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Abstract

The distribution of Northwest Atlantic beaked redfishes, Sebastes mentella

and S. fasciatus, has been confuses.	 for the past several decades. 	 S. fasciatus

has been reported as having lower ceristic counts than S. mentella. Meristic

elements of 33,301 vertebrae, 22,622 anal fin ray and 16,290 dorsal fin ray

counts were utilized to examine the yearly, depth and geographic variation

of meristics in beaked redfishes.	 Data collected from specimens caught off

West Greenland, Baffin Island, Labr.dor, Newfoundland, Quebec and Nova Scotia

were analyzed by 100 m depth intervlls. Temporal and depth variation were

examined by the x 2 -test of independence on meristic frequencies. 	 Geographic

variation was evaluated using the m des and mean values in the meristic frequency

histograms. Cluster analysis of me'-istic frequencies displayed the dendrographic

affinities and the distance matrix	 mong division-depth blocks.

Temporal variation indicated	 mixture of vertebral frequency patterns

which varied with depth and area. 	 nepth variation and geographic clines
I

were found f	 each of these meristic characters; the shallow and southern

waters were dominated by counts of 2:9, 14-13, and 7 for vertebrae,	 dorsal fin

rays, and anal	 fin rays respectively, while deep and northern waters were

Idominated by 30, 15-14, and 8-9. 	 These results suggested that S.	 fasciatus

occurs on the Nova Scotian shelf and Grand Bank whereas S. mentella is largely

found in Baffin Bay, Labrador waters and the Gulf of St. Lawrence. The common

names of S. mentella and S. fasciatw, are discussed. Additionally, five •

hypothetical stocks of beaked redfis

for management purposes.

les based on meristic patterns are proposed

 

1 Recently accepted for publication in the (!rm.
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Introduction

An understanding of the distribution of beaked redfishes, Sebastes mentella

and S. fasciatus, is important for the appropriate design of life history

studies of each species and for determining component stocks. However, in

past decades this was hampered by the uncertainties of redfish systematics and

species identification. This study examines the yearly, depth and geographic

variation in meristic characters, which are used to discriminate between S.

mentella and S. fasciatus, and explores the distribution of these species in

the Northwest Atlantic.

Although morphological differences between these two species were discussed

by Barsukov (1972), Barsukov and Zakharov (1972), Litvinenko (1974), and

Templeman (1980), the overlapping of morphological characters has made it very

hard to distinguish beaked redfishes in field studies. From studies of extrinsic

gasbladder musculature, Litvinenko (1980) and Ni (1981a) supported the validity

of S. fasciatus. From the discriminant analysis of morphological characters,

Ni (1981b) concluded that anal fin rays and vertebrae were good discriminators

between S. mentella and S. fasciatus. This has been elucidated by numerous

researchers (Table 1) who found that S. mentella had 30 vertebrae, 8 or 9 anal

fin rays, and 14 or 1.5 dorsal fin rays, whereas S. fasciatus had most commonly

29 vertebrae, 7 anal fin rays, and 14 dorsal fin rays.

In this report, vertebrae, anal fin rays and dorsal fin rays of beaked

redfishes were examined individually and collectively. I assumed that vertebrae

and anal fin ray frequency distributions dominated by 30 and by 8 or 9 respectively

indicated S. mentella while vertebrae 29 and anal fin rays 7 indicated S.

fasciatus. Thus, a preliminary understanding of the distribution for S.

mentella and S. fasciatus could be acquired from meristic variation.

Materials and Methods

We collected 33,301 vertebrae, 16,315 anal fin ray, and 16,290 dorsal fin

ray counts between 1957 and 1968. An additional 6,307 anal fin ray counts

were gathered between 1974 and 1981 during Canadian research survey cruises.

The areas sampled, covering the whole Northwest Atlantic, were NAFO Div. 0-4X

(Fig. 1). Sample sites were along the continental slope at bottom depths of

100 m to 750 m. Data were broken down into 100 m depth intervals, since

Barsukov (1972) and Templeman (1976) suggested that S. mentella was distributed

in deeper waters than S. fasciatus. As beaked redfishes were rarely found in



stable in deep waters. In northea,

pattern was seen only at the 500-59

the unstable depth zone was 300-399

3

shallow waters, data from water <200 m were combined into one depth zone.

