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Introduction : - e

The 1970's was a decade of remarkable weather extremes with devastating
consequences for people around the world. Through television documentaries
"and’ news accounts, we witnessed the dramatic effects of unusual climate on- the

seas and

in other 1lands such as in the Sahel and Bangladesh where one half

million people died of famine following drought and floods. Most of us are
aware of how poor harvest weather and droughts in the USSR, . Australia and
North America had a worlidwide effect on food supply and hence on prices; of
how an occurrence of unusually warm ocean water off Peru (El Nino) contributed
to a reduction of the anchovy fishery from over 12 million tons 'in 1970 to 2
million tons in 1973; cf how the 1976-77 winter's cold and snowfall in eastern

North America and last year's Texas heat wave each caused a $20 billion loss
to the North American economy.

The North Atlantic had its share of climate extremes during the past

decade.

Table 1 lists a few of the more newsworthy climate records.

The Northwest Atlantic is being submitted to many forms of exploitation.
Fisheries thrive for many species and maritime nations are making a concerted

effort

drilling,

control and conserve this resource. In the future, offshore"
undersea mining and marine transportation of hydrocarbons and other

products will become more frequent and widespread. Climate has significant

social,

economic and environmental impact on these and indeed on most coastal

and offshore activities. Man's ability to forget the past when planning
future activities makes a review of past decades or centuries climate, a
prudent and worthwhile activity to engage in from time to time.

This paper will report on a selection of the significant meteorological

events and climatological anomalies of the past decade. For a wunified
perspective, however, this review will begin with synoptic patterns - the
movement and. evolution of low andhigh pressure systems in the recent decade
and the past. Following, ~will be a description of winds, precipitation and

temperature patterns and their impacts.

Pressure Patterns

The area of horizontal air and water temperature gradients. around the

Gulf Stream. from the Grand Banks to south of Cape Hatteras is

a favoured

spawning area for the development and intensification of low pressure areas,
particularly in the winter months. There, systems tend to move in a north
easterly direction over or to the east of the Atlantic Provinces of Canada.
Many lows' continue northward, either tq Baffin Bay, or more frequently, to a
position near Iceland where they weakenonly to be replaced by another centre.
The Icelandic 1low is a semi-permanent feature and is sometimes called a
"graveyard for Atlantic storms". The general movement, rapid development and
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intensity of migrating lows and the mean position and intensity of the
Icelandic low have important implications for the regional climate of the
Northwest Atlantic.

Particularly in winter, a relatively strong and persistent cold northly
air flow transports cold water and pack ice down from the Arctic along the

Labrador coast. wWaves developed in strong northerly winds over the Labrador
Sea progate southward as swell to mix with local wind seas east of
Newfoundland. The confused pitching seas which can result are a serious

problem to the mariner and to anyone who would develop this area's offshore
mineral resources.

The intensity and movement of low and high pressure systems was
investigated by Zishka and Smith (1980). Figures 1 and 2 are from their
analyses showing the frequency, genesis and lysis (destruction or cessation)
and relative variability of January and July 1950-77 lows analysed over a 2
degree quadrangle grid: The frequency maxima of the individual cyclone events
shift northward in summer to follow the =zone of strong horizontal air
temperature gradient. The birth or genesis area for lows off the northeastern
states is well marked in this analysis but the "graveyard" or lysis area for
lows east of Greenland is not - quite likely, because it is just outside of
the analysis area.. Relative variability is the mean absolute difference
between individual year event frequencies and the 28 year mean frequency
divided by that mean. It gives some indication of interannual variability.
Ziska and Smith have superimposed their analyses of a preferred track on this
chart. Year to year variations in the number of and mean minimum pressure of
January and July cyclones is plotted in Figure 3. While the number of lows has
been decreasing, their central pressure have also been lowering. Another
observation is that if central pressures are taken as a measure of storm
intensity, the seventies have had fewer but more intense storms over North
America.

In Figure 4, the areal distribution of cyclone events for the pentads,

1950-54 and 1970-74 1is compared. While the number of cyclones has been
decreasing through the seventies, it appears that the predominant cyclone
track, if there is such a thing, has been displaced further south in the
latter pentad, perhaps indicating a more southerly intrusion of Arctic air

over the Scotian Shelf and Grand Banks in recent winters.

