NOT TO BE CITED WITHOUT PRICE REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N583

NAFO SCR Doc. 82/IX/77

FOURTH ANNUAL MEETING - SEPTEMBER 1982

An Approach to the Stock-Recruitment Relationship of Cod (Gadus mothua) in Divisions 2J and 3KL.

by

M. G. Larrañeta

Instituto de Investigaciones Pesqueras Muelle de Bouzas, Vigo, Spain

Introduction

According to previous papers (Larrañeta, 1981<u>a</u>; and Vázquez and Larrañeta, 1980) it has been considered that in Div. 3M and 3NO cod stocks, regressions of the c.p.u.e. against effort show two levels of productivity. The same conclusion could be drawn from Vázquez's paper (1981) for cod in Div. 2J3KL. Theoretically, these two levels of productivity can be explained by changes in parameters of the Ricker stock-recruitment curve (Larrañeta, 1981<u>b</u>).

With these previous statements it has been analyzed the stock-recruitment relationship in the Div. 2J3KL cod stock, using the most recent vital statistics (Bishop and Gavaris, 1982).

Stock and recruitment data

The data used we're (Table 1) numbers $(x10^{-5})$ at age 4, as recruitment, and numbers $(x10^{-5})$ and biomass $(kg \times 10^{-5})$ for ages 5+, as parental stock. These data were obtained from Table 12 of Bishop and Gavaris' paper.

Parental stock (P) and recruitment (R) are plotted in Figure 1. It could be observed that points from 1962 to 1968 are grouped into the top-right quadrant, and those from 1969 to 1977 appear spread suggesting a dome-shaped curve.

Fitting of the Ricker curve

The distribution of points in Figure 1 agrees with our theory about periods of low and high productivity. In Figure 2<u>a</u> a historical sequence of points of the relationship between c.p.u.e. and effort is reproduced from Figure 1 of Vázquez's paper (1981). In Figure 2b the same relationship is shown but using data on "mean of the relative power" (c.p.u.e.) and effort from Table 9 of Bishop and Gavaris' paper. Both Vázquez and Bishop and Gavaris apply a multiplicative model, but Vázquez weights efforts during the last five years. From 1959 to 1970 a high level of c.p.u.e. appears and from 1972 to 1979 a low one does. Bishop and Gavaris' data confirm that during the last years a new high level has been again reached. Therefore, it seems reasonable to deal separately in Figure 1 1962-1968 points from 1969-1977 ones.

Parameters of the Ricker equation R=APe^{-BP} have been estimated from regression logR-logP=logA-BP, where R is the recruitment and P the parental stock.

The results for the 1969-1977 period are the following:

- i) If parental stock in numbers, A=3.0201 and B=.000267. The curve is drawn in Figure 1a. The relative (R_{obs}/R_{cal}) deviation is \bar{x} =1.0946 and s=.3684.
- ii) If parental stock in biomass, A=2.8625 and B=.000255. The curve is drawn in Figure 1b. The relative deviation is \bar{x} =.9795 and s=.2806.

In Table 2 average recruitment and 95% confidence interval for parental stock in numbers are given, and in Table 3 average recruitment and 95% confidence interval for parental stock in biomass are done.

Points of the 1962-1968 period are not directly suitable to estimate the stock-recruitment curve. Nevertheless, it is possible to estimate a conjectural curve starting from the curve belonging to the low productivity period. The new curve will be shaped by changing Parameter A or Parameter B (or both) of the former curve and it would cross a middle point among the high productivity period points. In Figure 1 the middle point has been marked with a cross.

To change simultaneously both parameters seems a too subjetive approach. It will be better to fix one and to change the other. In the election of the parameter to be changed the following considerations have been taken into account.

- a) Variation of Parameter A means acological or/and genetical changes, and variation of Parameter B means primary productivity changes (Larrañeta, 1979).
- b) The election of Parameter B to be changed is a more pesimistic decision than the Parameter A one, because with a change in Parameter B the recruitment will be lower on the average than with a change in Parameter A, during the high productivity period.

- 2 -

- c) If Parameter A is changed it will be expected the maximum recruitment at a lower parental stock than with a variation of Parameter B.
- d) Double regression lines in a c.p.u.e.-effort diagram joining themselves on the right side mean (Larrañeta, 1981b) a change in Parameter B.

Adopting a prudent strategy and because in Figure 2 the regression lines (dashed lines) seem to joint themselves on the roght, Parameter B has been elected to be changed.

Parameters for the high productivity period are the following:

Parental stock in numbers, A=3.0201, B=.000134, x=1.0166, s=.3031. Parental stock in biomass, A=2.8625, B=.000123, x=1.0404, s=.3913.

