NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N863

NAFO SCR Doc. 84/VI/74

SCIENTIFIC COUNCIL MEETING - JUNE 1984

Marine Environmental Data Service Report for 1983/84

by

J. R. Keeley

Marine Environmental Data Service, Fisheries and Oceans Canada 7th Floor West, 240 Sparks Street, Ottawa, Canada KIA OE6

Introduction

During 1983, about 1800 classical hydrocast stations and some 1300 bathythermograph stations reached MEDS. Through MEDS connection to IGOSS, knowledge of approximately 1200 stations (mostly temperature vs depth data) was gained. From the reception of forms detailing the standard NAFO sections occupied during the year, a further 600 stations are reported. From ROSCOP forms and cruise reports MEDS is aware of 2100 more stations, all being CTD work from Canadian vessels. From our CAMDI holdings we are aware of a further 3000 stations where temperature and salinity data have been collected in the NAFO area.

This year, some data from along NAFD standard sections have been received by MEDS and vertical sections of the data are contoured. These are only a local representation of the environmental conditions which persisted throughout the NAFD area for this year. However, some progress can be reported in the efforts to provide a statement of the environmental conditions. Each month the National Weather Service in the United States issues sea surface temperature anomaly maps. Excerpts from these are reproduced this year.

During this past year MEDS has acquired the data from the Atlas of the World Ocean as compiled by S. Levitus. This atlas presents long term average estimates of temperature and salinity profiles for every 1 degree square at (US NODC) standard depths and by season. Although this is not fine resolution in either time or space, it does represent one of the more detailed atlases to date, with the added feature that the data composing the atlas are in computer compatible form and available to the general public. MEDS is currently attempting to make use of these data to help calculate anomaly maps of temperature and salinity seasonally and at a variety of depths.

1983 Data Not Yet Received By MEDS

Table 1. lists the known data collections from the NAFO area but which have not yet reached MEDS files. The list has been arranged by oceanographic cruises. Wherever possible, the observations have been divided into those sampling temperature only and those with salinity observations as well. The reference column indicates the source from which the information was derived. There are a total of about 5700 stations represented in table 1.

1983 Data Received And Processed

Table 2. presents the list of cruise data received at MEDS for the year 1983. There are about 3100 stations of hydrocast and bathythermograph data. Most of these cruises have been made by Canadians. The only other NAFO member from which data from 1983 have been received is the Soviet Union. MEDS has received about 700 stations from them. As in table 1., the data have been divided into temperature observations only and those with salinity as well. The reference number is the cruise number assigned by MEDS when the data are received. The column labeled "Figure" indicates the figure number in Appendix A where the cruise track may be found. Where both BTs and bottle data have been collected on the same cruise, only a single track chart has been presented; that for the collection with the larger number of stations.

Because MEDS participates in the IGOSS program it receives data from ships transmitting these messages to the GTS system. An examination of the data received in 1983 yields upwards of 1200 stations. Many of these observations have been made by foreign vessels. These data are all logged in MEDS databases. Table 3. lists the information which is known about these collections. The messages have been combined into what appear to be "cruises" based on the separation in time between observations. Track charts have not been presented for these because of the large number. Instead, NAFO subareas have been included in table 3. The 16055 messages are received with four character call signs identifying the ship making the observations. Where known, the ship name has been associated with the call sign. There are a further 84 messages from assorted ships not shown in table 3. In some cases the cruises of table 3 may duplicate those of tables 1 and 2. It was decided to present these in table 3 to indicate the volume of traffic on the IGOSS system at MEDS.

Of the data received, there are 6 occasions where data have been collected along NAFO standard sections. Contours of the available temperature and salinity data have been brawn for these sections and the results presented in Appendix B.

Historical Data Acquisition

Last year, as in the past, MEDS annual report identified a number of cruises which collected data from the NAFD area but which had not reached the archive. Of these cruises, only 2 have been received in the past year. MEDS did receive a number of cruises from the NAFD area but from earlier years. We have just received 13 cruises of upwards of 800 stations from the Federal Republic of Germany, a complete year of cruises from ICES, and 1 cruises of about 30 stations from the Soviet Union.

A number of the cruises from the past years may have reached the world data centres. During the next year MEDS will be exploring this avenue once more to try to update its holdings. Prompt receipt is only possible with the submission the data directly to MEDS.

Review of Environmental Conditions in 1983

In past years, environmental summaries were based upon the few observations of the water properties from standard sections, or the localized data collections of particular countries. These were welded together by the expertise of the individuals preparing the summary. The expertise and data available to MEDS has not always permitted the unification of the data to present a reliable estimate of the environmental conditions. In these cases it was decided to abandon the attempt rather than portray possibly misleading information.

The Department of Commerce in the United States publishes a document called the Decanographic Monthly Summary. Each month, a map of the sea surface temperature anomalies in the Atlantic are presented. While the map does not always cover the entire NAFD area, it does portray information from the regions below 50 degrees north. The data on which these maps are based are both in situ and satellite observations. The map production uses climatology from the National Climatic Center in the United States. Appendix C shows selected portions of these maps for each month of 1983.

The maps show a large cold anomaly dominating the north Atlantic centred approximately at 50 N, 42 W. While there are changes in the southern regions covered by this anomaly, north of about 50 degrees, it appears to persist throughout the year. In the early part of the year, there is a cold tongue of water offshore of Georges Bank. This, too, persists through most of 1983. At the beginning of 1983, a warm anomaly is situated south of the Grand Banks. As the year progresses, this tends to die away until by December it has vanished.

Just as in the past, not enough data have been received from standard sections to permit baseline conditions over the years and therefore anomalies to be calculated. At best however, the standard sections are local samples in both time and space of the oceanographic conditions extant during the year. A more complete picture of the environmental conditions can be gained if more or all of the data collected during the year may be utilized in assessing the conditions. Such a utilization is possible if one can compile the data into a form which matches the presentations of any of a number of atlases of the mean conditions of the oceans. In the past year, MEDS purchased the contents of the Atlas of the World Ocean compiled by S. Levitus from the data holdings of the NODC in the United States. What made this attractive is that the data are available on computer tape and therefore may be manipulated readily in comparisons of new data collections to the conditions represented in the atlas.

The atlas analysed temperature and salinity at a set of standard depths in each one degree square for the world ocean and in four seasons. While the resolution by season is not particularily fine, in the search for yearly departures from the mean conditions it may be adequate, since anomalies can persist for many months. The one degree resolution is fine enough to tempt the production of some of the longer NAFO standard sections to be contoured, but this was not done. The vertical resolution is typical of classical hydrocasts.