The temporal variation was analyzed for the vertebrae data only, because

of the relatively large sample sizes. Vertebral counts excluded the urostyle,

in conformity with. Templeman and Pitt's (1961) redfish vertebral studies based

on data collected from 1947 to 1'.•54.

Particular attention was gi en to counting the last ray of the anal fin.

This ray consists of two element separated at the very base of the fin which

seated on one basal (pterygiopho e). The last two fin elements were counted

as one ray.

Yearly and depth variation in meristic frequencies were examined separately

using a x 2 -test of independence o identify cells (in the frequency tableYor

patterns of cells that contributed to a departure from independence. The

BMDP2F program (Dixon and Brown 1

Stepping stops if the probability

The cells which contributed most

from the sequence of cells elimin

Geographic variation deduced

meristic frequency histograms. I

program) to describe the dendrogra

among division-depth blocks. The

distance between two cases in the

frequencies. Amalgamation uses th

the average values with the clustei

the patterns of modes and means in the

2 -test of equality of the two sets of

distances between centroids as defined by

's.

79) was calculated in a stepwise manner.

of the test-of-fit is greater than 0.05.

0 a significant difference could be deduced

ted.

from

also applied cluster analysis (the BMDP2M

hic affinities and the distance matrix

riterion t join clusters is defined as the

Results

Vertebrae

Vertebral frequencies for divi

year to .study temporal variation_

for influence of year, is sho .Wn in

were excluded from the table becaus

:vertebral frequencies were stable o

and•Baffin Island (Subarea 0 and 1)

the shallow waters of southern Labr

sion-depth blocks were first broken down by

A summary of the results of the x2-tests,

able 2. Frequencies from Div. 2G and 2H

insufficient data were available. The

er time in the waters between Greenland

Vertebral frequencies varied yearly in

dor (<400 m in Div. 2J), but they were

tern Newfoundland (Div. 3K), a stable

depth zone. On the Flemish Cap (Div. 3M),

On the Grand Bank, vertebral frequencies
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fluctuated yearly in <500 m waters of Div. 3L, in medium depth zones of Div. 3N

(200-299 m and 400-499 m) and in deep waters of Div. 30 (>500 m). On St.

Pierre. Bank (Div. 3P), vertebra) frequencies varied annually in the waters

deeper than 200 m. In the Gulf of St. Lawrence (Div. 4RST), vertebral frequencies

varied yearly in the 200-299 m depth zone. There were occasional 	 fluctuations

in the < 200 m and the 20-399 m depth zones as no significant differences

were found by eliminating one year's data for both depth zones. 	 On the Nova

Scotian shelf, the frequencies in Div. 4V showed no yearly variations in the

shallow waters (< 400 m) while they varied in the deeper waters; 	 Div. 4W and

Div. 4X displayed slight differences in yearly vertebral frequencies in the

shallow waters and in the deep waters, but they were stable in the medium

depth zones (around 200-500 m). In summary, temporal variation varied with

different depth zones for different areas. However, a mixture of different

types of vertebral frequencies was clearly indicated.

In order to assess variation by depth for each division, data collected

from different years were combined and vertebral percentage frequency distributions

were evaldated (Fig. 2). The 2-tests of the independence of vertebral frequencies

with depth for each NAFO Division are listed in Table 3. Only the specimens

collected from Baffin Bay (Subarea 0 and 1) and northern Labrador (Div. 2G)

showed no significant differences of their vertebral frequencies with depth.

They consistently had a high frequency of 30 vertebrae. The significant

variation with depth in Div. 2H was due to the high percentage of samples with

31 vertebrae from the shallow waters. In the other areas (Div. 2J, Subarea 3

and 4), x 2 -statistics showed significant differences in the vertebral frequencies

with depth. In Div. 4X, excluding specimens from deep water (>600 m) reduced

the X2 to a non-significant level. In general, vertebral number increased

with depth except in Baffin Bay and Labrador waters.

The geographic variation of vertebral frequencies could be appraised from

area to area by examining the frequency distributions (Fig. 2). 	 In Baffin Bay.

