NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N463

NAFO SCR Doc. No. 81/XI/155

SPECIAL MEETING OF SCIENTIFIC COUNCIL - NOVEMBER 1981

BIOMASS OF SHRIMP (PANDALUS BOREALIS) IN NAFO SUBAREA 1

IN 1977-81

ESTIMATED BY MEANS OF BOTTOM PHOTOGRAPHY

by Per Kanneworff Grønlands Fiskeriundersøgelser Danmark

ABSTRACT

In continuation with previous years a photographic survey in the main area for shrimp fishery in NAFO SA1 was carried out using a standard sampling procedure.

The material obtained by this sampling was used in a mathematical model to produce estimates for the shrimp areas between $66^{\circ}N$ and $69^{\circ}30'N$ during the years 1977-81.

INTRODUCTION

Shrimp density in the offshore areas af NAFO SA1 and a smaller adjacent part of SA0 has been estimated by means of bottom photography since 1977. The sampling method has been described earlier and biomass estimates for part of the area were given in relation to estimates derived from trawl surveys (Kanneworff, 1979a, 1979b).

The material from 1977-80 was used in a mathematical model to produce biomass estimates which are independent of trawl sampling (Jørgensen & Kanneworff, 1980).

The present paper uses this model, including photographic material from 1981, and new estimates for the shrimp biomass in the area $66^{\circ}N - 69^{\circ}30'N$ are obtained for the years 1977-81.

MATERIAL AND METHODS

During the years 1977 to 1981 bottom photography has been used in the offshore area of Div. 1A-1C to obtain information on the density of shrimps. The same technique and equipment has been used throughout the five years. This method of sampling has earlier been described by Kanneworff (1979a).

The bottom photographs cover as a standard 3.39 squaremeters, but due to a minor adjustment failure most of the photographs from 1981 cover 3.7 squaremeters.

The sampling rate has been two exposures per minute, giving an estimated average distance between photographs of 5-15 meters dependent on the wind and current speed.

Many of the strata within the area 66°N to 69°30'N and within the depth range 100 to 600 meters have been sampled during the five years of sampling as shown on Figure 1. The choice of sampling sites in the different years has been influenced by demands for good covering af the area and for overlapping stations in order to make a direct year-to-year comparison possible. One of the sampling sites has been chosen as a reference point being situated in one of the heavily fished strata (Stratum no. 12316050, Area code KR004). This station has been occupied in all five years.

As a large part of the fishery during the last two years has been carried out further north than the area covered by this analysis (Carlsson, 1981), the area between $69^{\circ}30$ 'N and 71° N has been incorporated into the sampling scheme for 1981, but due to technical problems with the ship it has not been possible to carry out this sampling apart from an inshore station northwest of Disko (Area code LS014).

One station has this year been occupied in one of the shrimp grounds in Div. 1C, *i.e.* Sukkertoppen Dyb (Area code JL020), which formerly was of some importance in the commercial shrimp fishery.

A total of 18 sampling sites were occupied during July and August in 1981 and from these a total of 2802 photographs have been included in the present material together with material from the other years of sampling. However, only stations within the area $66^{\circ}N$ to $69^{\circ}30$ 'N have been included in the biomass caculations.

In order to minimize the effect of diurnal variations in the shrimp density on the bottom the sampling on the photographic stations has been limited to July-August being a period of the year with relatively small diurnal amplitudes in the catch rates (Carlsson *et al.*, 1978). Furthermore, the sampling has been carried out during the day-time, because most of the shrimps are supposed to be situated on the bottom in the hours with daylight. However, a smaller part of the shrimp population is still supposed to swim off bottom in the middle of the day, and the density indices as read from the photographs are thus minimum figures when used as input values for the biomass calculations.

The biomass estimates have been calculated using areas of the different strata as given by Carlsson & Kanneworff (1979) with a few minor corrections. In the field work a good agreement has normally been found between the observed depths and the charts used for estimating the strata areas, however, some discrepancies have been noted in the northwestern part (Blocks no. 11216 and 11217, Figure 2).

