NOT TO BE CITED WITHOUT PRIRO REFERENCE TO THE SECRETARIAT

Northwest Atlantic

Fisheries Organization

Serial No. N837

NAFO SCS Doc. 84/VI/17

SCIENTIFIC COUNCIL MEETING - JUNE 1984

USSR Research Report for 1983

Section I: A. K. Chumakov and V. A. Borovkov, PINRO 6 Knipovich Street, Murmansk, USSR

Section II: A. S. Noskov, AtlantNIRO, 5 Dmitry Donskoy Street, Kaliningrad, USSR

SECTION I

SUBAREAS 0, 2 AND 3

A. State of fisheries

In 1983 USSR commercial ships fished mainly for redfishes, cod and witch flounder on the southern slopes of the Newfoundland (3MO) and on the Flemish Cap (3M). Besides, silver hake on the Nova Scotian shelf (4VWN), capelin in the South Hab rador (2J+3K), redfish <u>Sebastes mentells</u> in 3K and Greenland halibut on the continental slope of the Baffin Island (OB) were also fished for, According to preliminary data for 1983, the USSR total catch in the Northwest Atlantic amounted to 85,101 tons, thus, being lower compared to 1982 (Appendix 1). The decline in the catch resulted mainly from poor catches of silver hake on the Nova Scotian shelf, roundnose grenadier in Subareas 2+3.

B. Special investigations

<u>1. Investigation of oceanographic regime</u> <u>Subarea O</u>

The observations of oceanographic conditions were carried out only in November and were rather scarce (Appendix 2). Water temperature in the surface layer of the surveyed area was negative and amounted to $-1_{\circ}8^{\circ}C_{\circ}$ The distribution of temperature and salinity in the intermediate layer up to 200 -300 m was characterized by a complex alternation of loop-like and circular structures which were, apparently, the effects of currents meandering and passage of synoptic scaled eddies. In the near-bottom layer a general rise of temperature and salinity with depth was observed.

- 2 -

As compared with the situation of 1982, a certain extension of vertical range of intermediate cold waters of Arctic origin occurred.

Subarea 2

More detailed observations were undertaken in November off the Hamilton Bank on parallel standard Sections 8-A and Seal Island, The distribution of water temperature and salinity on Section 8-A, as well as the comparison of these characteristics with corresponding long term means given in the paper by V.A.Borovkov (NAFO Sci. Coun. Studies, 5:81-86) are depicted in Fig. 1. The charts indicate the correspondence of significant anomalies to the upper 200-250 m layer. Within its limits waters with relatively low temperature and salinity dominated, The maximum of additional cooling and freshening, localized in the 50-100 m depth range in the extreme west of the Arctic front, is characterized by anomalies of temperature (-2.9°C) and salinity (-1.0°%.) which are the greatest in the series of observations covering 1962, 1964-1977, 1979-1983.

Average for the 0-200 m layer water temperature amounting to -0.42° and -0.06° on Sectors A (Stations 3-5, Fig. 1) and B (Stations 6-9, Fig. 1) of Section 8-A, respectively, also turned out extremely low in the series of observations; This minimum resulted from the extreme cooling of deep shelf waters with the upper boundary at 50 m.

These peculiarities in an oceanographic situation testify to the accentuation of properties and transgression of the Arctic waters, which, in its turn, is the sign of the Labrador Current intensification.

Fig.1. Distribution of temperature (T^OC), salinity (S°/...) and their anomalies (T and △ S respectively) on Section 8-A on 1-3 November 1983 (Areas of negative anomalies are shaded).

Subarea 3

This Subarea was covered with observations most thouroughly from January to early August and from mid-October to December (Appendix 2). Basing on the results of observations on standard sections, it follows that in spring-summer negative anomelies of water temperature dominated on the eastern slope of the Grand Bank, and in some areas they averaged -0.8°C for the O-200 m layer and -0.5°C for the 200-500 m layer. These anomalies were brought about by the expansion of the area and

- 3 -

vertical range of cold intermediate waters transported by the Labrador Current. On the contrary, in the upper 200 m layer over the southern and south-western slopes of the Grand Bank notable (to 2°C) positive anomalies produced by the slope water advection were observed.

