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deep benthic communities, little is known of the food habits of
many benthopelagic fish species. Whether these demersal fishes
feed mostly on pelagic or benthic food 1is still a largely
unanswered question. Marshall and Bourne (1964) suggested, on
the basis of fin pattern and head shape, that Macrouridae and
Halosauridae (spiny eels) were both adapted for hovering over the
bottom and "rooting the ooze" with/ the rostrum to feed on small
benthic organisms. However, the report of pelagic animals in the
stomachs of some species (Podrazhanskaya - 1967, Haedrich and
Henderson 1974, Pearcy and Ambler 1974, Geistdoerfer 1975,
Sedberry and Musick 1978, DuBuit 1978, Macpherson 1979), as well
as the capture of a few species in midwaters far off the bottom
(Pearcy 1976, Haedrich 1974), suggests that some benthopelagic
species may ascend into the water' column to feed. McLellan's
(1977) analysis of the functional anatomy of feeding in the
Macrouridae indicates a variety of predator strategies within the
group, with highly specialized forms feeding on the benthos,
primitive forms feeding on swimming prey near the bottom and
intermediate forms feeding on both benthic and pelagic food
sources. :

These and other studies have revealed the complexity of
feeding relations among marine organisms. By establishing
trophic linkages one can determine energy flow pathways through
the ecosystem (Hacunda 1981). Whether the sources of food for
fishes on the upper continental slope are benthic. or pelagic,
both pathways depend ultimately on surface primary production.
How primary production influences the benthic ecosystem depends
on the amount of food energy produced and the rate at which this
energy 1is transported from the ‘euphotic zone to the bottom
(Sedberry and Musick 1978). By moving off the bottom to feed,
fishes eliminate at least one trophic level. As a rtesult, food
reaches these pelagic feeders via a shorter and hence more
efficient pathway than that of benthic feeders. By determining
the path of energy flow, a hypothetical food web can be
- constructed based on primary production, fish catches and the
biomasses of zooplankton and . macrobenthos. This allows
comparison of regions such as the Scotian shelf and the Grand
Banks, provides us with insights into the general structure of
marine ecosystems and allows us to pinpoint deficiencies in our
understanding of them. Therefore, information on the types of
food consumed is necessary in order to estimate. fish production
in this region (Mills and Fournier 1979).

The purpose of the present study 1is to determine if the
dominant demersal fishes from the upper continental slope of the
Grand Banks consume primarily benthic or pelagic organisms. As
an approach to this question, stomach contents have been analysed
and prey taxa have been classified as benthic or pelagic in order
to determine the relative importance of each prey type in the
diet of the fishes studied. Preliminary work on benthic infaunal
samples collected in the study region revealed a relatively low
abundance and biomass of macrofaunal organisms (Houston and .
Haedrich ms), indicating that pelagic organisms are may be more
important than benthic organisms as a food resource for the
dominant demersal fishes.

Stomach content data reveal only what the organism was
feeding on just prior to capture. Fishes may simply feed on
~whatever is available to them. Since the amount of
specialization in feeding habits of the fishes studied is often
difficult to deduce solely from stomach contents, indirect
evidence from parasites may be wused as an indicator of the
ecological relationships between hosts 1in terms of trophic
structure (Campbell et al. 1980). Noble (1973) pointed out that
parasites are part of the fish's environment and that access to
the host is determined by diet and living conditions, ‘as well as
by evolutionary and zoogeographical factors. As a result, the
composition of the helminth fauna of a particular host 1is. an
‘indication of the involvement of the host within a community food
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48°06'W and 48°36'W) on the eastern Grand Banks off Newfoundland
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Stomach Content Analysis
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1977). Copepods (Weikert 1982), decapod crustaceans, ostracods,
isopods and wmysids 1include both pelagic and benthic species
(Barnes 1980). In this study, decapod crustaceans included the
pelagic families Panaeidae and Sergestidae (Foxton 1970), and the
benthic family Pandalidae. These groups, considered separately in
the analysis of the data, were rare in the stomach contents
examined. Hence, in the results they are reported as one group.
Based on previous studies (Marshall and Iwamota 1973, Haedrich
and Henderson 1974, Pearcy and Ambler 1974, Geistdoerfer 1975,
1979, and McLellan 1977), fishes, euphausiids, copepods
(primarily calanoid) and decapod crustaceans in the Panaeidae and
Sergestidae were considered as pelagic prey items, Ostracods,
mysids and isopods were considered as benthopelagic prey items,
and Pandalidae, polychaetes, tanaids, gastropods, bivalves,
echinoderms and amphipods (primarily Gammaridae) were considered
as benthic,