Initial attempts at calculating anomalies were made by using all of the available data from each of the four seasons and regardless of when the observations were made. The techniques of optimum interpolation were used to construct spacial correlation functions. Anomalies were calculated by subtracting the atlas values from the data. The anomalies were contoured at various depths making use of the correlation functions. The results were then compared to those of the National Weather Service at the surface. In areas where data were plentiful, comparisons were moderately good. In other areas, the comparisons were poor. The results were not good enough to present here. Work is continuing to try to arrive at reliable anomalies by accounting for the sampling in each season. It is hoped that results will be available in time for the September NAFO meeting. Should this analysis prove useful, it would be possible to provide contoured anomaly maps of temperature and salinity both at the surface and subsurface by season. While the atlas does not conform to NAFO recommendations of baseline periods, it would seem to be the only realistic way that uncoordinated data collections may be combined to arrive at a large scale picture of environmental conditions.

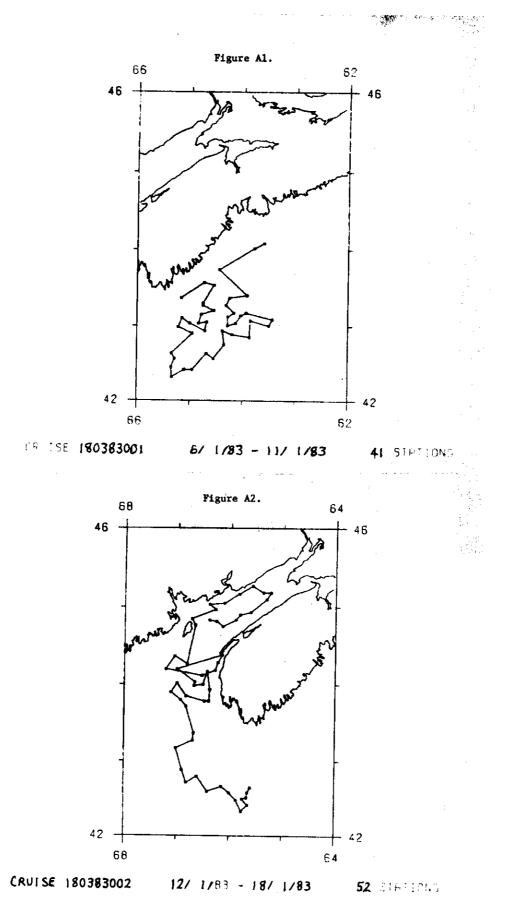
Platform		Cruise Period	Sub Area			Ref,
		FEDERAL RE	EPUBLIC	of GERMANY		
А.	Dohrn	Oct	2	Seal Isl.	6	NAFO
Α.	Dohrn	24 Oct- 8 Nov	2.3		80	NAFO
μ.	Herwig	Nov	1	C. Farewell	4	NAFO
ω.	Herwig	Nev	1	C. Desclatr	4	NAFO
Ψ.	Herwig	Nev	1	Fredriskhb	4	NAFO
ω.	Herwig	Nov	1	Fylla	6	NAFO
Ы.	Herwig	Nev	1	L. Helle.	6	NAFO
พ.	Herwig	8 Nov-19 Nov	1.2		153	NAEN

Table 1. Data collected in the NAFD area in 1983 but not received ----- at MEDS.

		1000			• .	
Gizhiga Gizhiga	10 Mar-29 Mar 31 Mar- 4 May	USSR 4 4		48	C84079104	
Gizhiga Gizhiga	27 Apr-30 Apr 7 May-18 May	3,4		117 27	C94079103 C64020101	
Ekliptika	22 Sep-14 Oct	3 4		30 105	C84079101 C84005101	
Passat Ekliptika	5 Oct'82-22 Jan 15 Oct-15 Nov	3,4 4		765 71	C84115I03 C84005I02	
		POLAND				
Wieczno	Jan - Mar	 5,6		88	NAFO	
		DENMARK		00	14 <i>HP</i> (3	
A. Jensen	18 Jan		Fylla	5	NAFO	
A. Jensen	li May	1	Fylla	5	NAFO	
A. Jensen A. Jensen	29 Jun Jul – Sep	1 1	Fylla	1 63	NAFO NAFO	
A. Jensen A. Jensen	8 Jul 9 Jul	1 1	Egdem. Holstb.	5 5	NAFO NAFO	
A. Jensen A. Jensen	10 Jul 11 Jul	1	L. Helle.	5	NAFO	
A. Jensen	25 Aug	1 1	Fylla Fylla	5 5	NAFO NAFO	
A. Jensen A. Jensen	Oct - Dec 11 Oct	1 1	Fylla	28 5	NAFO NAFO	
A. Jensen A. Jensen	27 Oct	1	Fylla	5	NAFD	
A. Jensen	28 Oct 29 Oct	1 1	L. Helle. Holst.	5 5	NAFO NAFO	
A. Jensen	30 Oct	1	Egedm.	7	NAFO	
		CANADA		-		
Dawson E.E.Prince	5 Apr-12 Apr 6 Apr-21 Apr	3,4 4		29 49	ROSCOP C84087103	
Dawson Hudson	12 Apr-18 Apr 4 May-27 May	4 3,4		83 39	C84093104 ROSCOP	
Dawson	23 May-30 May	3		24 185	ROSCOP ROSCOP	
Dawson Huɗson	28 Jul- 6 Aug	2		36	ROSCOP	
Dawson G.Atlantica	2 Aug-12 Aug 6 Sep-19 Sep	4,5 4		1800	ROSCOP C84095101	
Dawson	24 Oct-29 Oct	4		9	C84093101	
		FRANCE				
Cryos Cryos	18 Jan-17 Feb 21 Feb-18 Mar	3,4 3,4		$\frac{114}{74}$	C84115102 C84115101	
Cryos	30 Aug-15 Sep	4	11-1-1-5 - 5	91	C83340I01	
Cryos Cryos	6 Sep 18 Sep- 3 Oct	4 4	Halifax	10 71		
Cryos	Oct - Dec	3,4		88	NAFO	
	UN] ———	TED STA	TES			
Delaware 2 Delaware 2	17 Jan-11 Feb 28 Feb- 9 Mar	4,5 5		102 70	C83343IØ1 C84076IØ1	
Albatross 4	28 Mar- 8 Apr	5		105	083340102	
Albatross 4 Albatross 4	11 Apr-22 Apr 25 Apr- 6 May	4,5 4,5		93 104		
Albatross 4 Albatross 4		4, 5, 6 5, 6		177 46		
Albatross 4	18 Jul-22 Jul	6		65	084095102	
Albatross 4 Albatross 4		6 5,6		49 42		
Delaware 2	15 Aug- 7 Sep	5		62 35	CB4104I01	
Albatross 4 Albatross 4	17 Oct-28 Oct	5		198	C84004102	
Albatross 4 Delaware 2		5, 6 4, 5, 6		46 152		
Ref. code: NAFO = information obtained from NAFO inventory forms						
	ROSCOP = informa C = informa	tion obt	ained from R	DSCOP f	forms	
	databas		ATTICE IT CON 973			

 ${\bf P}$

4 -


Table 2. Data collected in the NAFO area in 1983 and received by MEDS.