- 4 -

In April-July the field of geostrophic water circulation in the surface layer (Fig. 2) was characterized by the flow, being the core of the main branch of the Labrador Current, meandering over the continental slope coupled with a relatively weak motion of waters over the shelf. Judging by the portrayed dynamic relief, a number of weak eddy disturbances of spatial scale typical of synoptic formations were present in the shelf area. Most of these eddies were of the anticyclonic nature.

Fig. 3 illustrates the results of the surveys carried out in the frames of the Flemish Cap Project. The charts show the peculiarities in developing of water motion field connected with the formation of the system of anticyclonic eddies over the Bank (March-April). The destruction of the anticyclonic circulation and formation of meandering water transport in the central part of the Bank in late May might lead to the outflow of a portion of ichthyoplankton into the ocean, i.e. to consequences unfavourable for reproduction of spring spawning fish dwelling in this area.

2. Biological investigations

2.1. Greenland halibut survey (0, 2 and 3K)

In 1983 Greenland halibut stock assessment was carried on in Subareas O, 2 + 3K by the trawl survey method. MB-2645 "Suloy", involved in the survey, employed a bottom trawl of the 1625 type with a small meshed netting in the codend. Hauls were made at random, primarily, in the areas suitable for trawling. Most hauls were made on the continental slope in Subarea O and Divs. 2GH. A greater part of the shelf was covered with a thick ice and happened to be out of the survey range.

Fig. 2. Dynamic topography of sea surface relatively 200 m depth in April-July 1983 (by the survey results for Cruise 27 of RV "Suloy").

Fig.3. Dynamic topography of sea surface relatively 200 m depth on the Flemish Cap in winter-spring 1983. Schemes were plotted following the data of the surveys carried out in Cruises 26 and 27 of RV "Suloy" (8-20 February and 16-29 April), in Cruise 2 of RV "Kokshaisk" (8-31 March) and Cruise 27 of RV "Gemma" (24-30 May).

- 6 -

As is seen from Table 1, in 1983 average catches of Greenland halibut in Subares O were lower than in 1982. The main concentrations were distributed below 1,000 m and, in fact, were not available for the bottom trawl survey.

In Divs, 2GH the densest concentrations of Greenland halibut were distributed in depths of 800-1200 m, which is approximately 100 m deeper than in 1982 (Table 2). The survey results evidence a rather high biomass of Greenland halibut in these areas. Unfortunately, the survey data do not allow so far to estimate the absolute abundance and biomass of separate age groups, because valid hauls do not cover the whole area, and the differentiated fishing efficiency in relation to different length groups is unknown either. But the results of the survey give visual representation of the distribution and relative abundance of Greenland halibut at different depths, as well as of variations in length composition;

Table 1. Greenland halibut catches from different depths over the continental slope in Subarea O in 1979-1983, kg per trawling hour (by trawl survey data)

Depth,	Area,	no con es en							
	isq. iniles	1979 ;	1980	1981	¹ 1982	; 1983			
501- 600	920	455(12)	45(4)	130(1)	170(4)	907(2)			
601- 700	1500	521(13)	71(4)	au -	336(7)	242(7)			
701	1640	482(15)	130(2)	ab .	783(6)	247(9)			
801- 900	2890	488(8)	918(4)	220(3)	986(11)	400(9)			
901-1000	911	398(5)	1379(11)	618(6)	934(9)	615(12)			
10011100	392	455(2)	1316(6)	761(3)	2130(13)	865(8)			
1101-1200	400	910)		(2)(9)	1681(1)	1482(11)			
1201-1300	451	tope	a228	662	-	1024(5)			
501-1300	9104	478(55)	886(31)	522(13)	1101(51)	715(63)			
Biomass in	ldex	478	580	316	821	518			
% of area surveyed		90.7	90.7	56,2	95.0	100			

- 7 -

Table 2. Greenland halibut catches from different depths over the continental slope of the North and Central Labrador in 1979-1983, kg per trawling hour (by trawl survey data).