Parasitological Analysis

The parasitological examination of fishes was done using the
methods outlined in Campbell et al. (1980). No live parasites
were collected. Parasites were removed from the body cavity and
alimentary tract of preserved fish and stored in 70 Zethanol. In
examining fish for parasites, attempts were made to obtain large
samples of the full size range of host species, and stations were
selected at regular depth intervals whenever possible. Parasites
were identified to phylum and class, and the number and taxa were
determined for each host individual.

Data Analysis

For each specimen, percentage benthopelagic plus pelagic prey
versus percentage benthic prey  was calculated. A  cluster
analysis was done on the entire data set using the CLUSTAN
package <(Wishart 1975) available at the Memorial University
computer facilities. Clustering was done by computing a
dissimilarity value on the basis of number of pelagic versus
number of benthic prey organisms in the diet of the predator
species. Clustering was done on 1individual fish in order to
account for within species differences due to ontogeny.
Dissimilarity was computed using the Non-metric (Bray-Curtis)
Coefficient according to the formula:

U - U ) + U
z Wyp = Uy /zj TR
ith U = X N
v jp T T Ry P
where Ujp denotes the mean benthic/pelagic ratio (j) £for the

cases comprising a pair or cluster (p), -X equals the value of

ij
variable j for individual i, and N_ denotes the number of cases
in the pair or cluster (p). This coefficient was chosen because
it 1is recommended for data sets with a high number of =zero
entries, and is independent of sample size. Individuals with
similar benthic/pelagic ratios had high similarity values (low
dissimilarity values) while 41individuals with very different
benthic/pelagic ratios had low similarity values (high
dissimilarity values). Clustering was done using the average
linkage method. This technique avoids comparison by extreme
values 1in a pair or cluster. The arithmetic average of
similarity (or dissimilarity) coefficients between members of two
pairs or clusters about to be fused is calculated prior to any
further clustering. Thus, the density of the points constituting
a cluster is not a factor in evaluating the resemblance between
the two entities (Sneath and Sokal 1973).
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of parasitic worms per host fish was

determined. Infection [rate for each species was calculated as

the number of individual

s of a species infected versus the number

of individuals of the species examined. Infection rate by major
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BRESULTS
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Feeding Habits

f the assemblage of fishes by number and

The stomach contentj of the dominant fishes from the study

region are summarized 1
prey from two or three o

Table 2. Most of the species contained
f the pelagic, benthopelagic and benthic

categories. Of those species which were found with items from

all three categories, th

e same individual rarely had items from

all three groups. Some specimens, primarily the Macrouridae, had
the stomach or gut partiially or entirely everted. Prey items

remaining 1in the parti

1lly everted guts were identified and

included in the analysis. Specimens with guts entirely everted

were recorded separately

but are reported here along with those

stomachs which were recorded as empty.

The clustering method used classified the predators ianto two
groups: (1) primarily benthic prey in the diet; or (2) primarily
pelagic/benthopelagic prey in the diet. Pelagic and

benthopelagic prey were

‘numerically dominant - in the diets of

Coryphaenoides rupestris, Synaphobranchus kaupi and Antimora

rostratae.

Food items of Synap

obranchus kaupi include two orders of

crustaceans and two fa
examined, 16 (21.9%Z) wer
206 to 655 mm TL, with

ilies of fishes. 0Of the 73 stomachs
e empty. Specimens ranged in size from
an average weight of 120.4 g. Pelagic

organisms comprised 73.37% of the total number of food items of S.

kaupi, with euphausiids

(66.7%) dominating. Other prey taxa

included amphipods (17.3%), fishes (6.7%, primarily myctophids),
mysids (4%), bivalves (47%) and echinoderms (1.3%).