Platform	Cruise Period	Subarea Bot	Type Cruise Bt Number Fig	Ĵ.			
appa si bil alda alda ann ann valt Shi-	Tana mina naka daka sika mana mana ang mana sika mana	CANADA	New Law was - Saint and Loop pro-Loop and may and was - Saint Way or				
Lady Hammond	1 Jan-ii Jan	4X 41	38 180383001 A:	1			
Lady Hammond	12 Jan-18 Jan	4X 52	48 180383002 A				
Fraser	21 Jan- 6 Mar	6B-E	26 181883001 A	3			
Annapolis	26 Jan-11 Feb	6D, E	14 181883012 A				
Lady Hammond	9 Feb-18 Feb	4X,5Ze 53	180383007 AS				
Assiniboine	14 Feb-11 Mar	4X, 5Y, Ze, 6A-E	19 151883013 A				
Algonguin	15 Feb- 9 Mar	6B-E	17 181883004 A	7			
Nipigon	28 Feb- 3 Mar	4W, X	7 181883017 A				
EE Prince	3 Mar- 6 Mar	4W.X 12	8 180383003 83				
Lady Hammond	6 Mar-17 Mar	4X,5Ze 50	180383008 A1	Z			
Huron	15 Mar-18 Mar	4W, X	15 181883015 A1:	1.			
25 Prince	15 Mar-27 Mar	4X,5Y,Ze 159	19 180383004 A10	2			
Nipipon	16 Mar-28 Mar	3N. D. Ps. 4Vs. W	14 181883018 A13	3			
Lady Hammono	21 Mar-30 Mar	4Ý⊊, Å 68	67 180383005 A14				
Lady Hammond	5 Apr-14 Apr	4W,X,5Y,Ze 74	60 180383006 A1	5			
Athabaskari	14 Apr-16 Apr	3M, 6H	7 181883006 A1				
Algonquin	14 Apr-21 Apr	47.₩	8 181883005 AT				
Nipigon	6 May-19 May	4 X	15 181883019 A1				
Ottawa	10 May-19 May	4X	11 181883002 A1				
Alf. Needler	25 May- 3 Jun	4X,5Y,Ze 83	84 180383009 A2				
Alf. Needler	21 Jun-29 Jun	4X,5Y,Ze	70 180383013 A2				
Alf. Needler	5 Jul-14 Jul	4W, x, 5Y, Ze 72	85 180383015 A2				
Alf. Needler	19 Jul-27 Jul	3Ps, 4Vn, Vs, W 74	81 180383016 A2				
Alf. Needler	27 Jul-28 Jul	4₩ 2	2 180383017 A24				
Lady Hammond	2 Aug-10 Aug	4X,5Y,Ze	61 180383014 A25	5			
Saquenay	24 Aug-31 Aug	3Ps, Pn, 4R-X	5 181883009 A2				
Alf. Needler	30 Aug- 9 Sep	4X,5Y,Ze B3	83 180383018 A2	7			
Saguenay	12 Sep-16 Sep	`4 Τ , ω	12 181883010 A20	8			
Alf. Needler	12 Sep-28 Seo	3Ps, Pn, 4Vn,					
		4Vs,W,X,5Y,Ze 76	183183006 A2	Э			
Saquenay	19 Sep-22 Sep	4T W	8 181883011 A3(Z			
Algonguin	19 Sep-29 Sep	4 X	8 181883007 A3.	1			
Iroquois	19 Sep-30 Sep	4 X	25 181883008 A3	2			
Alf. Needler	4 Oct-13 Oct	3Ps,4Vn,Vs,W 90	25 180383019 A33	3			
Alf. Needler	18 Oct-27 Oct	4W,X,SY,Ze 98	95 180363020 A34	4			
EE Prince	1 Nov-12 Nov	4X,5Y,Ze 159	159 180383021 A3	5			
Suloy 14	Oct(82)-20 Feb	26,H,J,3K,L 139 3M,N,D	905U82026 A30	5			
Kokashaisk	1 Mar-19 Apr	3L, M, N 117	90KK83002 A31	7			
Sulcy	16 Apr- 4 Aug	3K, Ĺ, M, N, O 179	905883027 -	-			
Gemma	24 May-31 May	3L, M, N 42	906E83027 A30	з			
Suloy 1	Nov-10 Jan(84)	- 61	74 905083004 -	-			
Poisk	9 Nov- 9 Dec	2J,3K,L,M,N,O 42	48 90PK83046 A31	Э			

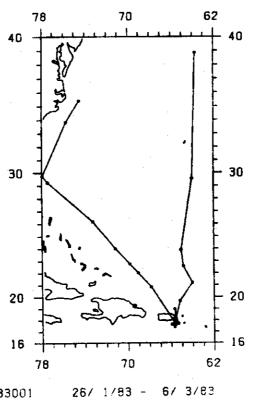
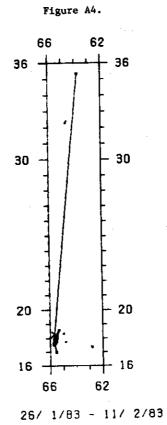
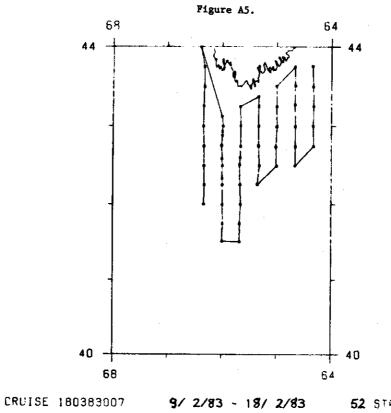

ŝ

Table 3. IGOSS data received at MEDS during 1983.

