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rent penetrating from the Gulf of Saint Lawrence through the Ca-

bot strait onto the Scotian and. New England Shelves. Below 120-

150 m, the near-bottom warm and saline waters extend which are

modified Gulf Stream waters (Briantsev, 1963). Because of their

ranging mainly along the shelf slope these waters were named

"slope" waters. Thus, the water column within the shelf range is

Primarily represented by the waters of the cold intermediate layer

and warm "slope" waters. These water masses generated by two po-

werful flows of various origin are subject to considerable fluc-

tuations in space and time and determine intrayear and year-to-

year changes in oceanographic conditions. Due to varying charac-

teristics and high velocities of transport, these water flows

form quasistationary zones of horisontal and vertical gradients,

resulting from their interaction, which influence the life cycle

of main commercial fish species and invertebrates, For example,

massive aggregations of the silver hake in the Scotian and New

England Shelves area keep to a border between the cold layer and

warm bottom waters. Typically, the spawning of this species

takes place in the regions where "slope" waters intrude onto the

shelf. It has been observed that a more contrasting gradient zone

provides more favourable conditions for aggregation of the sil-

ver hake during the feeding and spawning periods. The aggregations

of such species as mackerel and shortfin squids are also asso-

ciated with the outflow of "slope" waters on the shelf. The stu-

dy of the pattern of the fields of geostrophic circulation of

the shelf waters has enabled us to reveal quasistationary zones

of rising and sinking waters which are known to affect producti-

vity processes on the shelf (Sigaev 1975,1978). The development

of these zones is evidently dependent on fluctuations in the

strength of flows of cold Labrador and warm "slope" waters. In

this connection, the study of the intrayear and year-to-year va-

riability of the flows is necessitated. quantitative assessment

of year-to-year seasonal fluctuations of water mass transport

in various parts of the shelf and the determination of the pe-

riods of strong and weaker flows from the calculated water trans-
,
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port at standard hydrographic sections are of interest.

Materials and Methods

The velocities and volume transport were calculated from
a long-term observation series of water temperatures and sali-
nity at standard hytrographic sections made during the seasonal
oceanographic surveys in 1962 through 1976 by the AtlantNIRO
ships (fig.1). In addition, similar data of the US surveys for
1964-1966 were used namely, the observations made at the sta-
tions located near to standard stations occupied by the Atlant-

NIRO.
Although the observations were made over a long period, ma-

ny important values are missing. Therefore, most typical and
data-provided sections I, VI, III and V (fig.1) have been selec-
ted out of 15 for the analysis. A total number of cases consi-
dered for four selected sections was 88. Each case corresponds
to one section made once a season® If the section was reiterated
during the season the calculated water transports were averaged.
The year 1974 may be disregarded as the one completely lacking
data ( 1962-1976 observation series). In 1972, the observations
were missing at sections I and VI.

A dynamic method was used for calculation of velocities and
water transport (Zubov, Mamaev, 1956). In the regions of complica-
ted bottom relief and steep continental slope the dynamic bights
over the shelf were counted off the bottom, and beyond the shelf
boundaries the reference surface corresponded to a 500 db level.
The expediency of using the dynamic method for rough assessment
of the water velocities and transport in the shelf area with a
complicated bottom topography is examplified by the current velo-
city values (table 1) calculated using the dynamic method and
measured with an instrument during the observations at sea in
October of 1970 in the area of the northern slopes of Georges Bank.

As is evident from the table the calculated and observed ve-
locities are consistent in all cases but one, and are fairly si-
milar in many cases. It was assumed that a positive sign corres-



-ponds to the transport from the northeast toward the southwest
and. states that the flow of the Labrador water crosses the sec-
tion made in normal to the shelf. A negative sign denotes the
back transport across the "shelf" water section. For the sections
made along the shelf, the positive sign corresponds to the "slope"
water advection onto the shelf, and the negative to the outflow
of the Labrador water offshore.