0f the 34 stomachs of| Coryphaenoides rupestris examined, only
1 (2.9%) was empty. Sizle range of specimens was 173 to 445 mm

TL, with an average weight of 92.9 g. Pelagic and benthopelagic

organisms comprised 71.7

of the total number of food items 1in

the diet of C. rupestris, with calanoid copepods (68.9%)

numerically dominant.
(22.2%), cumaceans (4.4%
ostracods (each 1.1%).

Other prey taxa included amphipods
» euphausiids, polychaetes, 1isopods and
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The dominant food item in the stomachs of Antimora rostrata
was euphausiids (50.0%). Other prey types included .amphipods
(33.3%) and copepods (16.7%Z). Pelagic prey types comprised 66.7%
of the diet of A. rostrata. Of the 7 stomachs examined, 2
(28.6%) were empty. Average weight of specimens was 365.7 g with
a size range of 126.1 to 155.0 mm TL,

Stomach contents of primarily benthic origin occurred in
Macrourus berglax (91.6%), Nezumia bairdii (86.0%), Lycodonus
mirabilis (76.2%Z), Lycodes esmarki (97.4%) and Cottunculus
microps (84.3%Z). Several of the individuals of these species had
consumed large amounts of sediment.

Food items of Macrourus berglax included several orders of
crustaceans, polychaetes, echinoderms and mollusks. 0f the 191
stomachs examined, 50 (26.2%) were empty. Cumaceans (58.7%) and
amphipods (18.0%) were the most frequent food items, followed by
polychaetes (7.9%), euphausiids (5.7%), echinoderms (2.8%),
tanaids (2.1%), copepods and isopods (each 1.5%), mollusks,
mysids, decapod crustaceans and ostracods (all less than 1%). M.
berglax examined ranged in size from 77.7 to 324.0 mm TL, with an
average weight of 316.1 g.

Of the 96 stomachs of Nezumia bairdii examined, only 3 (3.1%)
were empty. Numerically dominant prey taxa included cumaceans
(35.6%), amphipods (23.9%) and polychaetes (17.0%). Other prey
taxa consumed were euphausiids (10.5%), bivalves (7:5%), mysids
(2.4%), echinoderms, isopods, copepods, tanaids, ostracods and
decapod crustaceans (each less than 1%). Size of specimens ‘ranged
from 175 to 407 mm TL, with an average weight of 137.8 g.

The most frequent food items of Lycodonus mirabilis were
amphipods (56.9%) followed by cumaceans (22.9%). Other prey items
include polychaete (8.3%), bivalves (7.3%Z), echinoderms (2.8%),
isopods, fish and ostracods (each less than 1%). Ten (35.7%) of
the 28 stomachs examined were -empty. L. mirabilis examined
ranged in size from 171 to 330 mm TL, with an average weight of
17.7 g

: Prey taxa found 1in Lycodes esmarki stomachs were almost

entirely (97.4%) benthic. Cumaceans (39.5%), echinoderms (31.67%)
and amphipods (25%) predominated, with fish (2.6%) and isopods
(1.3%) being incidental. Of the 6 stomachs examined, 1 (16.7%)
was empty. Average weight of specimens was 946 g with a size
range of 398 to 569 mm TL.

The numerically dominant taxon of Cottunculus microps was
amphipods (64.9%Z), followed by euphausiids (15.8%), bivalves,
polychaetes, and cumacaeans. (each 5.3%). Two stomachs (14.3%). of
a total of 14 examined were empty. C. microps had an average
weight of 135.7 g with a size range of 48 to 232 mm TL.