Storms and their behaviour are understandably of major 1interest to
fishermen. There are direct impacts from winds, surface currents and waves
but variations in productivity are also possible. Figure 5 shows the tracks
of January lows obtained from Canadian analyses for decades ending in 1968 and
1978 respectively over the Northwest Atlantic and Canadian Arctic. These lows
all attain a central opressure less than 98 kPa. In the period 1969-78 a
majority of these lows migrated northeastward to become part of the Icelandic
jow. 1In the earlier decade, however, there were an approximately equal number
of cases where the lows stalled over the northern Labrador Sea - Davis Strait
area, an indication that a tendancy to blocking may have existed. In a
blocking situation, a low would tend to persist in one area for a relatively
long period of time. There are two other points. First, the notion of a
predominant storm track is at best an idealization; and second, the Canadian

analyses confirm the nuzber of storms is fewer in the seventies decade than in
the sixties.

Painting (1977) noted a marked decrease in the frequency of blocking
anticyclones, particularly in winter, between the periods 1965-69 and 1970-74
at mid-latitudes between 10 E and 80 W. His analysis of the difference in
averages of mean sea level pressure, Figure 6, shows the Icelandic low and
Atlantic subtropical high to have intensified in winter, in the early
seventies. Furthermore, his analysis showed that the median position of the
Atlantic subtropical anticyclone was displaced northward by about 10 degrees
latitude from the late sixties to eary seventies. As a result, there was an
enhanced westerly flow over the open north Atlantic in the ‘early seventies.

Winds

Changes in mean wind velocity are important in driving ocean currents
and moving pack ice, and consequently are a factor in fish migration and
productivity. Cushing (1980) argues that shifts in the mean position of the
Icelandic low and conseguently wind direction may have altered the strength of
the Irmringer current and that these climate events lead to the rise and fall



of the western Greenland cod fishery. The extremes of wind also have their
impacts, particularly on fishing operations.

Long unbroken time series of winds over the oceans are hard to come by.
In the Northwestern Atlantic, Sable Island, and until 1972 Weather Ship
Bravo were a useful source of this information. The use of pressure gradients
is a - logical way of investigating the recent decadal variations in wind
speeds. Figures 7 and 8 show the frequency distribution of geostrophic wind
speeds by 5 m/s ranges over decades ending in 1968 and 1978 respectively for a
selection of locations in the Northwest Atlantic. There is a consistent
increase in the frequency of occurrence of higher wind speeds at most northern
locations. Most currently available tables and atlases summarizing marine
wind observations do not include data from more - severe 70's. Design and
strategy for offshore operations based on earlier climate normals may be
insufficient if the more extreme climate continues.

Monthly vector mean geostrophic wind speeds were plotted for a point -
near the weather ship Bravo, Figure 9. These confirm the notion that winds in
the seventies were stronger on the average than the sixties. Monthly mean
speeds in the sixties did ' not peak as high in winter as in the seventies
indicating lower than usual wind speeds in that area and/or winds which were
more equally distributed with respect to direction in the sixties.

The frequency of strong winds has a considerable year-to-year
variability for a particular point, as is evident in Figure 10 depicting the
hourly frequency of gales at Sable Island by ' year (McKay, personal
communication). Unlike the consistent pattern of increase over the northern
parts of the North Atlantic the decadal frequency of gales does not appear to

have changed much at Sable, but has exhibited more variability in the recent
decade.

Precipitation

Precipitation measurements over ocean areas are very scarce. Only fixed
ocean weather stations and occasionally research vessels measure
precipitation. However, long-term seasonal and annual ocean precipitation
patterns have been analysed from present weather and visibility groups as by
Doman and Bourke (1980), Figure 11. However, their estimates appear 30-50%
low when compared to Sable Island and other Canadian coastal stations. One
suspects the frequency of fog to the north of the Gulf Stream may be partly

responsible for the underestimate. Since precipitation at coastal stations is
affected by orography and it is possible these stations may not be very
representative of conditions offshore. They 'should give an indication of
(year-to-year variations of) runoff into smaller estuaries.

The mean precipitation for a combined selection of stations including

Montreal, Quebec "and Saint John's is plotted in Figure 12. The graphs
indicate that there has been a slow increase in annual precipitation over the
last two decades - at least for eastern Canada.