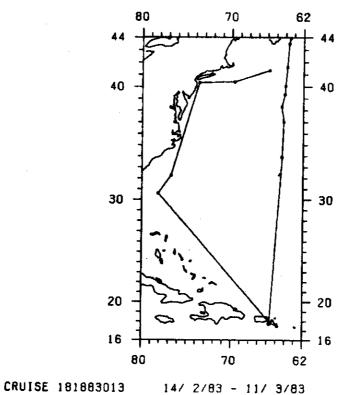
		Call	(Druise		Msa	Type	NAFO
Ship Name	Country	Sign		Period		Bathy		
Hudson	Canada	CGDG	12	Nov-18	Nov	10.		2J, 3K
A. Dohrn	FRG	DEFR		Oct-13		109		2Ј, ЗК-М
Monsoon	USSR	EREA		Feb- 3		36	13	3MN, 6H
Poryv	USSR	ERES		Dec-3i		32	11	•
Poryv	USSR	ERET		Apr-13		55		3MN,6H
Poryv	USSR	ERET		May-26		5	15 1	3KMN, 6H
Poryv	USSR	ERET	27	5	-			3K
Poryv	USSR	ERET				63	16	3MN, 6H
Poryv	USSR	ERET		Oct-25		35	20	3MN,6H
E.Krenkel	USSR			Dec-31		11	4	3M
		EREU		Jun-7		9	1	3M
Cryos Covoc	France	FNBA		Sep-2		126		4VsWX,5Ze
Cryos	France	FNBA		Oct- 4		29		3Ps
Cryos Thalasa	France	FNBA	9			44		3PsPn
Thalassa	France	FNIB		Jul- 6		5		3LPs,4T
		NJHD		Jun-21		8		5Ze,6ABC
		NJSP		Apr-20	•	22		6BC
		NJSP		Apr- 3		16		6BC
Hamilton	USA	NMAG		<i>ปีแท</i> - 5		5		5Ze,6DE
Duane	USA	NRDB	1	Jun∼ 8		19		5Ze,68-E
Duane	USA	NRDB		Jun-17		6		5Ze,6D£
Duane	USA	NRDE	10	Jul-14		9		6BC
Duane	USA	NRDE	17	Aug−20	Aug	6		6B
Taney	USA	NRDT	23		Jul	22		5Y-Zw, 6B-D
Taney	USA	NRDT		Jul−2i	Jul	16		5Zw, 6B-E
Northwind	USA	NRFJ	16	Mar- 5	Apr	24		3L,4Vs₩X,
								5Ze,68-D
Northwind	USA	NRFJ	15	ปีแท−25	Jun	14		1D-F,2J,3KLO
	·							4VsWX,5Ze,
N N N N						_		6B-D
Northwind	USA	NRFJ	1			8		1A
Northwind	USA	NRFJ		Jul- 4	•	13		1A, 2J, 6BC
Oleander	Nethlands			Jan-17		8		6AB
Oleander	Nethlands			Jan- 3		24		6ABC
Oleander	Nethlands			Feb-19		14		6AB
Oleander	Nethlands			Jur-16		52		6AB
Oleander	Nethlands			Aug-11		5		6AB
Oleander	Nethlands			Nov-19		18		6ABD
		SHIP	23	Aug-20	Sep	19		3M-0,4Vs₩X
 .								5ZeZw,6A-G
Passat	USSR	UZGH		Mar-15		24	Э	3L-N,6GH
Passat	USSR	UZGH		Aug~30	_	18	3	3L−Ps
G.Atlantica		VC9450		Jul- 2			20	SHI
L.Hammond		VC9616		May-13	-	59		4X,5Ze
L.Hammond		VC9616		Jun-11	Jun	58		4X,5Ze
L. Hammond		VC9616		Nov-29		8		4W
Albatross4	USA	WMVF		Apr-18		11		5Ze
Albatross4	USA	WMVF		May-11	~	8		5Ze
G.Chalenger	058	WNCU	16	Aug-22	Sep	13		3L,4WX,6AB

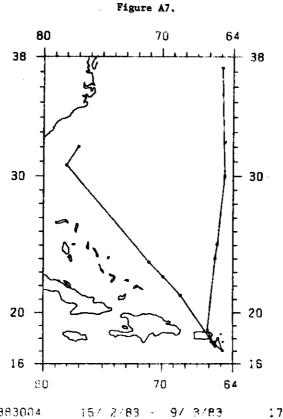


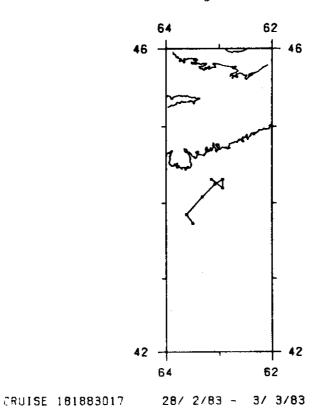
- 7 -


CRUISE 181883001

26 STATIONS


14 STRTIONS





CRUISE 181883004

17 STATIONS

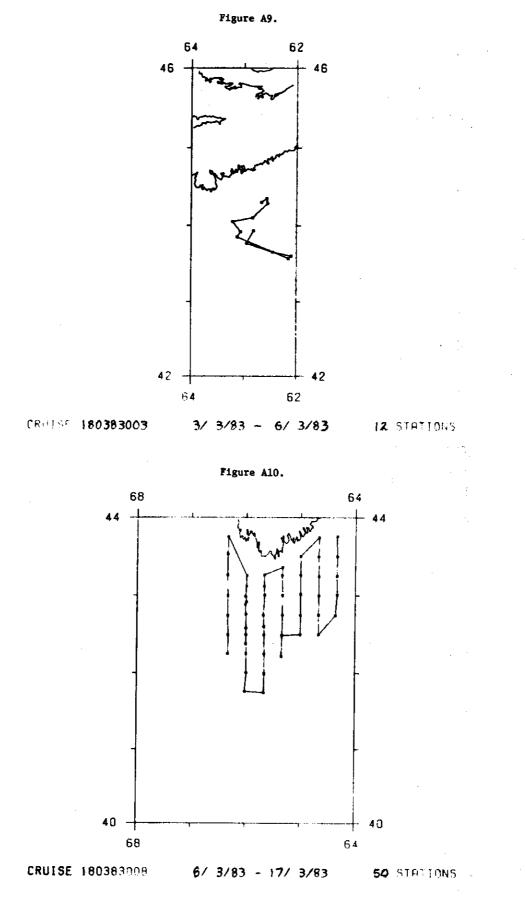
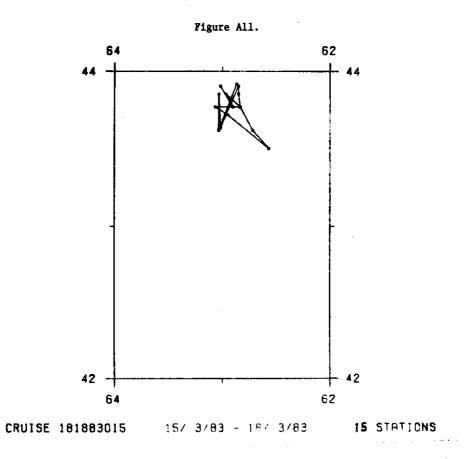
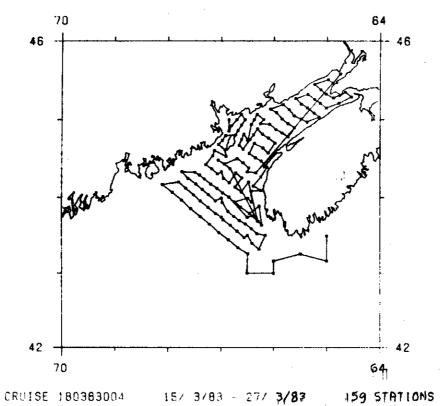
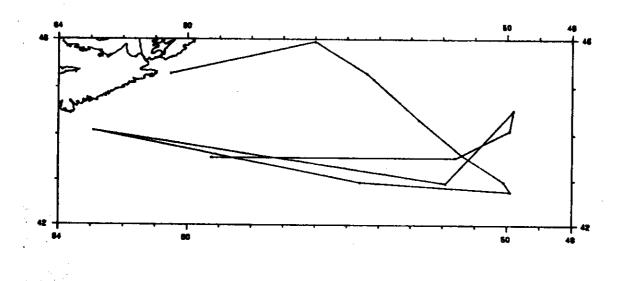