(Subarea 0, 1) and northern Labrador (Div: 2G, and 2H) vertebral	 counts of 30

were dominant at all depths, and so S. mentella was determined to be the

predominant species. • Ficwe ...er, 35.2% of the redfish collected from the 200-299 m

in 2J and 41% of the redfish collected from' <300 m in 3K had 29 vertebra

(Fig. 2-1), indicating the presence of S. fasciatus at these depths. A mixture

of redfishes was observed on Flemish Cap (Div. 3M): the two species intermingled

in shallow waters (<300 m) but S. mentella dominated in deep waters (Fig. 2-2).



- 5 -

On Grand Bank (Div. 3LNO), S. fa

S. mentella was predominant in d

a depth of 400-499 m in Div. 3L

Div. 30 (Fig. 2-2).	 On St. Pier

in very shallow water (<200 m) w

waters. They mixed at a wide ra

St. Lawrence (Div. 4RST), S. fasc

shallower than 200 m; S. mentell-

Fig. 2-3). On the Nova Scotia S

species. S. mentella might be p

ep waters. The two species probably mixed at

nd 3N, and in deeper waters (> 500 m) in

e Bank (Div. 3P), S. fasciatus was predominant

ereas S. mentella was predominant in deep

ge of depth zones (Fig. 2-2). In the Gulf of

iatus was found to dominate only in water

dominated at deeper than 200 m (Fig. 2-2 and

elf (Div. 4VWX), S. fasciatus was the predominant

esent in higher proportions in waters deeper

clatus was predominant in shallow waters and

than 500 m in these areas (Fig. 2-3).

The statistics for vertebrae in each NAFO Division are listed in Table 3.

These were calculated by excluding all the abnormal vertebrae (fused vertebrae).

A clear geographic cline of verte rae of beaked redfishes, from a high mean

value in the north to a gradual r duction toward the south, was noted, exceptions

being Flemish Cap (Div. 3M) and t e Gulf of St. Lawrence (Div. 4RST) (Fig. 3).

No particular characteristics of bnormal verterbae rate among areas were

noted, except a peculiarly high r to (1.36%) in Div. 3K. The overall percentage

of abnormal vertebrae for all are s was 0.52%.

Anal fin rays

The ana l fin ray statistics or each NAFO Division are listed in Table 4.

The x2 -test of the independence o anal fin ray frequencies with depth in each

NAFO Division is listed to show t e homogeniety of beaked redfishes. Only the

specimens from Baffin Bay (Subare 0 and 1) and northern Labrador (Div. 2G)

showed the same anal fin ray frequencies throughout all depths. 	 Strong depth

variation was indicated in all other areas. However, in Div. 2H, 4S and 4T,

no significant differences of anal fin ray frequencies were found by excluding

specimens from shallow waters.

In Baffin Bay (Subarea 0 and ) and Labrador (Div. 2G, 2H and 2J) (Fig. 4-1),

the anal fin rays of 8 and 9 were oth equally observed. Therefore, S. mentella

was the predominant species. In D v. 2J, 22.8% of the specimens collected

from the 200-299 depth zone had an 1 fin ray counts of 7, indicating the

presence of. S. fasciatus. Althoug/ the presence of S. fasciatus was also

noted in the shallow waters of Div. 3K, S. mentella dominated.	 S. fasciatus 

dominated the shallow waters of Di%. 3L whereas S. mentella dominated the deep

waters of Div. 3K and 3L. On Flemish Cap (Div. 3M), the two species intermingled



in shallow waters (<400 m) and S. mentella, with an anal fin ray count of 9,

dominated in deeper waters (Fig. 4-2). S. fasciatus was predominant in shallow

waters of Div. 3N and probably mixed with S. mentella at a depth of around

400-499 m. In Div. 30, S. fasciatus was again predominant down 'to 500 m and a

mixture occurred in deeper water. On St. Pierre Bank (Div. 3P), S. fasciatus 

was predominant in shallow water whereas S. mentella was predominant in deep

water. They mixed at the depth zones deeper than 300 m (Fig. 4-2). In the

Gulf of St. Lawrence (Div. 4RST), S. fasciatus dominated only in water shallower

than 200 m; S. mentella, with 8 anal fin rays, was dominant in waters deeper

than 200 m (Fig. 4-2 and 4-3). In Div. 4Vn-, S. mentella was still the dominant

species. On the Nova Scotia Shelf (Div. 4Vs, 4W and 4X) S. fasciatus was the

dominant species. S. mentella may be present in a larger proportion in waters

deeper than 500 m in Div. 4W and 4X. A geographic cline, a reduction in anal

rays from north to south, was also observed except the Flemish Cap, Banguereau

(Div. 4V) and Div. 4T (Fig. 3).