Results 

For the analysis of the year-to-year seasonal variability
of the main flows, their characteristics were Presented as the
graphs of the resultant calculated transport by season and year
for each of the four sections (fig$ 2,3). A predominant flow of
the cold water of the intermadiate layer is shaded. The pattern
of graphs indicates considerable seasonal and year-to-year fluc-
tuations in the calculated water transport with the values ran-
ging between some tenths of thousands and some millions of cubic
meters per second. The long-term inteZseasonal changes in the cal-
culated transport in the Scotian shelf area reveal a trend to
strengthening of the Labrador water flow during the winter and
spring seasons (fig.2), which is especially true of section VI.
When the graphs of calculated water transport at sectionsj and
VI are compared it is apparent that at section I the flow of the
"slope" water and the Labrador flow at section VI are often pre-
dominant, which is evident from the intrayear fluctuations. This
difference between the intrayear transport pattern at the two sec-
tions can be attributed to geographical positions of the sections.
Section I crossing the Laurentian Channel provides a complete con-,
trol of advection of warm "slope" water on the shelf, andtpartial-
ly, the flow of the Labrador water, i.e. a southerly part of this
flow directed immediately along the channel axis. An inshore
branch of the Cabot current directed toward the southwest along
the Scotian coast is the uncontrollable part of it. As distinct
from section I, section VI crosses perpendicularly almost the en-
tire shelf from the inshore shallow-water area to the depths be-

1
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ted • in volume transport with a tendency• to weakening of a flow.
The values of the spring calculated, transport across section. V
show considerable predominance of transport in a cold intermediate
layer from 1965 to 1971 with an obvious trend to reduction.
tendency in summer transport volume is less definite from the year-
to-year data, however, a certain increase in calculated transport
of the Labrador water in 1970 to 1973 can be observed with a sub-
sequent reduction by 1976.

Graphical descriptions of the summer calculated transport
at section III and the autumn calculated transport at section V
are fairly similar. These are characterized by the pre -sence of pre-
dominant cold intermediate water which is insignificant in volume,
but stable in time The pattern of the summer calculated transport
along section VI on the Scotian shelf is the same. It can be, there-
fore, concluded that in summer, in the dynamics of main flows, a
state close to the equilibrium sets in both areas. Along the wes-
tern boundary of the New England shelf such a state sets in in the
fall.

During the period 1962-1976, some cases of the anomalous
values of the calculated transport were recorded. Anion; these a
marked predominance of the Labrador water flux in winter 1970 at

section VI and in spring 1976 at section I should be mentioned.
The summer of 1963 and winter of 1976 at section I, the winter of

1967, spring of 1968 and fall of 1971 at section VI are also con-
sidered as the anomalous cases of advection of warm "slope" waters.

In the New England Shelf area the cases of the anomalous

calculated transport of the warm water were recorded in spring

and summer 1976 (section V).
The values of current velocities vary between 0.5 and 80

cm/sec, with the highest values of 130-150 cm/sec. In fig.4 the
examples of vertical distribution of the velocities at section VI
by season are shown which illustrate the ratio of water transport
by two flows. The regions with the "slope" water flow are shaded.

Any change in the transport of the Labrador and "slope" wa-
ters must influence the water temperatures in the intermediate
and near-bottom strata. A qualitative comparison of these charac-
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Table 1 Current velocities ( cmc) measured and calculated by
the dynamic method

15	 15	 19

9	 11	 15	 9	 15	 9	 5 11	 15	 11

20 20 21 21	 22 2514 15

No. of station	 5

Measured values	 50

Calculated values	 42

61	 10 18 102 60 71

58	 12 12 12 46 29 44

40 26

Dates, October 1970



Fig. 1 Sche e of standard AtlantVIRO sections in Nova Scotia
ands evvEhgland areas.

65'

c.

Fig. . Scheme of standard AtlantNIRO sections in Nova Scotian

and New England areas.



1 . 106 4	 SECTION I

er

he

n.

3
2

o
-I

2

0

-1
-2 —

4
3
2

0
-I
-2

0

-2

1962

A
3
2
1
0

-1
-2
-3

0

SUMMER	 ir5i
lor riZZZ Vil-Z/7/727v72717,	3	 -

-1L

r/A*Vo AUTUMN

	

63 64 63 66 6? 66	 69 70	 71	 72  7374	 73 76

	

1	 I	 1	 11-1	 T	 I

SECTION VI

WINTER

10

1962 63 64 65 66	 69 70 71	 n 73	 74 75 76
1IIIIT

Fig.2. Graphs of resultant values of calculated water transports

at section I and VI (Scotian Shelf).
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Distribution of flow velocities at section VI.
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