•••

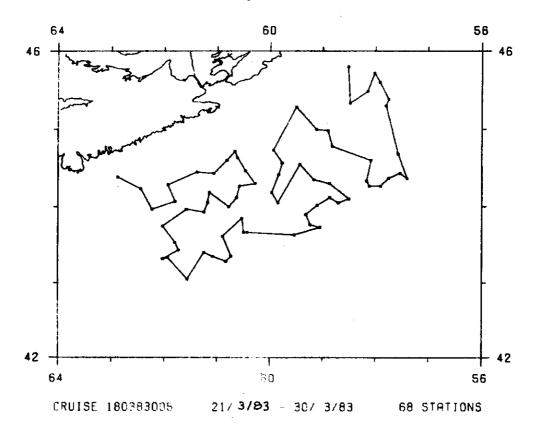
Figure A8.

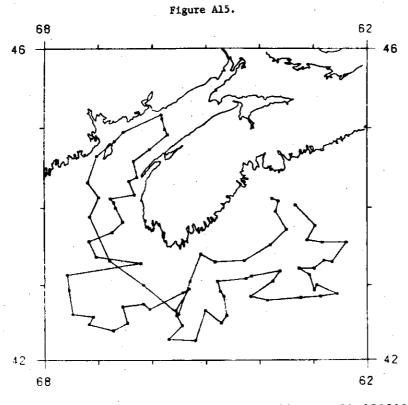


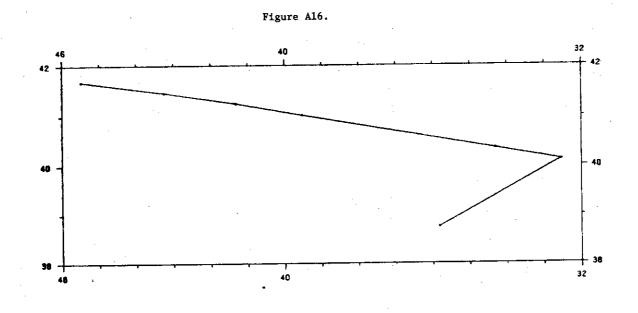
7 STATIONS


- 10 -

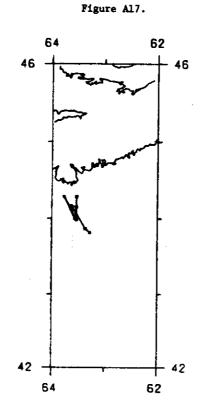

- 11 -







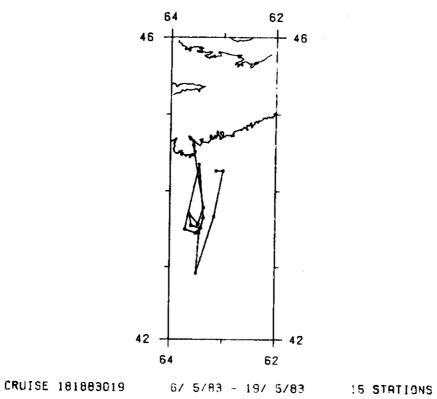
٠,



TRUIDE 180383806 57 4/83 - 147 4/83 80 STATIONS

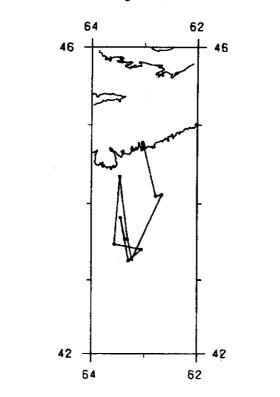
CRUTSE 181803008 14/ 4/83 - 15/ 4/83 7 STATIONS

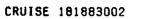
- 14 -



CRUISE 181883005

14/ 4/83 - 21/ 4/83 •


8 STATIONS


Figure A18.

- 15 -

.....

.

10/ 5/83 - 19/ 5/83 11 STATIONS

.

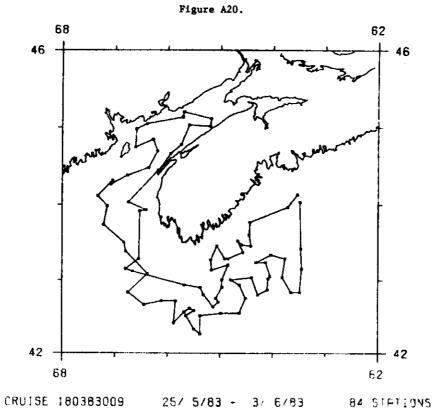
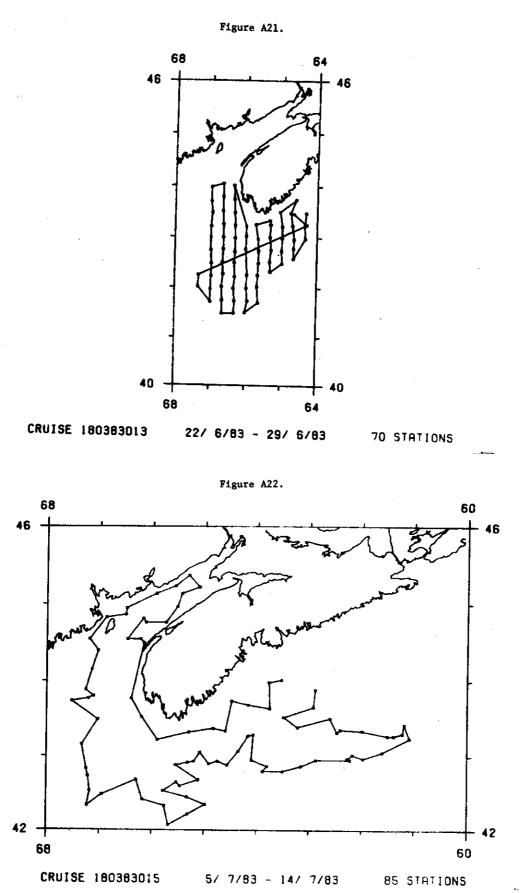
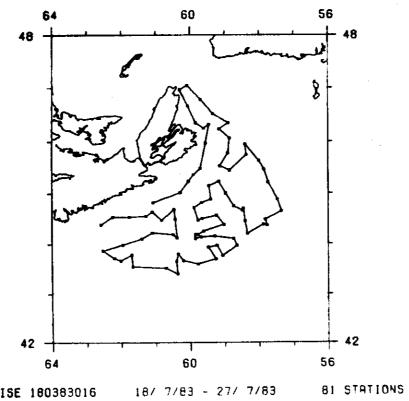
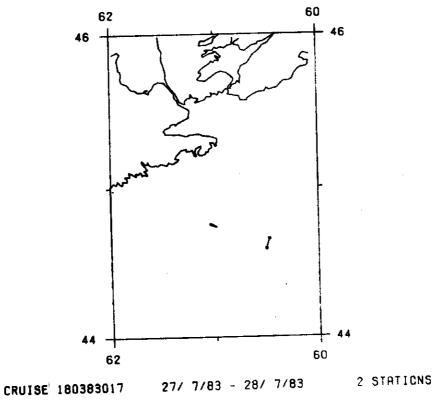
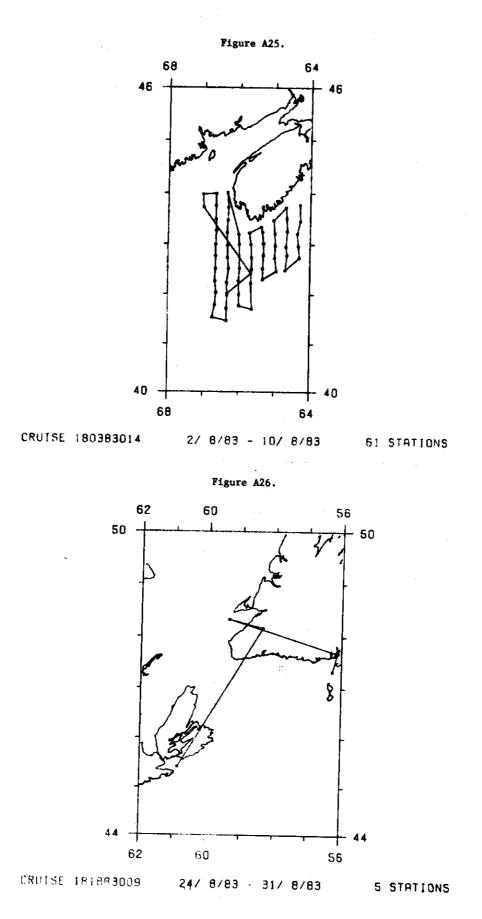