During the reading of the photographs the shrimps were as previously classified into three size categories in order to obtain an indication of the average individual weight on which the biomass indices could be based.

The three size categories are determined by the following values:

Siz	e category	Carapace length	Estimated mean weigh
		mm	grams
	small	<18-20	3.5
	medium	18-20<1ength<28-30	7.5
	large	>28-30	13.0

2 -

The size distribution as read from the photographs have been compared to samples from catches taken by shrimp trawl in connection with the photographic sampling.

A multiple regression analysis was used to produce estimates for the biomass dependency of the three parameters 'year', 'depth' and 'latitude' in the area sampled. The model for this analysis was established earlier (Jørgensen & Kanneworff, 1980) and it has not been changed in the present material. The analysis was carried out by means of a 'General Linear Model' procedure included in the 'Statistical Analysis System' (SAS) programme package in the computer center of the Danish Technical University (NEUCC).

A regression analysis including only the medium sized shrimps has been run in order to determine the possible effect of a relative increase of the small shrimps in the photographic material from 1981.

The input values to the analysis were biomass indices, *i.e.* grams per squaremeter, from the sampling sites collected in 30-minutes periods. The values were weighted in the analysis by the number of photographs in each period.

The model used in the analysis was as described earlier (1.c.) the following:

 $B_{1,j,k} = e^{(a_0 + a_1 y_1 + a_2 y^2 + a_3 d_j + a_4 d_j^2 + a_5 l_k + a_6 l_k^2 + a_7 y_1 d_j + a_8 y_1 l_k + a_9 d_j l_k - \frac{\sigma^2}{2n} + \varepsilon)}$ The material is still assumed to be lognormal distributed.

RESULTS AND DISCUSSION

In Table 1 a list of photographic sampling stations from 1977 to 1981 is given together with shrimp density figures in the three size categories and the corresponding mean weight. The mean weight is based on average weights of 3.5, 7.5 and 13 grams in the three size categories respectively. Naturally, the condition for the repetitive use of these values is that the size distributions in the size groups are constant. It is obvious from the material sampled on the same sites in more than one year, e.g. the 'check station' in Stratum no. 12316050 (Area code KR004), see Table 3 and Figure 3, that a considerable change towards a larger amount of small shrimps has taken place. This shift leads not only to a lower estimate for the average shrimp weight in the total material, but also to a decreasing average weight in each of the size groups.

In order to get a check of the absolute values of the average weights as estimated from the photographic material a comparison is made with samples taken by shrimp trawl in connection with the photographic sampling (Tables 4a and 4b). A large part of the small shrimps are not caught by the trawl, and a somewhat lower average weight is thus to be expected in the photographic samples than in the trawl samples. In The 1980 material (Table 4a) the ratio between the average weights in the photographic material and the trawl material was rather constant around 0.8 on stations with a 'normal' amount of small shrimps. In the material from 1981 (Table 4b) this ratio seems to have increased somewhat. This is probably due to the fact that the used weight estimates in the three size groups this year are overestimated, the smaller shrimps becoming more numerous. On some stations, as indicated in Table 2, the small shrimps are further underestimated being so small that they are close to the resolution of the photographic system.

The coverage by the sampling stations of the area of shrimp distribution between $66^{\circ}N$ and $69^{\circ}30$ 'N has varied much through the five years of sampling as shown on Figure 1. A large part of the strata, however, have been sampled one or more times throughout the period from 1977 to 1981.

This change in sampling coverage is likely to introduce some bias into the assessment of the stock biomass. When using an empirical model as the present it is not possible to interpolate the calculations to years, depths and areas which are not covered by sampling, without assuming a rather stable structure within the limits of the parameters. Extrapolation is of course not allowed.