Anal fin ray frequencies were then examined using cluster analysis to

display the relatedness of depth and geographic components. A dendrogram

(Fig. 5) describes the sequence in which clusters were formed in the amalgamation

process. Six groups were observed. 1) The deep water redfish in northeastern

Newfoundland had an anal fin ray pattern of 8-9 similar to those of Baffin Bay

and Labrador waters. These were determined as S. mentella - the Labrador and

Baffin Bay group. 2) On the FLemish Cap, S. mentella, having an anal fin ray

count of 9, was dominant. 3) S. mentella, with 8 anal fin rays, was dominant

in the Gulf of St. Lawrence. 4) A mixture of anal fin ray 7, 8 and 9 indicated

the combination of S. mentella and S. fasciatus. 5) In the shallow waters of

Grand Bank and Nova Scotian shelf, S. fasciatus dominated with 7 anal fin

rays. 6) A small portion of 8 or 9 anal fin rays suggested that S. fasciatus 

was dominant with occasional occurrence of S. mentella.

In summary, significant depth and geographic variation of anal fin ray

frequencies were observed in beaked redfishes. It again indicated that S. fasciatus 

were distributed in shallower waters and southern areas, whereas S. mentella

were dominant in deeper water and northern areas.

Dorsal fin rays

The dorsal fin ray percentage frequency histograms with sample size and

mean values were calculated (Fig. 6). Depth and geographic variation were

again noted. Beaked redfishes in deep and northern waters had a greater



number of dorsal fin rays tha

and Fig. 6). The patterns cha

waters, to 14 in deep waters o

then to 14-13 in very shallow

Exceptions for the geographic

(Fig. 3).

those of shallow and southern waters (Table 5

nged from 15-14 in Baffin Bay and Labrador

f Grand Bank and in Gulf of St. Lawrence, and

aters of Grand Bank and on Nova Scotian Shelf.

line were Flemish Cap and the St. Pierre Bank

Vertebrae, anal fin rays and d

 

rsal fin rays combined0

 

Since significant depth aid geographic variation were observed in each

meristic frequency, cluster anclysis was then conducted by considering all

three meristic frequencies to etter display the relatedness of depth and

geographic components. Cases ith sample size less than 20 were excluded from

the calculations. As shown by distance matrix in shaded form (Fig. 7). A

similar pattern to the results obtained from vertebral frequencies and from

anal fin ray frequencies was ag in obtained to support the distribution of

beaked redfishes: S. mentella  ere shown to be distributed in northern and

deep waters whereas S. fasciatu  were shown to be distributed in southern and

shallow waters. Even the mixin zones for beaked redfishes resembled those

derived from anal fin rays and rom vertebrae.

Discussion

The distributions of beake redfishes were proposed on the basis of the

assumption that S. mentella has higher meristic counts than S. fasciatus.

Although Ni (1981a and b) indicted that 98% of S. fasciatus had anal fin ray

counts of 7 and 68.7% had verte ral counts of 29 while S. mentella had 100%

anal fin ray counts of 8 or gre ter and 99% vertebrae counts of 30 or greater,

the within species geographic variation of anal fin rays and vertebrae of the

two beaked redfishes should be carefully considered in order to confirm their

distribution. However, the general pattern of 7 anal fin rays and 29 vertebrae

for S. fasciatus and 8 or 9 anal fin rays and 30 vertebrae for S. mentella has

been observed throughout most of the northwest Atlantic (Table 1). It is,

therefore, reasonable to assume hat the intraspecific variability is not

likely exceed the interspecies d fferences.