Depth,	Area,	96 (1)289 6050 6020 625	YEAR							
	niles	1979	⁸ 1980	1981	1982 ;	1983				
301- 400	543	426(16)	34(4)	33(13)	- 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000	4960) 				
401- 500	612	295(16)	16(2)	113(3)	197(4)	22(3)				
501- 600	486	288(20)	218(2)	264(5)	439(4)	291(4)				
601- 700	487	344(11)	534(2)	427(4)	1379(3)	473(3)				
701- 800	486	384(15)	1737(3)	506(6)	1862(6)	1446(5)				
801- 900	530	697(6)	2783(4)	2865(6)	1732(7)	2914(8)				
901-1000	430	440(3)	2762(10)	1753(9)	3520(5)	2686(16)				
1001-1100	536	938(4)	1831(6)	1504(1)	1139(7)	1492(10)				
1101-1200	549	80	1146(1)	Comps	623(1)	2749(5)				
1201-1300	598	QU5	•	6235	-	454(1)				
301-1300	5257	397(91)	1699(34)	879(47)	1518(37)	1914(55)				
Biomasa index		479	1183	912	1286	1351				
% of area surveyed		78¢2	88,6	78.2	78•3	89.7				

In 1979 fish 40-41 cm long were relatively abundant in Subarea 0; in 1980-1982 with their growth the peak of the mode gradually moved to the right (Fig. 4). In 1983 fish aged 9-10 approached the length of 54-63 cm and, in fact, formed the basis of the commercial stock. The limited fishery for Greenland halibut in this area and their low natural mortality in this period of life make a further increase of halibut biomass possible in this Subarea.

The length composition of Greenland halibut in Div. 3K, where mainly young fish dwell, is indicative of a considerable amount of growing specieums which will recruit to the commercial stock in 1985 (Fig. 5). The decreasing length composition of Greenland halibut under the absence of fishery in Divs, 2GH also shows a good recruitment of young fish to the stock (Fig. 6).

- 8 -

Fig.4. Length composition of Greenland halibut males and females from bottom trawl catches in Subarea O in 1979-1983.

Fig.5. Length composition of Greenland halibut from bottom trawl catches on the shelf of NAFO Div.3K in 1975-1983.

Fig.6. Length composition of Greenland halibut from bottom trawl catches in the North and Central Labrador areas (2GH) in 1974-1983.

¢

¢

e

Thus, besing on the analysis of fishing-biological indices, it may be concluded that the state of the Greenland - Ganadian population of Greenland halibut is at a rather good level and, especially, in Divs. 2GH and in Subarea O. The yield of this species may be greatly increased in these Divisions. A significant increment of halibut by-catch in the directed fishery for grenadier testifies to a growth of halibut abundance on the continental slope in recent years (Chumakov, Savvatimsky, report to the NAFO Scientific Council Meeting, 1984).

2.2. Surveys of demersal fishes in Dives 3KLANO

In 1983 the trawl survey of demersal fish stock in Subarea 3 was performed by MB-2645 "Suloy" from 16 April to 15 August by the method of random hauls accepted in NAFO.

As in last years, a bottom trawl of the 1625-A type was employed.

To determine the trend of stock variations for 1981-1983 the relative indices of abundance and biomass were smoothed by the formula $\hat{x}_i = \frac{x_{i-1} + 2x_i + x_{i+1}}{4}$ where x_{i-1} ; x_i ; x_{i+1} - preceding, medium and subsequent members of the sequence; \hat{x}_i - the calculated one. Using the method of smoothing of the trawl survey relative indices the main tendencies in the variations of demensal fish stock are revealed.

<u>Code</u> The data of trawl surveys in Divs. 3KL show that after a significant decline of commercial stock in 1973-1974, low and, more rarely, mean abundant year classes recruited to the Labrador stock of code As a results (Fig. 7), the abundance of the stock stabilized at allow levels The cod fishery limitation introduced in 1977 promoted the steady growth of stock biomass in spite of a poor recruitment. The total increment of the Labrador cod biomass is, apparently, more significant than is shown in Fig. 7, because it is known that the bulk of large cod feed in the coastal waters of Newfoundland during the trawl survey and are beyond its range.

Fig.7. Dynamics of average catches of cod according to the data of trawl surveys in Divs. 3KL, 3NO, 3M in 1971-1983 (smoothed data) I - spec./60 min. of trawling; 3 - kg/60min.)

Following cod measurements and age composition studies in 1983, specimens 48-71 cm long (5- and 6-year olds of the 1978, 1977 year classes, as well as 8-year olds of the 1975 year class) dominated in the stock (Table 3).