Precipitation and consequently, streamflow, turbidity, sediment

transport and estuary salinities have consequences for marine ecosystems.
Heavy seasonal rainfall in part thanks to Hurricane David and Frederic caused
excessive runoffs in rivers over much of Virginia in 1979 and the resulting
low salinities threatened oysters in the James River area (Austin 1979). The
drought of 1980 over the southeastern U.S., however, increased salinities but
had negative side effects. It 1is feared (Austin 198l1) that the preditor,

oyster drill (Urosalpinix) which was. flushed out of river tributaries by
Hurricane Agnes in 1972 may recover.

Wet Year in Atlantic Canada

The decade ended with two consecutive wet years across the Atlantic
region. In 1979, Saint John and Halifax reported record precipitation amounts
of 1976 mm and 1671 mm, respectively. The year 1980 was particularly unkind
to the people of Newfoundland. In that year, the Island suffered through ‘its

wettest, dullest summer on record. St. John's measured 450 mm of rain from
June to . August; an amount 500% of normal! Record low totals of sunshine were
set in

July and August when only 26% of possible sunshine was recorded. The
wet weather was not just confined to summer; 1980 was the rainiest year at St.

John's and Gander since records began in 1943. Both stations reported over




1400 mm of precipitation as well as 244 and 230 days with measurable
precipitation, respectively. .

The excessive wetness had a negative effect on agriculture, outdoor
recreation and tourism and for the fishery it was a disaster! Nowak (1981)
compiled an extensive list of socio-economic impacts on the Newfoundland
fishery because of the prolonged wet spell. It was blamed for loss of wages
by workers in fish plants and by crews on vessels. For the squid ‘and salt-
fish producers, the year was particuarly poor because there were no prolonged
sequences of dry days. Throughout the months of August and October, there
were no more than two consecutive days without precipitation at St. John's.
Gander had an astonishing total of only 14 summer days without measurable

precipitation. Squid production was down an average of 30 to 50% for the
season. The summer had disasterous effects on other activities that provide
incomes for the fishermen and their families. Local part-time farmers

maintained that the wet weather caused garden produce to fail and problems
arose in hunting as a result of the low incomes of the rural inhabitants.

Temperature

There is increased interest in global air temperatures. Why? - because
our society - is becoming increasingly technically advanced at the same time as
the world is approaching the limits of its food 'supply. Variations in global
temperature have an impact and threaten the food supply. We have also been
alerted to the possibility that glacial episodes are - initiated rather
suddenly. On the other hand, man's influence on the global climate 1is
suspected. It has been suggested that man's agricultural methods ' and other
activities are contributing to a dust veil which could eventually set off
another prolonged cold period. lce core data from the Canadian Arctic and

Greenland examined by Koerner and Fisher (1979) led them to suspect that this
may already be happening, but not necessarily as a consequence of atmospheric
turbidity. On the other hand, the global concentration of Cl has been
observed to be increasing and at rates which suggest this is due to man's
burning of fossil fuels. The extrapolation of current socio-economic trends
and the results of climatic models suggests that there will be a global
warming and and that this will be felt most strongly at high latitudes.

There are no clear cut predictions as to what will happen - one can only
watch and wait. And it seems that we are definitely watching. -Many analyses
on local and global scales have been published, for example Brinkman (1976),
Budyko (1977) and Yamamoto et al (1975, 1977). A recent paper by Yamamoto and
Hoshiai applied the optimum interpolation method of Gandin (1963) to 370
stations for an analysis of trends in northern hemisphere air temperatures.
Their results (Figure 13) indicate that temperatures appear to be slowly
recovering from the successive cold episodes of the sixties. For the Northern

‘Hemisphere, the temperature curves, Figure 14, of Jones and Wigley (1981)

confirm a trend to warmer temperatures in all seasons.

During the seventies, however,several lengthy cold spells gripped parts
of the north Atlantic. In 1972, strong cold air advection persisted over
Canada most of the year. In 1976-77 eastern North America had the coldest
winter on recoréd and, in 1979, cold weather prevailed over most of northwest
Europe throughout the year.