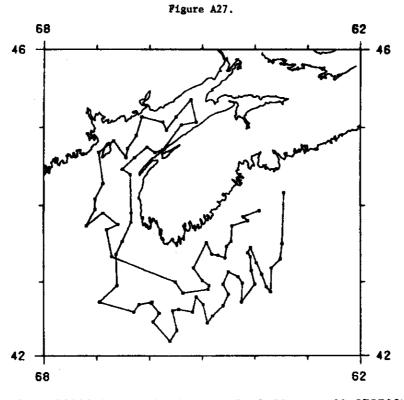
Figure Al9.

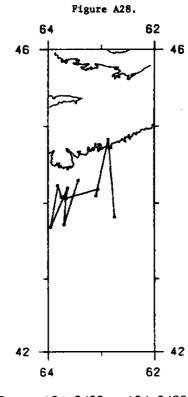

- 16 -

- 17 -



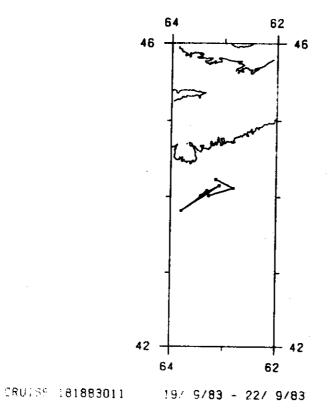

- 18 -

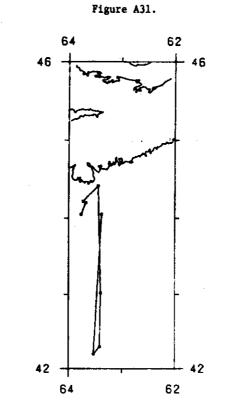

CRUISE 180383016

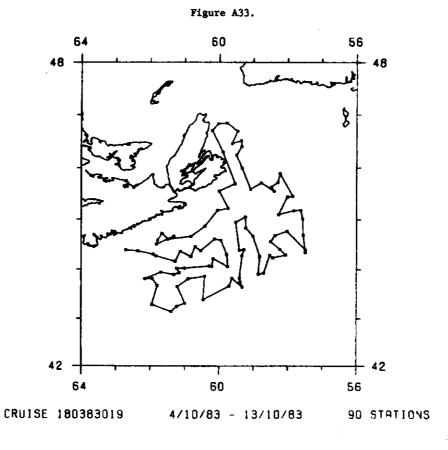

- 19 -

CRUISE 180383018

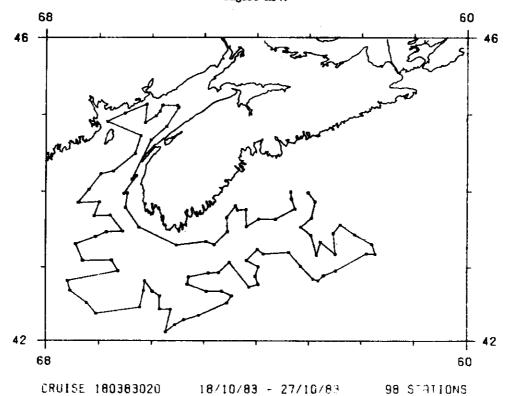
2

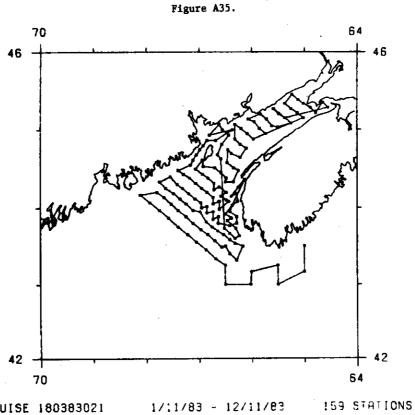





8 STATIONS

CRUISE 181883007 19/ 9/83 - 29/ 9/83


8 STATIONS


Figure A32. 62 66 45 -46 42 -42 T 66 62 CRUISE 181883008 19/ 9/83 - 30/ 9/83 25 STATIONS

- 23 -

Figure A34.

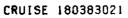
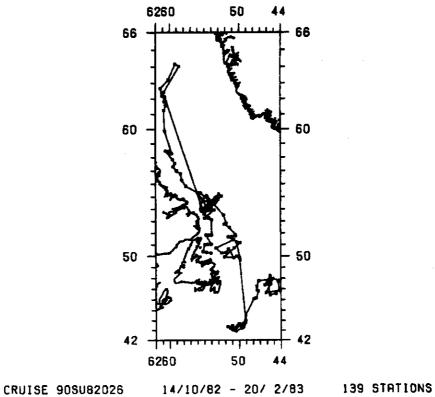
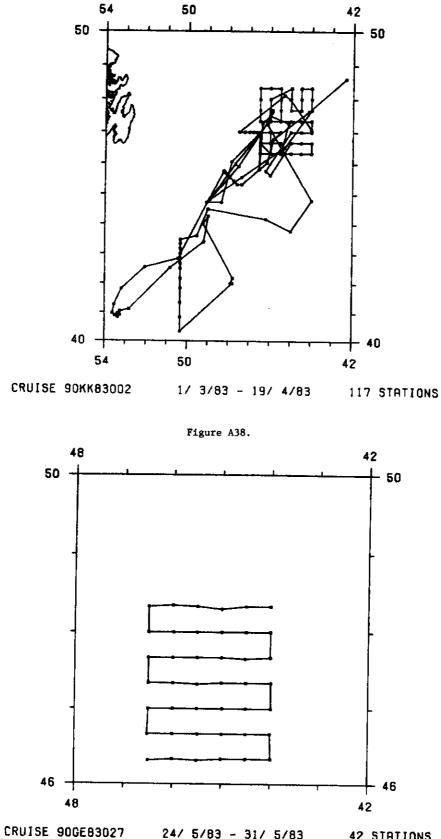




Figure A36.