<u>Cod in Divs. 3NO.</u> Using the method of smoothing of cod abundance and biomass relative indices obtained during the trewl surveys in 1971-1983, the tendency in stock variations is revealed (Fig. 7). The data obtained agree to a great extent with the dynamics of fishery and recruitment to the Newfoundland

- 13 -

cod stock in these years. Thus, in 1974-1977 a gradual increase in biomass at the expense of growing average weight of specimens from abundant 1973, 1974 and 1975 year classes was observed. A sharp decline of abundance and biomass indices in 1979 and 1980 resulted, apparently, from a notable catch of cod in these years.

lear 3L <u>3k</u> Age, 3鼠 years, class Hay Jul May Jan Jun Mar Jun . 65 -8.09 -Relativo amount, º/..1000 999 1000 Average 260, years 5.9 5.6 3.9 4.7 3.5 2.7 2.8

Table 3. Age composition of cod in the catches from Newfoundland and Flemish Cap areas in 1983. %/...

In 1981-1983 a new rise in relative indices of cod stock was observed, which was caused by the entrance of abundant 1977-1980 year classes to the stock. On approaching the fishing length, fish of these year classes aged 3-6 increased greatly the biomass of the Newfoundland cod exceeding the level of preceding years.

It should be stressed that before early 80s the curves of abundance and biomass indices, given in Fig. 7, were rather separated, while beginning with 1979 their conjugation becomes prominent. We tend to explaining this by the level of fishery established since 1980, which does not produce a negative effect on growing biomass and restoring abundance.

- 15 -

In 1985 the bulk of cod catches will include 5-7 year olds of abundant 1980-1978 year classes, 3- and 4-year olds of the 1982 and 1981 year classes the abundance of which was preliminarily estimated as average or below average. Cod abundance is expected to be stabilized at the 1983 level, while the biomass increment will be insignificant under a current rate of exploitation.

<u>Cod of Dive 3Me</u> The biomess of cod on the Flemish Cap remains low (Fig. 7). According to the trawl survey data obtained in April-May 1983 by MB-2645 "Suloy", a notable recruitment of young fish of the 1980, 1981 and 1982 year classes to cod stock was observed. Young fish aged 1-3 amounted to 79% of the total number of cod in catches. Fish 24-26 cm long -2 - year olds of the 1981 year class prevailed (Table 3). Specimens 48-50 cm long - 5 - year olds of the 1978 year class dominated in the spawning stock. Turning up of abundant 1981-1982 year classes not only prevented cod abundance from the decline, but also the tendency to its growth emerged (Bulatova, report to the NAFO Scientific Council Meeting, 1984).

In 1985 the basis of cod commercial stock will be formed of fish 45-55 cm long - 4-year olds of an abundant 1981 and 5-year olds of an average abundant 1980 year classes. A further increment in cod abundance and biomass is expected.

Redfish, Redfishes are of great importance for the Soviet fishery in the Northwest Atlantic. The bulk of redfish catches is composed of <u>Sebastes mentella</u>, the most abundant species.

In 1983 the USSR commercial ships fished for <u>Sebastes men-</u> <u>tella</u> mainly in Divs. 3MNO and in the economic zone of Canada -3K. The total catch of redfish by separate stocks is given in Appendix 2.

According to the trawl survey data (Fig. 8), redfish stocks in all areas started restoring immediately after the introduction of fishery limitations in these areas, i.e. since 1977. Thus, the Figure shows that the stock of <u>Sebastee</u>

mentalia on the Flemish Cap increased greatly in 1978-1980 as compared with 1971-1976. The similar variations in relative indices of abundance and biomass occurred in other stocks. But the data of subsequent trawl surveys demonstrate the decline in redfish stocks both on the Flemish Cap and in Divs. 3K and 3LNO which, to our mind, cannot be accounted for by the intensive fishery. This problem may be solved by comparing the relative indices of the stock with the data on . length composition. Thus, on the Flemish Cap the relative abundance of the stock decreased because of poor recruitment of young fish to the stock in 1980 and 1981, but the biomass index changed slightly owing to the increment of fish weight of older age groups. In 1985 redfish catches are expected to be composed of fish 30-35 cm long aged 11-13. However, on the whole these year classes will be poor, because their abundance is greatly reduced by the fishery in preceding years and by natural mortality. Taking into account a low abundance of fish 18-25 cm long (Fig. 9) which will recruit commercial stock in 1984 and 1985, the decrease of stock biomass is expected even with cessation of fishery in 1984, Apparently, a certain reduction of TAC for 1985 will be reasonable. Besides, this is necessary for elimination of negative effect produced by fisheries on abundant 1977, 1978 year classes which will provide a good recruitment of commercial stock in 1986-1987.