The sampling in 1980 was more concentrated in the northern part of the area than before, and some of these stations showed high densities of small shrimps. The selection of sample sites to areas with abnormal high densities could possibly lead to an overestimate for the total biomass that year. In 1981, however, the sampling has again been more evenly distributed over the area, and the possible bias from the 1980-sampling should thus be levelled out in the present analysis.

To obtain a measure of the validity of the results of the model it is necessary to calculate the variances in the material. This work has not yet been done, but a relative high variance is likely to be expected. When using the estimates based on this model it is therefore essential to include very wide confidence limits and use the figures with great caution. The variances in the present material are, however, not considered higher than those normally existing in material on which stock assessments for other species are based.

Despite the low correlation coefficient for the model Table 5a shows that many of the parameters are significant for the model, and it is thus the author's impression that this way of approaching a direct biomass estimate is better than the method formerly used, in which estimates were obtained relative to those from a trawl survey (Kanneworff, 1979b).

By means of the calculated parameters from the regression analysis (Table 5a) biomass estimates for all the strata in the area in question are calculated as shown in Table 6. The values for the total area are shown in Figure 4 together with calculated figures for the medium sized shrimps only (the corresponding parameters are shown in Table 5b).

A major increase from 1980 to 1981 in the total biomass is indicated, but as mentioned above the estimates based on fixed values for average weights in the size groups tend to be too large when the average individual weight in the population decrease. In Figure 4 the biomass estimates for shrimps of medium size are indicated (hatched part of the columns) to show the influence of this size group on the total biomass estimate. It is clearly seen that the medium sized shrimps through the five years make up for a steadily decreasing part of the total biomass although in absolute terms an increasing amount. If the possible heavy underestimate of the

- 4

amount of small shrimps on certain stations (Table 2) is taken into account this descrease will be even more pronounced.

The significant increase in number of small shrimps could possibly be taken as an indication of a promising recruitment to the stock, but this should be treated with great caution. Due to the photographic system it is hardly possible to determine the shrimp species with any certainty in these very small sizes. Other species such as *Lebbeus (Spirontocaris) Passiphae* or some *Crangonidae* could be included in the countings.

Figure 5 shows the interaction between the parameters of the model, given in Table 5a. It is clearly seen that the increase in the biomass indices from 1980 to 1981 - and to a certain degree also the increase from 1979 to 1980 - is much larger in the northern part of the area than in the southern. It should also be pointed out that the highest concentrations of shrimps have been found around 300 m depth in all five years. No significant change seems to have taken place, although a weak indication of a shift to shallower water might be noted.

CONCLUSION

Photographic sampling is regarded as a valuable method for obtaining a direct estimate of the biomass of shrimp (*Pandalus borealis*). By means of a mathematical model the fluctuations in the stock have been examined. Although the density figures obtained by this sampling should be regarded as minimum figures, the biomass estimates may be somewhat overestimated for 1980 and 1981 due to an increase in the amount of shrimp of smaller sizes. The average individual weight has decreased steadily through the five years of sampling (1977-80).

Noting the low correlation coefficients for the model and the possible high variances involved it is obvious that the model still needs some revision and that the results should be treated with great caution.

ACKNOWLEDGEMENT

The author wishes to express sincere thanks to Mr. K.P. Andersen, the Danish Institute for Fisheries and Marine Research, for his valuable help with interpretation of the results of the regression analysis.

REFERENCES

Carlsson, D.M., 1981. Data on Shrimp Fishery in NAFO subarea 0 + 1 in 1980 and 1981. NAFO SCR Doc. No. 81/XI/151.

- Carlsson, D.M. & P.Kanneworff, 1979. Areas of basic strata in West Greenland, ICNAF/NAFO Subarea 1. ICNAF Res.Doc.79/XI/11.
- Carlsson, D.M. et al., 1978. Danish trawl surveys on the offshore West Greenland shrimp grounds in 1977 and previous years. ICNAF Sel.pap. No. 4: 67-74.
- Jørgensen, A.G. & P.Kanneworff, 1980. Biomass of shrimp (Pandalus borealis) in NAFO Subarea 1 in 1977-80 estimated by means of bottom photography. NAFO SCR Doc.80/XI/169.