Figure A37.

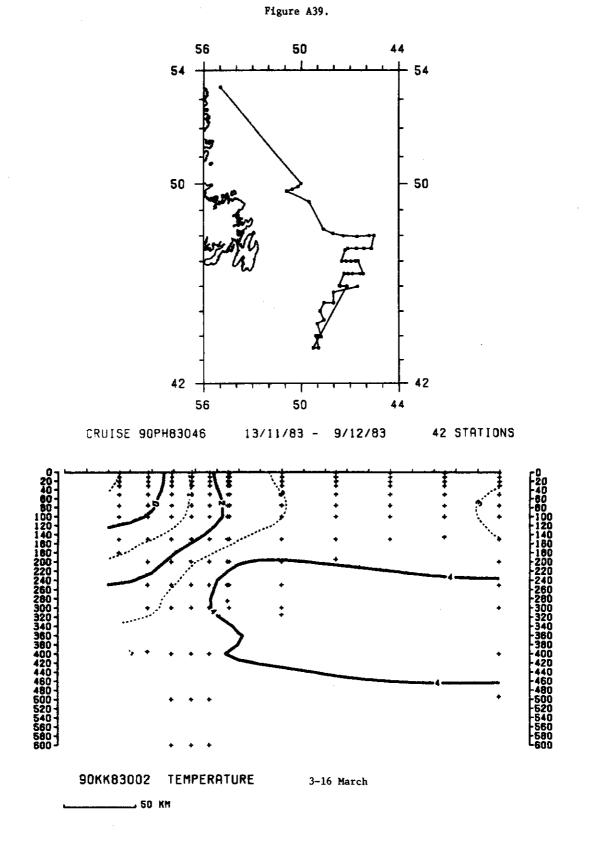


Figure B1. Stations along the NAFO Flemish Cap standard section. Left to right is west to east for standard stations 7 to 18.

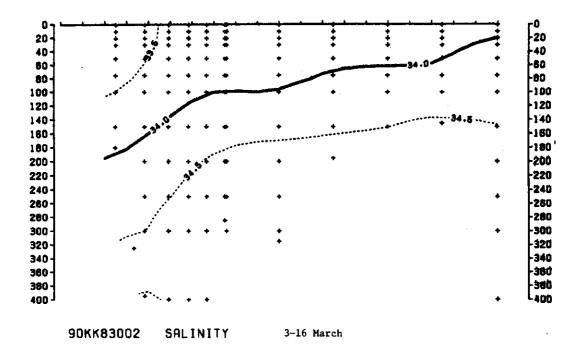


Figure B2. Stations along the NAFO Flemish Cap standard section. Left to right is west to east for standard stations 7 to 18.

_ 50 KM

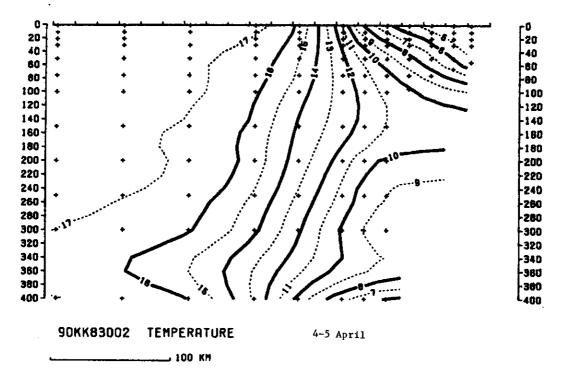


Figure B3. Stations along NAFO standard section CG-4 (Soviet 2-A). Left to right is south to north for standard stations 7 to 16.

 $(1,2,\ldots,n) \in \mathbb{R}^{n}$

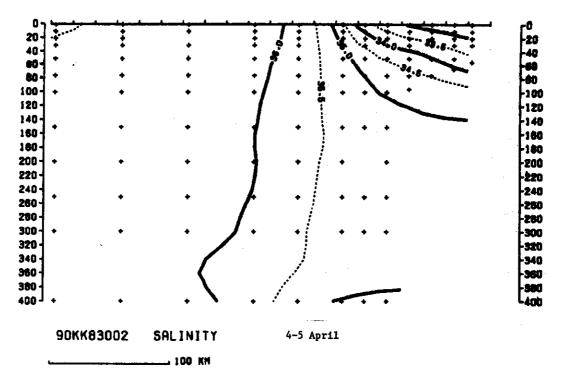


Figure B4. Stations along NAFO standard section CG-4 (Soviet 2-A). Left to right is south to north for standard stations 7 to 16.

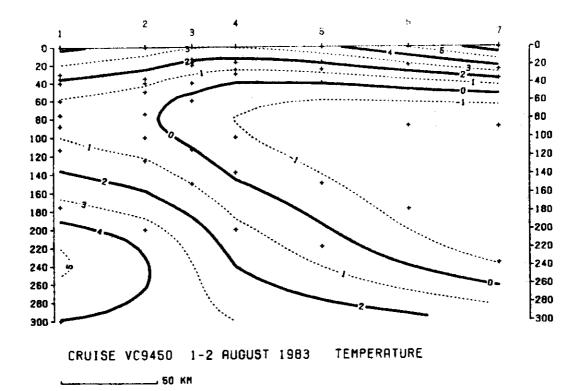
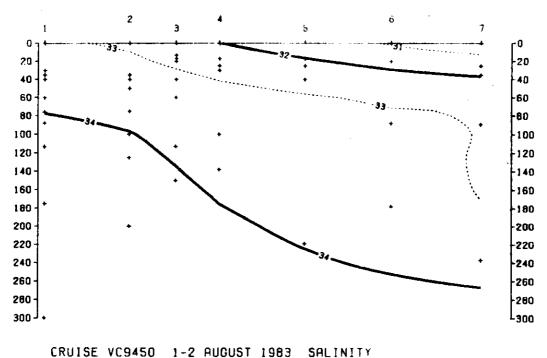



Figure B5. Stations along the NAFO Seal Island standard section. Left to right is west to east for standard stations 1 to 9.