In the Newfoundland area (3LNO) redfish stock is at the medium level. The data on length composition (Figs. 10, 11) are indicative of the availability of a great amount of young fish 14-18 cm long which will recruit commercial stock in 1985. As a result, the stabilization of the stock at the achieved level with a further growth of biomass is expected in 1985.

The redfish stock in Div. 3K is of above average level (Fig. 8). It should be stated that the stock assessment data refer, in fact, to the mixture of two related species -<u>Sebastes mentella</u> and <u>S. fasciatus</u> Störer considered as a single commercial stock. Nevertheless, the differentiated trawl estimates of redfish stocks in all surveyed areas will be absolutely essential in future.

<u>Flatfishes</u>. Currently the USSR commercial ships do not fish for flatfishes in the Northwest Atlantic. Some fish are taken as a by-catch during cod and redfish fisheries in Divs. 3M and 3LNO (Appendix 1).

Relative abundance and biomass of American plaice on the Grand Newfoundland Bank (3LNO) varied slightly without any evident dependence on the catch. In 1979 to 1982 the increase of average length and weight of fish in the catches was observed.

- 17 -

Fig.9. Length composition of redfish <u>Sebastes mentella</u> from bottom trawl catches on the Flemish Cap in spring summer 1979-1983.

 $\sum_{i=1}^{n} \sum_{j=1}^{n} (1-i) \sum_{j=1}^{n} (1-i$

Fig. 10. Length composition of redfish <u>Sebastes mentella</u> from bottom trawl catches in NAFO Divs. 3N, 30 in springsummer 1979-1983.

- 5

Fig.11. Dynamics of average catches of American plaice and yellowtail according to the data of trawl surveys in Divs. 3K, 3LNO, 3M in 1971-1983 (smoothed data); I - kg/60 min. of trawling; 2 - spec./60 min.

In the chart it is represented by the convergence of the relative abundance and biomass curves(Fig. 11). The American plaice stock in Divs. JLNO is of average abundance. As is seen from Fig. 11, the reduction of the American plaice and cod stocks on the Flemish Cap took pla-ce simultaneously. This, no doubt, resulted from their ranges overlapping and being equally available for fishery. That is why the intensive fishery for cod on the Flemish Cap in 1976-1978 caused a substantial decrease of the American plaice stock.

According to the data of trawl surveys in Div. 3K (Fig. 11) in 1979-1981, the abundance of American plaice remained constant. In 1979 to 1982 the increase of mean length and, especially, mean weight of fish in the catches was observed. All these testified to a certain underexploitation of the stock. In 1983 the biomass of commercial stock somewhat declined which is, apparently, connected with the growth of the catch or redistribution of flatfishes in this area.

In order to determine the trends in variations of the yellowtail flounder stock on the Grand Newfoundland Bank, the relative indices of abundance and biomass were summarized by Divs. 3L, 3N, 30 (Fig. 11). As is seen from the Figure, the relative indices of yellowtail flounder abundance and biomass varied insignificantly. Two peaks in the stock growth may be singled out - 1972-1973 and 1979-1980. A certain decrease of the stock was observed in 1981 to 1983.

<u>Haddocks</u> In June 1983 haddock were mainly distributed on the Grand Bank at 50-380 m, water temperature at the bottom being 1.2-10°C. The highest catch - 1,268 spec. per trawling hour - was taken in Div. 30 90 m deep at 8°C. In Div. 3N in depths of 60-230 m the catches did not exceed 164 spec. per trawling hour. Fish 28-33 cm long of the 1981 year class prevailed in the catches. The 1982 and, especially, 1980 year classes are poor but still the most numerous for the survey period except the 1981 year class which is estimated as abundant. Roundnose grenadiers In 1983 mass measurement of roundnose grenadier was carried on by PINRO research ships in Div. 3K and Subarea 2 (Fig. 12). Besides, special investigations of grenadier - halibut ratio in bottom catches from different depths of the continental slope in Subareas O, 2 and Div. 3K were performed (Chumakov, Savvatimsky, report to the MAFO Scientific Council Meeting, 1984).