That the significantly diff rent patterns of vertebral and anal fin ray

frequencies are differences betw en species rather than merely geographic

variation of the same species ca be substantiated by the following evidence.

a) In the temporal variation stu y, although 47% of the 68 division-depth



8

blocks of vertebral frequencies showed significant differences yearly, only

19.1% showed significant differences after eliminating one or two year's data

(Table 2). This supported the hypothesis that different types of vertebral

patterns existed for beaked redfishes. It also suggested a certain degree of

vertical migration. The inference was drawn because no significant differences

were found from the tests of Div. 4R (7 yr data), Div. 4S (4 yr data), and

Div. 4T (6 yr data) by eliminating one year's data for both the <200 m and the

300-399 m depth zones. b) From the study of depth variation, I obtained no

significant differences by eliminating deep or shallow water data (Table 3 and 4).

This also indicated that mixtures of different types of vertebral and anal fin

ray frequencies occurred. c) Two clear clusters were obtained from vertebral

frequencies, from anal fin ray frequencies and from the three meristic frequencies

combined (Fig. 7) to indicate the distribution of beaked redfishes. Even the

overlapping of the two clusters, indicating the zones where the two species

mixed, are similar. It was understandable that no species-specific pattern

could be drawn from dorsal fin ray frequencies, since it was not suggested in

the discriminant function (Ni 1981b).

Significant temporal and depth variation of vertebrae and anal fin ray

frequencies showed strong division-depth characteristics except for the waters

between Greenland and Baffin Island. The geographic cline for vertebrae,

observed by Templeman and Pitt (1961), was verified. Vertebral averages

decline from 30's in Baffin Bay and Labrador waters southward either along

Northeastern Newfoundland waters and Grand Bank or along the Gulf of St.

Lawrence to low 29's on the Nova Scotia Shelf. Geographic clines for anal fin

rays and dorsal fin rays, were also observed, there being a reduced number of

rays from north to south. Exceptional area was Flemish Cap (Div. 3M) (Fig. 3).

It was interesting to note that additional meristic patterns could be

ascertained especially from anal fin rays (Fig. 5). For management purposes,

five hypothetical stocks in Northwest Atlantic are proposed based on these

meristic taxa (Table 6). They are the Baffin Bay and Labrador stock, Flemish

Cap stock, Gulf of St. Lawrence stock, Grand Bank stock and Nova Scotian Shelf

stock. Although there were no significant differences of vertebral and anal

fin ray frequencies for S. fasciatus between Grand Bank and Nova Scotian

shelf, the deep Laurentian Channel (> 400 m) might possibly act as a barrier

and two separate fishery jurisdictional stocks could be considered.
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S. mentella were predominant in the waters between Baffin Island and

Greenland, in Labrador waters, n deep waters of the Gulf of St. Lawrence

(>200 m), and of NAFO Subarea	 (deeper than around 300-400 m), and in very

deep waters of Nova Scotian Shelf (>600 m). S. fasciatus were distributed on

in shallow waters of NAFO Subarea 3 (<300-400 m)

f Gulf of St. Lawrence (<200 m). Therefore,

d the "Labrador redfish" as in the fourth

Scientific Names of Fishes from the United

heries Society, 1980). I would support Barsukov

omm.) and E. J. Sandeman (pers. comm.) who

rosefish" be retained for S. fasciatus as

. "Bank redfish" as proposed by C. R. Robins

", as proposed by T. Kenchington (pers.

by implying shallow water. It is appropriate

mentella since it is predominant in most of

antic although it can also be found in the

West Greenland and Labrador.

epth variation and geographic cline of meristics

S. mentella, having 30 vertebrae and 8 or

thern and deep waters whereas S. fasciatus,

n rays, distributed in southern and shallow

eaked redfishes in Northwest Atlantic are
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200-299

300-399	 ns	 ns

(2)	 (2)

400-499	 ns	 ns	 ns
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500-599	 ns	 ns
(2)	 (3)

>600
	

ns	 ns

(2)	 (2)

*** b	*6
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ns
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***b	 ns
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***c	 ns
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*b	 *b

(6)	 (3)

,b
ns

(3)	 (3)

ns
(3)	 (2)

ns	 ns
(3)	 (4)

**b	 *
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*
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	,b 	
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***	 ***

	

(2)	 (2)

ns	 ns	 ns	 ns
(2)	 (2)	 (4)	 (2)

ns
(2)	 (2)

ns
(2)	 (3)

*A*
(2)

ns .	ns	 ns,
(4)	 (8)

,b	
ns
	 ***c

(2)
	

(8)

ns	 ns
	 **A

(3)	 (3)
	

(4)

ns

(3)

(3)

*
(2)

ns	 ns
(2)	 (2)

_d

Table 1. Samples sizes, mean values, and modes of
in the literature for (A) Sebates mentella and (B)

  

vertebrae, anal fin ray and dorsal fin ray frequencies recorded
S. fasciatus. Abbreviations for locality are NAFO Divisions.