The difference in heights between the levels of the 50 kPa and 100 kPa
pressure levels gives an indication of temperature within that layer. A
useful approximation gives an increase of mean temperature of 1 degree C for
an increase of 20 gpm in thickness. Analyses of the 106 -500 mb thickness
have been made by Painting (1977), Dronin (1974), Kukla et al (1977), Harley‘
(1980) and others. Painting's 1977 analysis (Figure 15) of the difference
between thickness averages for winters between 1971-4 and 1961-70 indicates a
significant cooling over Canada and the northwest Atlantic in winter and a
warming in this season over Europe, but no significant changes when the annual
differences are considered. Harley (1980) considered pentadal means of annual
1000-500 mb thickness over the northern hemisphere and also found no
significant cooling or warming to have occurred over the 25 year period 1949-
1973 in this area. However, when one examines his thickness differences
between the period 1969-73 to the period 1974-78, Figure 16, the relatively
large negative anomalies east of Newfoundland appear to be quite significant
for this later period. The drop in thickness here and over eastern North



America might be taken as an indication of changes in the steering flow at 500
mb which seem to persist, particularly in the severely cold winters in the
late seventies over eastern North America and the adjoining Atlantic.

The downward trend of air and sea temperatures between 1953 and 1968 as
described by Perry (1974) was in evidence during the mid-1970's in the North
Atlantic. For those years, when Ocean Weather Stations B, C and J were
operating in the latitudinal zone around 55 N air and sea = surface temperature
were about 0.8 C and 0.5 C below normal, respectively.

Tables of " water and air temperatdre were produced for the decade ending
in 1979 for the SSMO Area 4, the Southeast Newfoundland coast (Figure 17).
Air temperatures were -0.8 C cooler over the seventies decade relative to the
period -1869-1971. On examining the " monthly values it appears that the
seasonal temperature cycle has a greater amplitude - warmer summer and colder
winters. The latter trend is reflected in the decadal water temperatures, but
there is only a small .1 C change .in the annual means. :

A plot of annual and five-year mean temperatures (Figure 18) for eastern
Canadian stations (Montreal, Quebec and Saint John's) shows indications of a
slight cooling trend into . the seventies. A similar plot for Vestmanneyjar
Iceland, Fiqure 19, shows the gradual cooling trend from the thirties onward.

A little amelioration appeared there in the early seventies but the 1979 mean
was the coldest on record. :

Sea Ice

The formation, state and movement of pack ice are governed by the
interaction of wind current, air and sea temperatures and sea state. As
atmospheric conditions vary considerably from year to year and month to month,
so does sea ice. Figure 20 shows the end of the month distribution between
past decade 1971 and 1980 of pack ice concentrations greater than 1/10th:
Interannual differences are startling. The early seventies were bad ice years
for the Canadian East Coast and western Greenland. Pack ice formed early in
the year along the Gulf of the St. Lawrence, Newfoundland and Labrador coasts
and stayed until late in the season. The year 1972 was a particularly bad ice
year and record high freezing degree-day accumulations totalled about 40%
above normal at coastal weather stations in the Maritimes (Markham 1980).

Further east, these analyses do not show the ice enroaching northern
Iceland as frequently as was the case in the late sixties (Sigtryggsson 1969)
but there is considerable year-to-year variation. Compare the end of July
1974 to July 1975. In 1974, the pack ice limit was 1000 km further north
along the east Greenland shore than it was in 1975. That year the pack ice
curled around Cape Farewell and a tongue from the pack extended 40 km further
east toward Iceland. Ice conditions.at the end of June were similar for both
years but in 1974 an increased northerly flow and warm temperatures along the
east Greenland coast contributed to the early breakup of ice. In 1975
decreased sea level pressures over Greenland and consequently an increase in

the frequency of the southerly flows kept the pack ice intact along the coast
of Greenland. .