Kanneworff, P., 1979a. Density of shrimp (Pandalus borealis) in Greenland waters observed by means of photography. Rapp.P.-v.Réun., Cons.int.Explor.Mer (175):134-138.

- 6 -

Kanneworff, P., 1979b. Stock biomass 1979 of shrimp (Pandalus borealis) in ICNAF Subarea 1 estimated by means of bottom photography. NAFO SCR Doc.79/XI/9.

Table 1. List of photographic stations 1977-81 with calculated shrimp densities. The average weights are based on average individual weight of 3.5, 7.5 and 13 grams respectively in the three size groups. The strata are defined by 100 m depth intervals within the blocks.

510	Stratum No.	Stratum Area	Date	No.of Phot.	Den: Small	Medm.	large	ALL	Mean Weight
18 18 18 18 18 18 18 18 18 18 18	12414090 12414090 12416070 12317070 12317070 12317070 12317070 12015090 12015090 12415090 12415090 12417070	690 690 1542 631 1543 1822 122 353 727 1662	770724 770725 770726 770726 770726 770804 770805 770805 770806	54 35 17 82 44 116 2 & 23 204 190	$\begin{array}{c} 0.000\\ 0.000\\ 0.017\\ 0.000\\ 0.000\\ 0.031\\ 0.001\\ 0.001\\ 0.014\\ 0.000\\ 0.014\\ 0.000\\ 0.014\end{array}$	0.104 0.084 0.363 0.207 0.674 0.111 0.038 0.129 0.107	0.082 0.101 0.000 0.004 0.000 0.003 0.000 0.000 0.000 0.000 0.000	U.186 U.207 U.207 U.207 O.207 O.207 O.707 O.112 O.038 O.153 U.109	9077777777
18 18 18 18 18 18 18 18 18 18	12316056 12216090 12215050 12215050 12115070 12115070 12115070 12115070 12115070 12115070 12115070 12416070 12416070 12516070	1822 207 1395 643 250 250 250 120 517 1542 1396	780721 780724 780724 780724 780725 780725 780725 780725 780725 780725 780725 780725 780807 27 780807 27 780802 780803	154 1266 107 172 174 278 1819 169 38	$\begin{array}{c} 0.061\\ 0.000\\ 0.000\\ 0.000\\ 0.005\\ 0.005\\ 0.100\\ 0.005\\ 0.100\\ 0.005\\ 0.000\\ 0.832\\ 0.070\\ 0.832\\ 0.070\\ \end{array}$	$\begin{array}{c} 0.511\\ 0.110\\ 0.009\\ 0.0097\\ 0.0097\\ 0.0097\\ 0.0083\\ 0.$	$\begin{array}{c} 0.006\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.009\\ 0.008\\ 0.$	0.579 0.000 0.0074 0.0075 0.0005 0.1003 0.5003 0.1738 0.14738 0.1602 0.256	77*776766756
18 1A 18 18 18 18 18 18	12415050 11214050 11115050 12316050 12316050 12413050 12413050 12515070 12515070 12417070	590 919 185 1822 1322 627 690 994 1662	790723 790730 790731 790801 790801 790805 790805 790810 790810	6 49 11 36 16 12 5	0.000 1.096 0.865 0.008 1.222 0.083 0.019 0.927 0.059	U.500 U.849 U.676 U.123 Z.917 U.241 U.293 U.235	$\begin{array}{c} 0.000\\ 0.000\\ 0.027\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	0.500 1.946 1.568 0.131 3.315 1.000 0.333 1.220 0.294	7.5243
188 188 188 188 188 188 188 188 188 188	$\begin{array}{c} 1231711500\\ 1231701500\\ 124150150\\ 124150150\\ 12414005000\\ 12414005000\\ 12414005000\\ 12414005000\\ 1241400500\\ 1241400500\\ 1241400500\\ 1241400500\\ 1241400500\\ 12416070\\ 124160120\\ 12212121212121212121$	631 1220 0027 6924 1224 1225 1542 1542 1542 1542 1542 15	800810 800811 800811 800812 800812 800812 800813 800813 800813 800813 800813 800813 800813 800813 800822 800823 800823 800823 800823 800823	1167 499 1188 781 821 188 1389 1670 1168 889 148	$\begin{array}{c} 0.015\\ 0.015\\ 0.025\\ 0.025\\ 0.025\\ 0.0001\\ 0.0004\\ 0.00$	$\begin{array}{c} 0 & 244 \\ 0 & 096 \\ 0 & 469 \\ 0 & 469 \\ 0 & 462 \\ 0 & 734 \\ 0 & 734 \\ 0 & 555 \\ 0 & 082 \\$	$\begin{array}{c} 0.005\\ 0.004\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.004\\ 0.$	$\begin{array}{c} 0.2641\\ 0.461\\ 0.468\\ 0.1114\\ 0.137\\ 0.138\\ 0.137\\ 0.138\\ $	459 033344853386462
1188 1188 1188 1188 1188 1188 1188 118	12317050 12215070 12115070 13112070 13414950 12316050 12413050 12414090 01418050 01418050 01418050 01416090 12416090 12416090 11213050 11214050	631 643 1350 1350 645 994 1642 1992 1547 447 1547 447 447 447 447 447 447 447	810728 810728 810728 810728 810728 810808 810808 810808 810809 810810 810811 810811 810811 810811 810817 810818 810728 810880 810728 810880 8108810 810881100000000	901 1772 1791 1791 1791 1791 1791 1791 179	$\begin{array}{c} 0.021\\ 0.023\\ 0.0030\\ 0.0030\\ 0.0071\\ 0.000\\$	0.0185 0.0185	$\begin{array}{c} 0 & 003 \\ 0 & 000 \\ 0 & 0 &$	0.048405420 0101010101010 0000000000000000000000	124183997225904174