 

Vertebraea Anal fin rays	 Dorsal fin rays 

N Mean Mode	 N Mean Mode

 

Locality N	 Mean Mode Author

A. S.	 mentella
Barents Sea 37 30.14 30 137 8.48 8 80 14.29 14 Barsukov and Zakarov (1972)
Iceland and Greenland 37 30.27 30 42 8.72 9 Barsukov (1972)
Iceland 253 30.17 30 282 8.49 9 34 14.65 15 Barsukov and Zakharov (1972)
West Greenland 146 29.99 30 235 8.53 9 57 14.53 15 Barsukov and Zakharov (1972)
Baffin Island 397 30.02 30 326 8.54 9 153 14.59 15 Barsukov and Zakharov (1972)
2J 202 30.04 30 203 8.61 9 Barsukov and Zakharov (1972)
3K 232 30.03 30 233 8.51 9 Barsukov and Zakharov (1972)
3L 100 30.03 30 100 8.62 8 100 14.67 15 Ni	 (1981b)
30 109 30.10 30 297 8.94 9 42 14.61 14 Litvinenko (1974)
3M,	 3P 49 30.00 30 48 8.37 8 Barsukov and Zakharov (1972)
Flemish Cap and Banquereau 48 30.02 30 48 8.40 8 Barsukov (1972)

B S.	 fasciatus
2J,	 3K 228 29.36 29 232

b
 7.63 8 96

b
13.79 14 Barsukov and Zakharov (1972)

3L 99 29.31 29 100 7.02 7 100 13.62 14 Ni	 (1981b)
30 124 29.05 29 124 7.22 7 84 13.63 14 Litvinenko (1974)
3M,	 3N,	 30,	 3P 455 29.12 29 455 7.27 7 196

d
13.67 14 Barsukov and Zakharov (1972)

4W,	 5Z 447 29.19 29 489 7.22 7 106 13.73 14 Barsukov and Zakharov (1972)
Flemish Cap, Grand Bank

and Banquereau 41 29.19 29 41 7.22 7 Barsukov (1972)

a
data were ajusted by excluding urostyle

b from 3K only

c from 30, 3P only

d from 4W only

Table 2. Summary of x2 -test of independence (significant level) a for temporal variations of vertebral frequencie#
in division-depth blocks. Number of years data for calculation are in brackets. Sample sizes are in Figure 2.
Abbreviations under geographic areas are NAFO Civisions.

St.
Depth	 Baffin	 Southern	 NE	 Flemish

	
Pierre
	

Gulf of
	

Nova Scotian
range 	 Bay 	 Labrador Nfld.	 Cap	 Grand Bank 

	
Bank 
	

St.	 Lawrence 
	

Shelf 
(meters)	 0	 1	 2J	 3K	 3M	 3L 	 3N	 30

	
3P
	

4R	 4S	 4T
	

4V	 4W	 4X

a ns: no significant difference; *: significant difference at p = 0.05 level; **:significant
difference at p = 0.01 level; ***: significant difference at p = 0.001 level.

b no significant difference was found by eliminating only one year data.

c no significant difference was found by eliminating two years data.

d depth not applicable
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Coastline
100 foth.--	 — 183 m
150 foth.	 274 rn
200 foth. 	 	 366 m
1000 fa th.	 ---- 1829 m

NORTHWEST ATLANTIC v
FISHERIES ORGANIZATION (NAFO)

CONVENTION AREA
Boundary of Convention . Area 	
Boundaries of Suboreos 	
Boundaries of Divisions 	 —

QUEBEC

GOLF, ”
OF, t	 JEWFOUNDLANSTA AVRE E

4X	 4W

65*
	

60°
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50®
	

45.

Fig.	 NAFO Divisions and pl ace names referred to in the text. Sample

sites were along the continental slope at bottom depth around 100 m

to 750 m.
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