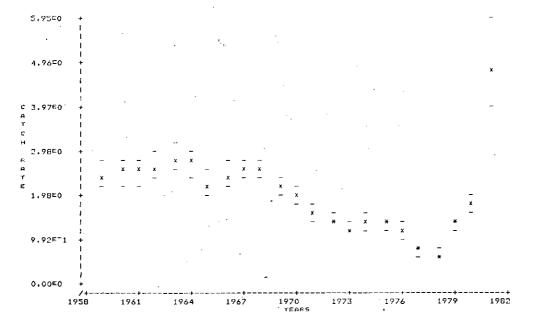
Paper Series on Quantitative Applications in the Social Sciences, 07-009.

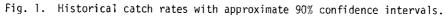
Beverley Hills and London Sage Publications.

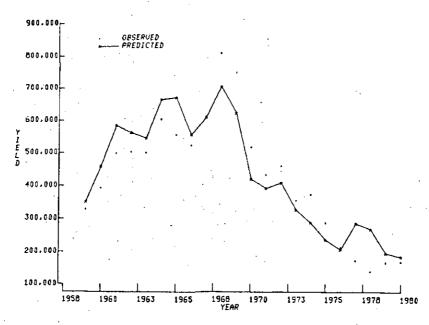
Table 1. Regression coefficients for grouped categories and the analysis of variance from the regression.

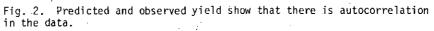
Country	- gear	ln power	Month	<u>ln power</u>
Can(N) USSR USSR	OT-4 OT-5 OT-6	-0.232	Aug. Sept. Oct. Nov.	-0.642
UK Can(M)	OT-6 OT-4	-0.109 0.000	July	-0.529
Can(N)	0T-5	0.203	June Dec.	-0.355
USSR	0T-7	0.294	May	-0.187
Can(M) Span	0T-5 0T-6	0.375	Mar.	-0.116
Pold Port Span	0T-7 0T-6 PT-4	0.519	Jan. Apr. Feb.	0.000
FRG GDR	0T-6 0T-5	0.744	Divs	In power
Port Span FRG	OT-7 PT-5 OT-7	0.820	ЗL ЗК	-0.296 -0.174
GDR	0T-6	1.014	2J	0.000
Span	PT-6	1.117		

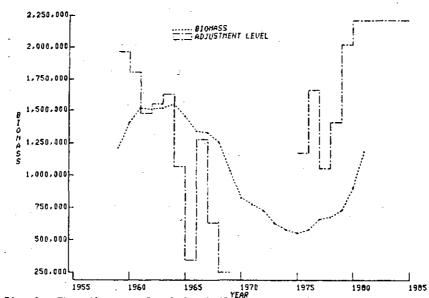
REGRESSION OF MULTIPLICATIVE MODEL


MULTIPLE R,....0.735 MULTIPLE R SQUARED....0.540 ANALYSIS OF VARIANCE


SOURCE OF VARIATION	[.1]=	SUMS OF SQUARES	MEAN SQUARES	F-VALUE
TYPE 1 TYPE 2 TYPE 3 TTPE 4 Regression Residuals Total	10 2 22 40 2845 2885	1.5812652 1.9459652 3.9868251 3.1607952 6.8810452 5.8584252 1.2739553	1,58126=1 3,24327=1 1,99344=1 1,43672=1 1,72026=1 2,05920==1	76,790 157,501 96,806 69,771 83,540


Table 2. Historical catch, effort and catch rate for cod in Divisions 2J+3KL. The proportion indicates how much of the catch was used in estimating catch rate.


4


	TOTAL	CATCH RATE				
TEAR	САТСН	FROF,	MEAN	5.E	EFFORT	
1959	329572	0.251	2.441	0.193	134997	
1960	393577	0.302	2+498	0+179	158177	
1961	498078	0.306	2,553	0,179	195075	
1962	502752	0.480	2.673	0.176	188089	
1963	499904	0.491	2.779	0,180	179867	
1964	603585	0.378	2,686	0.171	224748	
1965	555654	0.452	2,275	0+138	. 244275	
1966	522307	0.425	2,466	0,152	211795	
1967	610535	0.416	2.540	0,153	240378	
1968	807470	0.323	2.557	0.150	315791	
1969	748433	0.303	2.179	0.131	343548	
1970	516213	0,338	1,918	0.117	269085	
1971	432496	0,382	1.607	0,099	269094	
1972	458170	0,331	1,468	0,091	312041	
1973	354509	0.424	1.263	0,079	280690	
1974	· 372650	0.518	1.408	0.087	264754	
1975	287508	0,477	1.313	0,083	219008	
1976	214220	0.420	1,215	0,081	176331	
1977	172720.	0.293	0,766	0.049	225602	
1978	138559	0.246	0.687	0+045	201678	
1979	166743	0.330	1.311	0.087	127233	
1980	169113	0.282	1,788	0.129	94576	
1981	200000	0.173	4.833	0.,590	41384	