						Shrimp		
DIV.	Stratum no.	Area code	Date	No. of photos	Small	Medium >	large	av. shrimp/sqm
1B	12317050	KP440	810726	99	15	120	1	0.37
1B	12215050	KL006	810727	101	10	7	0	0.05
1B	12115070	KF007	810728	177	2	56	0	0.09
1C	13112080	JL020	810728	82	191	337	1	1.74
1C	13414050	KA011	810805	178	51	239	0	0.44
1B	12316050	KR004	810806	191	630	511	1	1.62
1B	12413060	KZ015	810808	169	514a)	795	0	2.09
1B	12414100	KZ012	810808	171	26	145	1	0.27
1A	11115060	LE005	810809	181	1004b)	424	0	2.13
1B	12515070	LB005	810809	162	289	193	3	0.81
1B	12417070	KX438	810810	147	11	105	1	0.22
0A	01418060	KT436	810810	194	0	380	0	0.53
1B	12416072	KT001	810811	192	100	513	1	0.86
1B	12416090	KV002	810811	173	245	153	0	0.62
1B	12416071	KZ003	810811	169	164b)	418	2	0.93
1A	11213052	LH014	810817	161	152a)	271	0	0.71
1A	11214060	LJ011	810817	64	216	249	1	1.97
1A.	11413060	LS014	810818	191	333	300	1	0.90

Table 2. List of photographic stations 1981 showing the number of shrimps in the three size groups together with the average density.

a) The size group 'small' is possibly strongly underestimated.b) The size group 'small'is slightly underestimated.

Table 3. Percentage size distribution and average weights of shrimps in the photographic material from the same sampling site (Area code KR004) in five succeeding years.

YEAR	percentage small medium large	average weight
1977	4.3 95.3 .4	7.3
1978	10.6 88.4 1.0	7.1
1979	36.9 63.1 .0	6.0
1980	24.9 74.3 .8	6.5
1981	55.2 44.7 .1	5.3

- 7 -

Table 4a. Percentage size distribution and average weight of shrimp in photographic material and samples from trawl catches in 1980.