The small numbers of intact stomachs of Lycenchelys sarsi,
Lycodes perspicillus, Reinhardtius hippoglossoides, Sebastes sp.,
Gaidropsarus ensis and - Macdonaldia rostrata that have been
examined do not give an adequate basis for determining the
relative 1importance. of the food sources or the degree of

.speclalization in feeding habits of these species. :

Parasites

A total of 14 species of hosts, representing nine families of
fishes, were examined from depths of 403 to 1505 meters (means).
Forty=-six percent of the 464 fishes examined were infested with 1
to 3 (X =1.9) major taxa of helminths. Intensity of infestation
averaged 5.5 worms per fish. A total of 1176 helminths were
obtained. Percent occurrence of metazoan parasites among all
fishes was: Nematoda 36.7%Z, Acanthocephala 20.7%Z and Trematoda
6.9%.
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total helminth infections for all host

Table ﬂ summarizes the infection rate of the
major taxa of parasites flound in all host species.

The overall
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parasites of
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bathyscaphes or with automatic cameras (Marshall and Bourne 1964,
‘Sedberry and Musick 1978). A. rostrata were observed hovering
within one meter of the bottom. Macrourinae, a subfamily of
Macrouridae including C. rupestris, Macrourus berglax and Nezumia
bairdii, swim above the bottom with a "nose-down" attitude as .a
result of their body shape and fin pattern (Marshall and Bourne
1964). Presumably this position makes it easier to seize prey on
the bottom and to burrow. However, C. rupestris have a terminal
mouth and are therefore probably unable to burrow in the sediment
like M. berglax and N. bairdii which have a more inferior mouth
and a well developed rostrum (Geistdoerfer 1975). The latter two
species are among the benthic feeding species in this study.

In his study of Macrouridae, Geistdoerfer (1975) found that
none fed exclusively on pelagic or benthic animals, the diet was
never composed of only one prey group and there was always a
variety of prey types and sizes in the stomach. He also found a
‘greater number of prey groups in benthic feeders as opposed to
pelagic feeders. These observations are consistent with the
results of this study (Table 2).,

N. bairdii, M. berglax, Lycodes esmarki, Lycodonus mirabilis
and Cottunculus microps primarily consumed benthic organisms.
The first two species are numerically dominant on the slope of
the Grand Banks while the latter three species are relatively
rare (Snelgrove ms). '

Other studies have also found M. berglax and N. bairdii to
feed intensively on infauna. Benthic organisms such as
polychaetes, ophiuroids and gammarid amphipods were dominant in
M. berglax caught near Baffin Island (Konstantinov and
Podrazhanskaya 1973), in the Barents and Labrador Seas
(Geistdoerfer 1979) and in the northeast Atlantic, Mediterranean
Sea and Indian Ocean (Geistdoerfer 1975). These organisms were
important prey items for N. bairdii from the mid-Atlantic coast
of the USA (Farlow 1980).

The food of the two species of zoarcids, Lycodes esmarki and
Lycodonus mirabilis, is similar to that for Lycenchelys verrilli
from the coast of New England, which Farlow (1980) described as a
‘benthic feeder primarily consuming infaunal organisms. Cumaceans
and amphipods, dominant food items for Lycodes atlanticus, were
apparently gulped down with large amounts of sediment (Sedberry
and Musick 1978).

Cottunculus microps consumed a large amount of sediment along
with the prey items. McDowell (1973) believed that the sediment
that he found in halosaurids may have been incidentally consumed
along with the infauna and was "non-nutritional", but .he gave no
evidence for this conclusion. As a result of recent work by

Coull (1972) and Thiel (1975), it has been suggested that the
importance of meiofaunal prey to benthic feeding fish nmay
increase with depth. Because of their small size, meiofaunal
prey items may only be ingested with sediment. However, the
nutritional value obtained by ingesting sediment and digesting
the associated meiofauna has yet to be determined.

As a result of differences in diet, individual species of
fishes may show marked differences in the composition of their
parasite faunas and in infection rates. Infection rate for hosts
which were found to feed primarily on pelagic or benthopelagic
prey was 28.9%. Infection rate for benthic feeding hosts was
53.1%., Benthic feeders were infested with an average of 2.4 major
taxa of parasites and 4.3 worms per fish. Pelagic feeders were
infested with an average of 1 taxon and 1.9 worms per fish. This
higher rate of infection in benthic feeders 1s consistent with
the argument that the majority of «cycling of helminths of

demersal fishes is horizontal through animals in, and associated
with, the benthic community (Campbell et al. 1980), instead of
vertically through the water column as proposed by Collard
(1970). Thus, fishes which feed primarily on the benthos are
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infestation rate than those which feed