2.3. Estimating the abundance of capelin pre-recruits.

In November 1983 the RV "Kokshalsk" carried out the trawl survey to obtain the relative estimate of abundance of capelin pre-recruits of the 1982-1983 year classes in Divs. 3LNO. The gear and survey methods were similar to those employed for O-group surveys by Soviet and Norwegian investigators in the Barents Sea. The obtained results show that this technique may be applied to estimation of the strength of the year classes at the larval stage (O+). In order to assess the yearlings (1+) it is, apparently, more reasonable to use the trawl-acoustic method, as far as at this stage capelin form separate concentrations which are registered by hydroacoustic equipment, and can avoid a fishing gear.

The total area where capelin larvae were found embraced about 60 thou, sq. miles. The maximum catch per mile of trawling was taken in Divs. 5NO and amounted to 22,4 thou. spec. The greatest number of capelin yearlings was caught in the north of the survey area and, apparently, their main portion were distributed in Div. 5K and was not surveyed.

The length composition of larvae ranged from 29 to 65 mm. The length frequency of capelin is represented by speciemns 7.5-11.5 cm long.

2.4. Echo surveys of capelin stocks.

In 1983 the RV "Poisk" carried on the yearly investigations of abundance and assessed the Newfoundland capelin by means of Simrad EK-38A echo sounder and home-made SIORS-I digital 5-channel echo integrator. The biological material was collected by a mid-water trawl with a small-meshed notting.

Fig.12. Length composition of roundnose grenadier from bottom trawl catches (M- mean length, vertical lines - mean long term length).

- 23 -

The results of the echo survey carried out in Divs. 3LNO from 7 to 20 June showed that the total abundance of capelin is 13,300 mil. spec., and biomass - 346 thou. t.

Capelin were concentrated mainly on spawning grounds of south-western slope of the Grand Newfoundland Bank (3N) and included pre-spawning specimens 13-18 cm long of the 1979 and 1980 year classes (Table 4), Immature capelin of the 1981 year class were distributed in the northern areas of Div. 3K and were not covered by the survey.

Table 4. Age composition of capelin (°/...) in mid-water trawl catches.

Year	Age	3L(J	me)	; <u>3</u> N(J)	ine)	; 30(Ju	ne)	; 2J(November)
class	8	Males	; For.	Males	Fon.	'Males;	Pen.	[;] Males;	Penales
1982	1	659 	480	039 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977	029 	850 	ess	20	50
1981	2	30	80		17	639	60	230	490
1980	3	90	460	53	163	70	210	250	390
1979	ф.	130	190	123	440	80	410	60	60
1978	5	20	4899	127	77	100	70	67	4 20
Relat: amoun		270	730	303	697	250	750	560	440
Numbe: speci: exami:	nens	27	73	91	209	25	75	56	44

The investigations performed from 12 to 19 November in Dive. 2J and 3K revealed significant concentrations of capelin on the southern slopes of the Hamilton Bank (2J). According to the obtained data, the total abundance of capelin was 41,500 mil. spec., and biomass - about 852 thou. tons. Specimens 13-16 cm long of the 1981-1980 year classes formed the basis of concentrations.

Thus, the results of both surveys show the intensive recovery of capelin commercial stock both on spawning grounds and in feeding areas at the expense of entering highly abundant 1979-1981 year classes to the stock.

SECTION II

SUBAREA 4

A. Status of Fishery

Silver hake

In 1983 the USSR was allocated by Canada 43 thous. tons, out of the 80 thous. tons of the total allowable catch of silver hake on the Scotian shelf. The USSR catch was 25.5 thous. tons which accounted for only 59% of the allocated quota. As in the recent years, the Soviet fishery was performed on the shelf slopes in the region alloted for the foreign fishing. From mid-April to the second ten-day period of June the ships of the BMRT class conducted a relatively intensive fishing for hake using bottom trawls first at 120-360 m depths and later, in June, at 120-150 m depths. In the third ten-day period of June the silver hake moved to lesser depths beyond the small mesh gear line. The ships had to leave the fishing ground, and the allocations have not been caught.