Stratum no.	Area code	type	% small	% medium	% large	Average weight
12317050	KP440	photo trawl	5.8 5.5	92•3 93•4	1.9 1.2	7.4 8.9
12316050	KR004	photo trawl	24.9 21.0	74.3 78.1	.8 .9	6.5 7.4
12413050	KZ014	photo trawl	6.1 14.2	93.6 85.0	•3 •8	7•3 8•9
12414090	KZ012	photo trawl	6.9 8.0	92.0 89.1	1.1 2.9	7.3 11.1
12517070	LA438	photo trawl	.0 3.4	100.0 93.2	•0 3•4	7.5 10.3
11217050	LH440	photo trawl	.0 1.3	98.7 95.1	1.3 3.6	7.6 9.3
12416070	KZ002	photo trawl	83.3 19.6	16.5 80.3	.2 .2	4.2 11.4

Table 4b. Percentage size distribution and average weight of shrimp in photographic material and in samples from trawl catches in 1981.

Stratum no.	Area code	type	% small	% medium	% large	Average weight
12317050	KP440	photo trawl	11.0 12.5	82.2 86.1	0.7 1.4	7.1 8.7
12215050	KL006	photo trawl	58.8 32.7	41.2 66.2	0.0 0.8	5.1 6.8
12115070	KF007	photo trawl	3.4 3.4	96.6 94.7	0.0 1.9	7.4 9.3
13414050	KA011	photo trawl	17.6 52.9	82.4 47.1	0.0 0.0	6.8 5.1
12316050	KR004	photo trawl	55.2 44.2	44.7 54.5	0.1 1.3	5.3 6.7
12414100	KZ012	photo trawl	15.1 4.9	84.3 93.1	0.6 2.0	6.9 10.0
11115050	LE005	photo trawl	70.3 41.4	29.7 58.1	0.0 0.5	4.7 4.9
12515070	LB005	photo trawl	59.6 23.0	39.8 76.6	0.6 0.4	5.2 6.6
12417070	KX438	photo trawl	9.4 27.6	89.7 71.5	0.9 0.9	7.2 6.4
01418050	KT436	photo trawl	0.0 0.2	100.0 91.1	0.0 8.6	7.5 10.5
12416090	KV002	photo trawl	61.6 10.1	38.4 88.9	0.0 1.0	5.0 8.5
12416070	KZ003	photo trawl	28.1 32.5	71.6 67.0	0.3 0.5	6.4 6.4
11214050	LJ011	photo trawl	46.4 57.4	53.4 42.6	0.2 0.0	5.7 4.1
11413050	LS014	photo trawl	52.5 55.6	47.3 44.4	0.2	5.4 5.7

Table 5a. Output from the regression analysis including shrimps of all sizes according

to the model as described in the text.