more on pelagic or benthopelagic organisms (Noble and Collard

1970).
Collard (1970) also p

from surface waters to th

roposed that midwater organisms play an

deeper regions of the ocean. Campbell

important role as vertiFal transporters of nematode parasites

et al. (1980) found nematode parasites to be more common in
fishes such as N. bairdii, which they describe as rarely

ascending into the water
be abundant in both benth
indicating that both path

Crustaceans, particul
hosts for acanthocephala
were relatively abundant
pelagic feeders. The ab
feeders suggests that
crustaceans. This conte
which amphipods and cumac

Trematoda comprised 7
feeders and only 5.8% of
Epifaunal 1invertebrates
intermediate hosts for t
rupestris was the only
Trematoda, benthic organ
their diet at some time i

Zubchenko (1981) repo
species of Macrouridae st
was infected with 14 spec

column to feed. Nematoda were found to
ic (53.1%) and pelagic (72.27%) feeders,
ways are possible.

arly amphipods, are known intermediate
ns (Ginetsinskaya 1970). Acanthocephala
in benthic feeders (40.9%)and absent in
undance of acanthocephalans 1in benthic
they consume a great number of
ntion 1is supported by gut contents in
eans predominated.

7.8%2 of the helminth fauna of pelagic
the helminth fauna of benthic feeders.
have been reported as primary second
hese helminths (Munroe 1976). Since C.
pelagic feeding species 1infected with
isms may be an ‘important component of
n their life.

rted on the parasite faunas of the three
udied here. In his study, C, rupesttis
ies of parasites. The majority of these

parasites were reported to have pelagic animals as intermediate
hosts, indicating pelagijc prey as a significant part of the

diet. M. berglax was inf

ested with 21 species of parasites, many

of which have benthig organisms as intermediate hosts.
Interestingly, the parasite fauna of N. bairdii collected from

the Flemish Cap area incl

uded a number of species with cycles of

development related to pllanktonic organisms. However, they also
had parasites which cycdle through benthic organisms. These

results suggest that, a

t some point 1in their 1life, pelagic

organisms are important prey items for N. bairdii.

Comparison of infect
that all phyletic groups

fon data among deep—sea hosts reveals
of fishes are not infected by helminths

to the same degree. Incdidences of infections by Nematoda and

Acanthocephala were twofo
other fishes. Infection
all other species than

ld or greater in the macrourids than for
y Trematoda was several fold greater in
or the macrourids. Overall 1infection

rate was much greater for macrourids (50.5%) than for

non-macrourids (36.4%).

In general, the higher 1incidence of

helminth infections in macrourids (Armstrong 1974, Munroe 1976,
and Campbell et al. 1980) indicates that this group of teleosts
is not only more frequentily infected but also carries a greater
parasite burden than nonfmacrourid hosts occurring in the same

areas.

Incidence of infe
Acanthocephala, were grea
1974) and Hudson Canyon
examined here (Table 5).
be a result of sampling.
cavity were collected

ction . for all helminths, except
er in Gulf of Mexico fishes (Armstrong
fishes (Munroe 1976) than for fishes
These higher levels of infections could
Only parasites from the gut and body
here, while Armstrong (1974) and

Munroe(1976) included ©paprasites from the gills, skin and
viscera., A comparison between Carson Canyon and Hudson Canyon

fishes (Munroe 1976),

excluding macrourids, revealed that

infections of non-macrourid fishes were similar in trend.

0f the 8 species examined, 5 feed primarily (by number) on

benthic organisms and
benthopelagic organisms.

3 feed primarily on pelagic and
There are more species of benthic




- 10 -

feeders than pelagic feeders, but the pelagic feeders are more
abundant 'in actual numbers (70.3% versus 20.5%Z). These results
are similar to those of DuBuit (1978). She found that 62% of food
of deep sea fishes off the northeast coast of Scotland and on
Bill Bailey Bank is of nectonic origin. The average individual
weight for the benthic feeders was 270.6 g while that of the
pelagic feeders was 130.6 g. Despite this smaller average size,
pelagic feeders still comprised -a significant proportion of the
biomass (43.3%), with the benthic feeding species studied
comprising a smaller proportion (25.9%).