Record of Number of Icebergs - 1972, 1973 and 1974

Extensive sea ice and record numbers of icebergs occurred between Baffin
Bay and Newfoundland in the springs of 1972, 1973 and 1974 causing millions of

dollars damage to the East coast - fishery. The combination of strong

northwesterly winds, record low temperatures in the eastern Arctic,
sea temperature anomalies over the mid-latitudinal belt of the
led to bergs much further south and east than normal.

and cold
North Atlantic

An estimated 10,000 bergs break off the western Greenland glacier each
year and begin a journey that may take 24 months to reach the Grand Banks. A
yearly average of 280 make it below the 48th parallel based on figures from

1946 to 1973. The four = seasons before 1972 were below normal years for
icebergs (Mariner's Weather Log). In 1973 more than 1580 bergs were spotted
south of St. John's, an all-time record with observations dating back to 1919.
Airborne reconaissance of icekergs by the International Ice Patrol began about

a month earlier than normal on February 29 and ended late on September 4. For




-

the first time since 1959, . Coast Guard patrol boats were deployed to warn
shipping of the dangers of bergs. In 1973, 847-bergs were spotted across the
Grand Banks. In 1974 neary 1400 icebergs drifted into the Grand Banks between
March and August. Over. 300 icebergs made it as far as the 46th parallel and
one reached the 42nd parallel. 1In the first week of July, over 250 bergs were
driven onto the Newfoundland coast, a record for so late in the year.

Severe ice conditions present a great Tiazard to shipping and fishing
along the eastern coast of Canada between mid-Fetruary and the end of April.
During 1972, 1973 and 1974 and again in 1977, the threat was extended into May
or June as record ice amounts combined with easterly winds, high tides and
storms to push ice into bays and inlets along the coast of -Newfoundland.
Heavy damage was done to fishing vessels and equipment and lobster trips. In

1976-77 property damage and loss of revenue was in excess of $20 million
(McKay, 1978).

Significant Climate Events and Storms

The Northwest Atlantic had its share of climatic anomalies or variations
in the seventies. There were virtually 1limitless combinations -of climate
anomalies and consequences but prolonged cold ard extensive sea ice, sustained
drought, . spells of wetness and devasting storms were the dominant problems.
Figures 21 and 22 highlight a number of the significant storms and other
climatic events that occurred in the North Atlantic basin during the 1970's.

Violent ‘storms that claim lies and inflict extensive property damage are
normal occurrences each year in the Atlantic. One only has to peruse: the
"Morster .of the Month" feature in the Mariner's Weather Log to appreciate how
regular fierce gales blow and how vulnerable man is to these whims of nature.
On several occasions during the last years of the decade hurricane-force
onshore winds - coincided with the amplified, astronomically-influenced
perigean spring tides. Tidal flooding and erosional damage to low-lying
coastal  regions was reported from Virginia to Nova Scotia and, quite
intriguingly, on the opposite side of the Atlantic on the west and south
coasts of Great Britain and along the North Sea ccasts of France and West
Germany. Damage to roads, fishing wharves, hcuses, and seawalls was extensive
and on several occasions evacuations of thousands of persons was required. Of
special significance, because of damage to property, was the tidal flooding on
11-12, January 1974 in the British Isles, 16-17 March, 1976 from Maine to Nova
Scotia, 8-9 January, 1978 in New England, and on two occasions in February
1978, on the 11-12 in Great Britain and on 6-7 from New Jersey to Nova Scotia.
Damage from two such storms in the winter of 1976 is described below:

1-2 January 1976

Described as the worse storm to strike northwest Europe in 29 years, the
intense gale caused more than 100 deaths and inflicted a half billion dollars
damage across most of northern Europe from Ireland to western parts of the

Ukraine. Strong winds with gusts to 90 knots blew across countries
bordering the North Sea. Waves 20 m high were reported along England's. east
coast. Flooding caused massive evacuations in Denmark and hundreds of ships
were grounded or sank. The North Sea surge ruptured dykes in Belgium and

flooded low-lying areas in England, Holland, Denmark and West Germany.

1-2 February 1976

A month later the infamous "Groundhog Day" storm raced up the Atlantic
Seaboard causing extensive damage - from Cape Hatteras to the northern tip of
Labrador. Record or near-record low pressure occurred at several locations.
Boston recorded their second lowest pressure of 964.4 mb and Caribou, Maine
had a 957 mb reading, a record. Winds were from southeast to southwest at 30
to 50 kts or higher throughout the Maritimes. On Grand Manan Island, N.B. the
wind averaged over 63 kts for 20 consecutive hours. At sea, ships measured
hurricane-force winds and 12 m waves. For many communities in southwestern
Nova Scotia and along the Fundy Ccast the period of strong winds coincided
with the rising tide resulting in exceptionally high water levels. Tide
levels at Yarmouth ard Saint John were 6 m and 8 m, respectively or - 1.5 m

above the predicted value - new records fcr both stations- - (Amirault and Gates,
1976) .