		SHRIMP PHOTO	OGRAPHY, LOGMC	DEL OF 80110	6, BIOMASS	23:46 TUESDAY	" NOVEMBER 17	, 1981
		GENI	ERAL LINEAR MC	DELS PROCEDU	RE			
DEPENDENT VARIABLE: Weight:	LNBIMS							
SOURCE	DF	SUM OF SQUARES	MEAN SOL	JARE F	VALUE	PR > F	R-SQUARE	с. ч .
MODEL	10	6193.53048444	619.35304	844	13.52	0.0001	0.343871	1389.7108
ERROR	258	11817.68297183	45.80497	276		STD DEV		LNRIMS MEAN
CORRECTED TOTAL	268	18011.21345627				6.76793711		0.48700329
SOURCE	DF	TYPE I SS	F VALUE	24 24 24	DF	TYPE IV SS	F VALUE	P.R. > F
ЧЕАR DEEPTH DEEPTH YEAR*YEAR DEEPTH*DEPTH VEAR*BC YEAR*BR VEAR*BR DEPTH*BR	रुम्ब प्रण्ड रुम्ब रुम्ब रुम्ब रुम्ब रुम्ब रुम्ब रुम्ब	23795.3436266270 23795.3436266270 24486.680163191 22448.680163191 2558.81119297 3558.81119297 3558.81119297 1.2333204107 0.307364107 0.307320407	00080767676 00080767076 0008076767678 0008076767678	88884400 766400 366400 366400 3666400 3666400 3666400 3666400 3666600 366660000000000	क्न क्ल क्ल क्ल क्ल क्ल क्ल क्ल क्ल क्ल	1174.75.755555 1177.75.7555555 1177.75.7555555 1177.75.75555555 1177.75.7555555 1177.7555555555 1177.755555555 1177.755555555 1177.75555555 1177.7555555 1177.7555555 1177.7555555 1177.755555 1177.755555 1177.755555 1177.7555555 1177.7555555 1177.7555555 1177.7555555 1177.7555555 1177.7555555 1177.7555555 1177.7555555 1177.7555555 1177.7555555 1177.7555555 1177.75555555 1177.75555555 1177.75555555 1177.755555555 1177.755555555 1177.755555555 1177.75555555555		00000000000000000000000000000000000000
PARAMETER	ESTIMATE	T FOR HO: Parameter=o	PR > 1T1	STD	ERROR OF TIMATE	· · · ·		
INTERCEPT VEPAN DYEPAN BEPTHS BRAR*YEAR DEPTHSOEPTH YEAR*BR DEAR*BR DEAR*BR DEAR*BR	1,704.62179333 - 3224408291 - 0.020222945 - 0.02022454945 - 30.2229454945 - 30.2229454945 - 30.1114260310 - 311420310 - 0.0223472297 - 0.000402317 - 0.000402317	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	2000000 40404000000	83503514 084107233 084107233 0611107233 0611107233 06111057333 06111651 06111651 06111651 061155155 0008755555 00087552555 00087552555 00087552555 00087552555 00087552555 00087552555 0008755555 0008755555 0008755555 0008755555 0008755555 0008755555 0008755555 0008755555 0008755555 00087555555 0008755555 0008755555 00087555555 00087555555 00087555555 00087555555 00087555555 000875555555 000875555555555			

- 10 -

Output from the regression analysis including medium sized shrimps only. Table 5b.

- 11 -

					$(r, y_0) \in \{r_1, \dots, r_n\}$
AREA	1977	1978	1979	1980	1981
66°00 - 66°30	2197	1876	2020	2742	4692
66°30 - 67°00	1861	1586	1708	2323	3988
67°00 - 67°30	3591	3067	3301	4479	7658
67°30 - 68°00	8989	7590	8071	10808	18229
68°00 - 68°30	21150	17265	17751	22984	37484
68°30 - 69°00	34250	28688	30251	40157	67108
69°00 - 69°30	49974	43319	47290	65015	112563
To t al area 66 ° 00 - 69°30	122013	103391	110392	148508	251722

Table 6. Calculated total biomass for all strata at different latitude areas within the 100-600 m depth range. All three size groups of shrimps are included.

- 12 -

Fig. 1. Map showing the sampling stations 1977-81. Three more stations are outside the map; they are not included in the biomass analysis.

Fig. 2. Block numbers in the stratification system for Div. 1B and the southern part of Div. 1A. Block numbers in brackets west of $59^{\circ}W$ are numbers extended to SAO from SA1 for practical use in the ADP system.

Fig. 3. Development in the size composition of shrimps in the photographic material from a check station in the central area, area code KR004.

Fig. 4. Total biomass estimates for the area between 66°N and 69°30'N in the depth range 100-600 meters. The hatched part of the columns shows the estimates for the shrimps of medium size only.

Fig. 5. The figures show the estimated shrimp biomass indices (grams per squaremeter) at different latitudes and in different depths according to the calculated parameters of the model.

- 17 -

- 18 -

۵