The bulk of the silver hake catches was represented by the individuals with the body length of 24 to 35 cm, at the age of 2 to 4 (tables 1 and 2). A strong 1981 year class, which accounted for 42.6% on the average, predominated in the catches. In 1984 the three year olds of the strong 1981 year class, and relatively abundant 1980 and 1982 year classes will prevail. The abundance of the recruiting year classes can be calculated from the data of trawling surveys of the young fish, which have been conducted annually in October-November since 1978. So, the minimum abundance of juvenile silver hake made up $26 \cdot 10^7$ sp. in 1978, 5 x 10^7 sp. in 1979, 5 x 10^7 sp. in 1980, 107×10^7 sp. in 1981, 1.7×10^7 sp. in 1982 and 117×10^7 sp. in 1983.

It should be noted that at present the silver hake stocks in the Nova Scotian region are underexploited. Of the total allowable catch the annual removal is 50% at the most.

- 25 -

Tab	le 1	Length :	frequend	cies	of	commercial	silver	hake	catches(%)
1.1.1	1	Ŭ	-						

from the Nova Scotian region for 1981-1983

energen an en			an a
Length, cm	1981	1982	1983
10-11			
12-13		• • • • • • • • • • • • • • • • • • •	
14-15		0.1	
16-17	man a second a single factor and a second	0.4	0.2
18–19	0.2	1.0	0.5
20-21	0.4	2.2	0.4
22-23	0.3	2.1	1.4
24-25	0.8	1.9	9.7
26-27	3.9	6.5	21.2
28-29	16.4	11.9	21.2
30-31	32.1	20.7	18.5
32-33	24.4	23.5	14.5
34-35	13.0	16.6	6.8
36-37	5.2	7.6	3.2
38-39	2.1	3.3	1.3
40-41	0.7	1.3	0.6
42-43	0.3	0.6	0.3
44-45	0.2	0.2	0.1
46-47	1	0.1	0.1
48-49	+		+
50-51	аналанан сайналан 1997 - Алар Алар Алар Алар Алар Алар Алар 1997 - Алар Алар Алар Алар Алар Алар Алар Алар		
52-53	+	4	• 4
54-55	+	internet i serie de la constante. Entre entre entre Entre entre	
56-57	+	-	
58–59	+	n an an Araba (Charles) An Araba (Charles) An Araba (Charles)	
60–61	+		
62-63			
Mean length, cm	31.5	31.4	29.4
Mean weight, g	224	238	198
No. of sp.	36 482	32 603	42 506
Fishing gear	trawl Hake-81	5 trawl Hake-8	15 trawl Hake-815
Mesh size	60	60	60

Age, years	1981	1982	1983
1	0.7	4.9	1.4
2	9.9	14.9	42.6
3	42.6	24.1	27.0
4	33.0	37.6	20.6
5	10.3	12.8	5.8
6	2.6	4.1	1.9
7	0.7	1.1	0.5
8	0.1	0.4	0.1
9	0.1	0.1	0.1
10	n de la companya de l La companya de la comp	+	. - 1
Mean age, years	3.5	3.6	3.0
Fishing gear	trawl Hake-815	trawl Hake-815	Trawl Hake-81
Mesh size, mm	60	60	60

Table 2 Age composition of commercial silver hake catches (%) from the Nova Scotian region for 1981-1983

Shortfin squids

For 1983 the USSR quota for the shortfin squids was 5 thous. tons. The species occurred in the catches individually, which indicates that the commercial aggregations were absent from the Nova Scotian region. Probably the shortfin squid stocks are depressed and the possibility of fishing for this species in 1984 is rather problematic.

B. Special Studies

Distribution and abundance of the young shortfin squids in 1983

The expedition conducted on board the BMRT GIZHIGA in 1983 concluded a five-year series of studies. The scientific-research works covered the period from 10 March to 14 June and the NAFO Subareas 3 and 4 between the Gulf Stream and North-Atlantic Current and the Canada shelf. The scientific personnel was represented by 9 scientists. The Canadian scientists did not participate in the research works.

The main tasks of the expedition involved:

1. Inventory survey of the young shortfin squids aimed at the calculation of the abundance index and assessment of the relative stock size.

2. Collection of materials for elucidation of the impact of abiotic components of the Northwest Atlantic ecosystem (Gulf Stream, its meanders, warm-core eddies, frontal zones) on the shortfin squid distribution.

3. Collection of materials for the shortfin squid biology studies.

During the works the vessel made 21 680 mi., 415 hydrological stations were occupied, 115 plankton and 425 trawl sets made, 3 491 specimens of shortfin squid measured and 1 961 analysed; the collection of the cephalopod samples numbered 25 646 sp. All the primary results were duplicated and forwarded to the Canadian side.