In Figure 1 the dashed lines show the stock-recruitment curves for the high productivity period. In Table 4 average recruitment and 95% confidence interval for parental stock in numbers are given, and in Table 5 average recruitment and 95% confidence interval for parental stock in biomass are done, during the high productivity period.

Discussion and conclusions

This approach is based on the asumption that there are periods of low and high productivity in the fishery. At least, it seems to have happened during the 1962-1977 interval. If this is true, points of the 1969-1977 period are fairly spread to estimate a Ricker curve.

An estimation of parameters for the high productivity period, starting from the 1969-1977 curve, was made on the conservative strategy that the parameter to be changed was the B one. This was a necessary simplification, but actually some change of Parameter A will also be produced. These estimations mean, therefore, a first approach to the stock-recruitment relationship of the stock. On the other hand, more refined calculus would be made by taking into account the fecundity at each age to deal with an egg-recruitment or basic curve (Larrañeta, 1981c).

Tables 2-5 may be used in catch projections, but I realise that at present it is difficult to say with low parental stocks if we are in a low or high productivity period. Nevertheless, looking at Figure 1 it seems that perhaps the stock is actually entering in a new high productivity period.

A suggestive feature is that points of the 1962-1968 period have a decreasing sequence before the 'leap' to the low productivity curve (Figure 1). Taking into account that Parameter

- 3 -

A only determines the height of the curve, and that Parameter B determines both the height and the <u>shape</u> of the curve, the last one varing the optimum parental stock size, the following pattern of an annual class sequence may be imagined.

Starting from a low productivity period, a leap to a high productivity one (because of an oceanographical change) means a change (decrease) of Parameter B, moving the optimum parental stock to a greater size. With the new environmental state, in few (2-3) steps a maximum recruitment is reached. But during the high productivity period some ecological succession will take place and because Parameter A is the expression of the ecological relationships of the stock a gradual decrease of Parameter A can be expected, flattening the curve. The whole

pattern will be a sudden increase of the annual classes followed by a smoother decrease of them until falling into a new low productivity period. This pattern has been found by Larrañeta and Vázquez (1982) in the NE Arctic cod stock.

Finally, an interesting conclusion can be drawn from Figure 1, this is that with a 5+ aged parental stock greater than 1000 millions of spawners or 1200 thousands tons of them the maximum recruitment is not to be expected. On the contrary, according to Figure 1, optimum parental stock during a low productivity period would consist of about 300 millions of spawners or 400 thousands tons, and during a high productivity period around 750 millions of spawners or 800 thousands tons. At presente the stock for ages 5+ has been estimated, by Bishop and Gavaris (1982), in 1981 on 890.6 millions of individuals and a biomass of 1480.03 thounsands tons.

ACKNOWLEDGEMENTS

I am indebted with A. Vázquez for his comments. Thanks to Carmen Alonso and M. Teresa Fernández for their help to prepare this paper.

REFERENCES

- Bishop, C.A. and S. Gavaris. 1982. Assessment of the cod stock in NAFO Divisions 2J3KL. NAFO SCR Doc. 82/VI/58.(13 pages)
- Larrañeta, M.G. 1981a. Ecology and fishing of cod stocks in Divisions 3M and 3NO. NAFO SCR Doc. 81/II/6.(8 pages)
- Larrañeta, M.G. 1981b. A use of the catch-per-unit effort in Ecology. <u>An. Inst. Cienc. del Mar y Limn.</u>, Univ. Nal. Autón. México, 8(1): 183-190.

Larrañeta, M.G. 1981<u>c</u>. Relationship between the parameters of the generation curves. ICES C.M.1981/G:19.(8 pages)

- 4 -

Larrañeta, M.G. and A. Vázquez.1982. On a possible meaning of the polar motion in the ecology of the North Atlantic cod (<u>Gadus morhua</u>). <u>ICES C.M.1982/G:14.(37 pages</u>)

- 5 -

Vázquez, A. 1981. On cod stocks in NAFO waters. <u>NAFO SCR</u> <u>Doc. 81/VI/67</u> (5 pages).

Vázquez, A. and M.G. Larrañeta. 1980. Assessment of cod stock in Divisions 3NO. <u>NAFO SCR Doc. 80/II/10.</u> (11 pages).

<u>Table 1</u>. Parental stock for ages 5+ in numbers $(x10^{-5})$ and biomass (kg x10⁻⁵), and recruitment in numbers $(x10^{-5})$ at age 4. Data from Bishop and Gavaris (1982).