Property damage was estimated at between $10 and $50 million in the
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Atlantic Region (Tilley, personal communication).. Many docks and water front
structures were severely damaged. Several large freighters went aground ard
many collisons occurred. '

Documenting newsworthy climate anomalies 1is much easier than reporting
and interpreting the socio-economic disruption and losses associated with such
events. Little reliakle, lorg-term statistical information on economic loss
values has been published. Fortunately in marine disasters, good loss
estimates are available from such reputable groups as the Marine Safety
Council, American Institute of Marine Underwriters, Lloyds of London and in
Canada, the Fishing Vessel Insurance Plan orerated by Canada Department of
Fisheries and Cceans. Losses suffered by small fishing vessels (open boats or
decked boats less than 20 m in length), because of storms and other adverse
weather, grew steadily over the past decade. Since 1975, an average of 102
claims, out of a total of 378 were listed as weather-related casualties. This
number dces not take into account claims due to such causes as stranding ard
collision in which weather may have been a contributing factor. Settlemertse
due to fires and explosions account for the greatest loss followed by weather,
collision,' stranding, flooding and mechanical. Almost 9400 fishing vessels
are insured ky the plan with more than 70% coming from the Atlantic region.
Figure 23 shows the locations of casualties caused by capsizing, foundering,
sinking and other heavy weather damage for the period 1963-1978.

Conclusion

The 1970's was a decade of conspicuous climate change in the northwest
Atlantic. Stronger winds and devastating storms, colder winters, summers with
either extensive wetness or dryness, and severe ice conditions occurred at

times since 1972. The impacts of weather were staggering in terms of life,
property and lost revenues. The loss of a North Sea platform in 1980 is
estimated to have cost about $2 billion and took 123 lives. In 1977 ice

damage to fishing gear and losses in revenue along the Canadian East Coast was
in excess of $20 million and the winter of 1976-77 caused a similar  1loss in
fishing revenue in the Atlantic States.

An important result of thie giowing consciousness over climate change and
its impact in society has been. the beginning of international and national
climate programs. There have been world conferences on the environment, food,
water and climate. The World Climate Program made a stroné appeal to the
global community to improve our understanding of climate and its impacts. In
Canada, the Ceznadian Climate Program has been designed to help Canadians to
respond better to.climate wvariations, to predict climate and climate change

ard to better apply climate information for the management and wise use of our
resources. .

Understanding the role of the oceans in influencing climate is vital to
defend against climate risks in offshore developments and capitalize on the
economic opportunities provided by improving cur knowledge of climate
managing our fisheries resource.

for

Whether the 1980's will be any different from recent years in the number
of outstanding climate anomalies c¢r in the magnitude of economic and social
disruptions is . difficult to determine. Let us hope, however, that the
heightened awareness of the importance of climate will make us better able to
cope with the surprises climate is sure to have for us.
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Table 1

North Atlantic Climate Records 1970-79

Date Record

Sept - Dec. '71 , - W. Norway stormiest in 30 yr; 75 days wind above
force 8

1972 -

Eastern Canadian Arctic mean annual temperature
4 deg C below normal

Fall '73* - Shetland Is. stormiest in 40 yr
Summer '75 - Reykjavik, Iceland coldest since 1920
Summer '76 ; record UK drought; warmest in 300 yr
February '76 - 95.70 kPa SLP at Caribou, Maine
January '77 - snow recorded in Bahamas

- 94.02 kPa SLP at St. Anthony, Nfld; North
American record

1978 - record high precipitation at Halifax, 1671 mm
- W. Norway and Akureyri, Iceland - every month
below normal temperature
1979 -

record high precipitation at St. John's, 1976 mm

- annual mean at Akureyri, Iceland 2.4 C below
normal

- annual sunshine total in Iceland, lowest since
records started in 1880

- W. Norway coldest year since 1923
S. Norway twice the normal number of gale-days
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Areal distributions of January cyclone events for
the subperiod (a) 1950-54 and (b) 1970-74. Valucs represent
S year totals.
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Figure 6 (aftér Painting 1977)
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