د د این از دور ا^{مرو} به ورود و رود و این ا<mark>م مو</mark>قع می مرود و این از مرود و می مرود از در ا

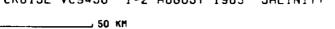


Figure B6. Stations along the NAFO Seal Island standard section. Left to right is west to east for standard stations 1 to 9.

Figure B7. Stations along NAFO standard section CG-4 (Soviet 2-A). Left to right is south to north.

- 29 -

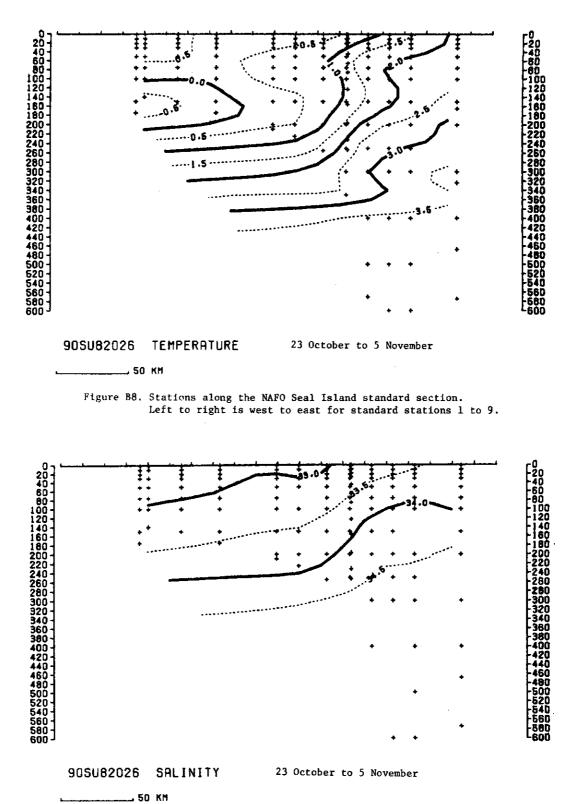


Figure B9. Stations along the NAFO Seal Island standard section. Left to right is west to east for standard stations 1 to 9.

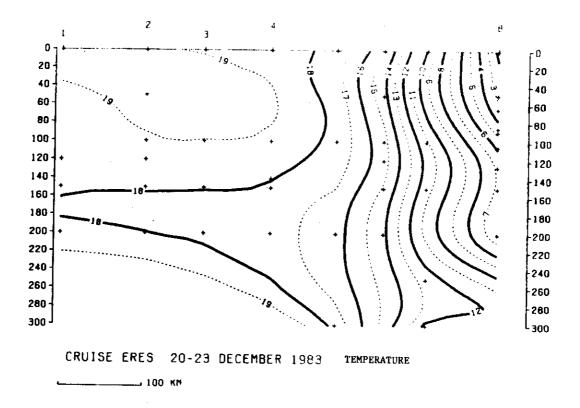


Figure BlO. Stations along the NAFO standard section CG-4 (Soviet 2-A). Left to right is south to north.

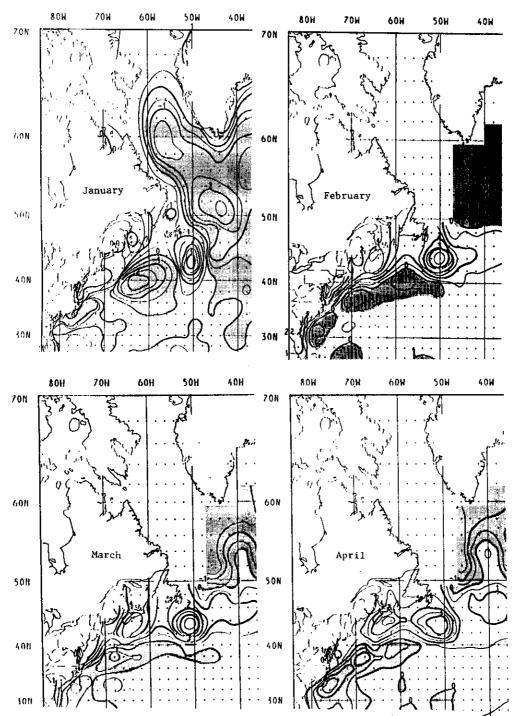


Figure C1. The monthly anomaly is the difference between the monthly mean sea surface temperature and the climatological monthly mean value. The shading shows where the monthly mean is colder than climatology. The contour interval is 0.5 degrees C.

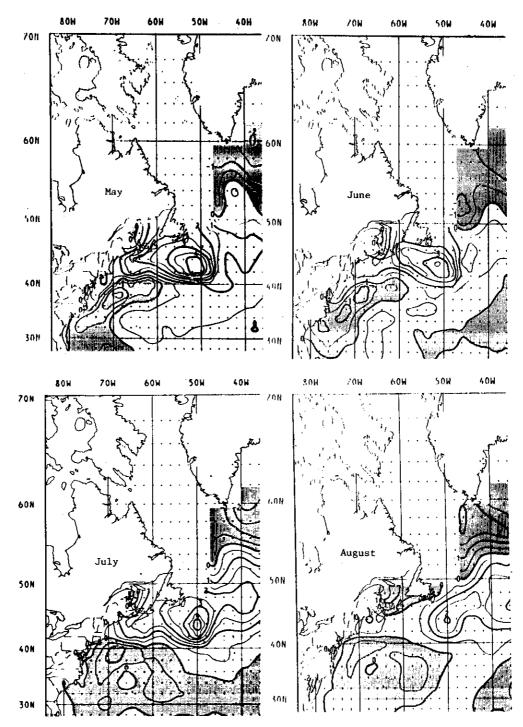


Figure C2.

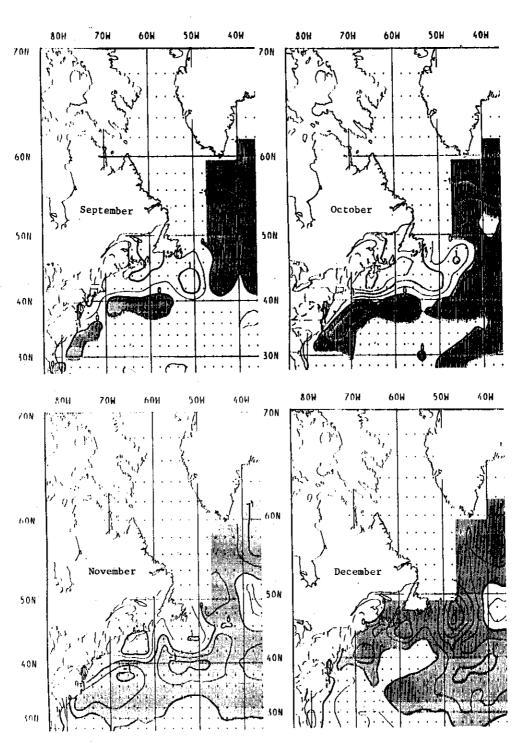


Figure C3.