	Daront	al stock		
Annual class	Num.	Biomass	Recruitment	
1962	15720	19172	8167	W.
1963	14462	17577	9254	
1964	13483	16187	6710	
1965	12017	13931	5786	
1966	12406	13669	5369	
1967	13596	14201	5915	
1968	14922	14215	4775	
1969	12305	11681	2137	
1970	10443	10386	1298	2
1971	9760	10004	1387	
1972	9601	9676	2806	
1973	8290	8707	4238	
1974	5934	6155	5132	
1975	3562	3640	4959	
1976	2461	2290	2969	
1977	2720	3251	3355	

Table 2. Parenta	1 stock in	numbers	$(\mathbf{x}10^{-5})$, average	Table 3. Pare	ntal stock as b	$(kg x10^{-5})$,	average
recruitment (x10 ⁻	^{.5}) and 95%	confiden	nce interval, for	recruitment (x	10 ⁻⁵) and 95% c	ufidence interval,	for a
a low productivit	y period.			low productivi	ty period.		
đ	R	95% i	interval	Ģ	I¢¢	95% interval	· · · · · ·
		1	ļ				
1000	2312	827	4235				
2000	3541	1267	6485	1000	2218	9.2.8 3.4.1.8	
3000	4067	1455	7448	2000	3438	1438 5297	· .
4.000	4152	1.4.8.6	7/6/04	30.0.0	3996	1671 6157	
5000	3974	1422	7.2.68	4000	4129	1727 6362	
0009	3651	1306	6687	2000	6668	1.673 61.62	
000/2	3.262	11.67	5973	6000	3719	1555 5730	
8.000	2854	1021	5227	7/0:010	3362	1406 5181	
0.0.0.6	2458	088	4 5 0.2	8:000	2.978	1245 4588	
1.0000	2091	748	3830	0006	2596	1.08.6 4:000	
11000	1762	630	3226	T 0000	2235	935 3444	
12000	1471	526	2695	11000	1905	797 2936	
13000	1220	437	2235	12000	1611	67.3 24.82	
14000	1.006	360	1843	13000	1352	565 2083	 . *
15000	826	2.95	1512	14000	1128	47.2 1.739	
16000	674	241	1235	15000	937	392 1443	
17000	549	9)6 ₁ T	1005	16000	774	324 1193	
18000	445	159	812.4	17000	638	2.67 98.2	. 3
1:9000	359	129	658	0.000 B F	523	219 806	
2000	290	104	531	0006 F	428	179 659	-
				20000	349	146 538	
				, ,			

. . . 6 --

Table 4. Parental stock in numbers $(x10^{-5})$, average recruitment $(x10^{-5})$ and 95% confidence interval, for a high productivity period.

ę																			1					
interval,	A ,	1000	2000	3000	4000	2000	6000	2000	8000	0006	10000	11000	12000	13000	14000	15000	16000	17000	18000	19000	20000	21000	22000	
															•									
y period.	interval	4 286	7498	9836	11470	12539	13160	13428	13422	13206	12833	12346	11779	11161	10512	9850	9189	8539	7908	7300	6721			
luctivit	958	1 084	1896	2488	2901	3171	3328	33.9.6	3394	3340	3245	3122	2979	2822	2658	2491	2324	2160	2000	1846	1700			
a high proc	IK	2641	4620	6061	7068	7727	8110	8275	8271	8138	7908	7608	7259	6877	6478	6070	5663	5262	4873	4498	4141			
Interval, for	Q 4	1 000	2000	3000	4000	5000	6000	0007	8000	0006	10000	11000	12000	13000	14000	15000	16000	17000	18000	19000	2000			
	1.5	1				· .				·., :														

Table 5. Parental stock as biomass (kg $x10^{-5}$), average recruitment $(x10^{-5})$ and 95% confidence interval, for a high productivity period.

	a series																		-							
riod.	nterval	4614	8161	10824	12762	14106	14960	15442	15605	15524	15253	14836	14312	13710	13056	12369	11667	10962	10263	9579	8917	8279	7669	0607	6542	6026
ivity pe	95% i	653	1154	1531	1805	1995	2117	2184	2207	2195	2157	2098	2024	1939	1846	1749	1650	1550	1451	1355	1261	1171	1085	1003	925	852
product			7 • 4															. ·		•						
a high	IX	2531	4477	5938	7001	7738	8211	8471	8560	8516	8367	8138	7851	7521	7162	6785	6400	6013	5630	5256	4891	4541	4207	3889	3589	3305
for						•																				
terval,	Ċ,	1000	2000	3000	4000	5000	6000	1000	8000	0006	10000	11000	12000	13000	14000	15000	16000	17000	18000	19000	20000	21000	22000	23000	24000	25000

- 7 -

Figure 2.- C.p.u.e.-effort relationship; (a) from Vázquez (1981); (b) from Bishop and Gavaris (1982).

- 8 -