This and other studies have found that the benthopelagic
fishes from the upper continental slope feed on a variety of both
benthic and pelagic animals. The analysis of trophic
‘relationships among prey groups and between the demersal fishes
and prey groups from this study shows that the fishes 'are at the
top levels of the. food web of the continental slope. These
demersal fishes, particularly the pelagic feeding species, may
represent a connecting = link between the pelagial and the
benthos. Since they are not confined to the bottom, they may be
an important factor in the transfer of energy from pelagic to
benthic ecosystems through their remains and feces (Dayton and
Hessler 1972), but there is no direct evidence to support this
contention. In fact, the large proportion of biomass represented
by pelagic feeders, and the low biomass of macrobenthic fauna
(Houston .and Haedrich ms) indicate that a large proportion of the
biomass 1is being recycled in the water column. These results
indicate the importance of pelagic organisms to the assemblage of
demersal fishes on the upper continental slope. To understand
the dynamics of demersal fish populations, it will be necessary
to study the populations and physical environment of the water
column.

Reports of Macrouridae falling prey to large Gadidae that
make temporary forays onto the upper continental slope
(Geistdoerfer 1975) suggest that demersal fishes may provide a
link between the deep sea food chain and the continental shelf
food chain. These predators of Macrouridae are mainly large
fishes that are fished commercially. As well, C. rupestris is
already fished commercially and is therefore of economic
interest., Hence, the demersal fishes from the upper continental
slope are involved in the fishing industry both indirectly as
prey to commercial species, and directly as human food.
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Table 1: List of all species collected from sample area (Snelgrove, ms)

Total % Total Number %

Species # stations | number | number Examined | Examined
Alepocephalus sp. 7 15 0.36 N/E -
Anarhichas lupus 2 2 0.05 N/E B

- Antimora rostrata 26 402 9.60 7 1.74
Centroscyllum fabrica 5 15 0.36 N/E ' -
Chalinura brevibarbis 1 12 0.29 N/E -
Coryphaenoides rupestris 18 2624 | 57.80 34 1.40
Cottunculus microps 9 18 0.43 14 77.78
Gadus morhua 3 16 0.38 N/E -
Gaidropsarus ensis. 7 10 0.2k 8 80.0
Glyptocephalus cynoglossus 4 10 0.24 N/E : -
Harriotta raleighana 2 2 0.05 N/E -
Hydrolagus affinis 2 2 0.05 N/E -
Lionurus carapinus 4 10 0.24 N/E -
Lycodes atlanticus 2 5 0.12 N/E -
Lycodes esmarki i 4 19 0.45 6 31.57
Lycodes perspecillus 1 1 0.02 1 100
Lycodes vahlii 3 5 0.12 N/E -
Lycodonus mirabilis 6 29 0.69 28 96.55
Lycenchelys sarsi 2 2 0.05 | 2 | 100
Macdonaldia ‘rostrata 3 4 0.10 2 50.0
Macrourus berglax 25 573 13.68 191 » 33.33
Nematanurus armatus 4 15 0.36 | N/E -
Nezumia bairdii 16 219 ©5.23 96 43.84
Notocanthus ‘sp. 2 2 0.05 N/E -
Physis chesteri 2 4 0.10 N/E -
Raja jenseni 2 4 0.10 N/E -
Raja radiata 7 21 0.50 N/E -
Raja sentra , 2 2 0.05 N/E -
Reinhardtius 'hippoglossoides : 8 23 | 0.55 1 | 12.50
Scophthalmus ‘aquosus 2 4 0.10 N/E -
Sebastes sp-. 8 166 3.96 1 0.60
Synaphobranchus kaupi. 23 148 3.53 73 | h9.32
Trachyrhynchus murrayi 1 1 0.02 N/E -
Zoarces sp.. 3 4 0.10 N/E -
Total | w89 L6k 11.08
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Figure 1:

Chart of p
Newfoundl a

psitions of trawl stations off the coast of
nd.
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