As is evident from the results the biomass of the squids in the Nova Scotia and GNB regions decreased 1.5-2.0 times compared with 1981 and 1982.

In 1982-83 the major peak of spawning shifted from February to April, therefore the migration of the squids to the shelf evidently took place in September-October.

Trawling survey for young silver hake

In 1983 a trawling inventory survey of the young silver hake (0+) of Nova Scotia was made by the Soviet and Canadian scientists from 1 to 23 November by SRTM 8086 "1500 Let Kievu". 64 sets with the IGYPT trawl were made by night - three stations each night (near the bottom, in the water column and at the surface); tows were 30 minutes in duration, and the trawl was towed at the speed of 3.5 knots. In most cases the catch of the young silver hake exceeded 100 sp. per set. Dense silver hake aggregations (over 500 sp. per set) were recorded in the Nova Scotian trough area between the zones of upwelling and sinking waters. The surface water temperature in the area was $11-13^{\circ}$ C; at the depth of 50 m it was $3-6^{\circ}$ C, and at the bottom - $7-8^{\circ}$ C with the vertical thermocline of $3-12^{\circ}$ at the depth of 35-50 m.

The body length of the young hake in the catches ranged between 2 and 11 cm, 6.3 cm on the average. In 1983 the total minimum abundance of the young silver hake (0+) on the Scotian shelf was 117×10^7 sp., which is 63 times as large as in 1982.

Appendix 1.

- 30 -

USSE catches in Subareas 0, 2 and 3 in 1982-1983 (t)

Species	areas	* * 1982 *	1983 8
Cod	2GH	1788	5009 0803 (2006 was) com 6000 6009
	2+3KL	452	159
	3N0	3985	3238
	311	1262	1264
이 같은 것은 것은 것은 것은 것은 것은 것은 것은 것이다. 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것이다.	4VWX	45	201
Haddock	4782	53	166
1997년 1997년 - 1978년 - 1979년 - 1979년 1977년 - 1979년 - 1979년 1979년 - 1979년 -	3N0	3	4
Redfish (Sebastes mentella)	2+3K	3073	3722
	3LN	11021	9012
	30	8717	5670
	31	10916	14517
	4VWX	96	44
Roundnose grenadier	0+1	43	46
	2+3	2689	933
American plaice	2+3K	8	11
	31	1002	1238
	3LNO	67	170
	AVWX	6	32
Witch flounder	2+38L	552	516
	3N0	1969	1942
Greenland halibut	0+1	965	818
	2+3KL	980	176
Capelin	2J+3K	9677	10497
Silver bake	4VWX	47261	27377
	3110	9	
Saithe	47WX	297	226
Yellowtail flounder	31.NO		6 29
Herring	47W	10	3
Mackerel	3+4	3	8
Argentine	4VWX	201	351
Squid <u>Illex</u>	3+4	124	
Others		1911	2717
Total		109185	85101

List of hydrological observations carried out by PINRO ships in NAFO area in 1983

in an an -----Sections, : Date of : Ship, Number : Elements grid of : observations : Cruise stations : : : of : observed stations - + - - - + 4 ----____5_ .I___:_ _ -----SUBAREA O MB -2645 36 Trawl 06-II.II.83r. T. Sº/00 "Suloy stations 15-16.11.83r. 29 18-29.11.83r. MB - 2645 SUBAREA I Trawl II-18.11.83r. 12 T, Sº/.. stations 29 SUBAREA II MB -2645 "Suloy ", I0 T, Sº/.. Section 0I-03.II.83r. 8-8 29 MB - 2645 Seal Island03-04.II.83r. 7 T, Sº/00 Section 29 MI -0833 "Poisk ", Travl T, Sº/00 26 I3-I7.II.83r. stations 46 MB - 2645 "Suloy", T. Sº/00 **30.II.-**30.I2.83 г. 36 Trawl stations 29 SUBAREA 3 MB - 2645 T, S[°]/..., O² P, Si Trawl 66 03.0Istations -20.02.83r. 26 MG -1356 "Kokshaisk ", Flemish T, Sº/00 7 03-04.03.83r. Cap Section 2 Flemish MG -1356 42 08-31.03.83r. " Kokshaisk", 2 T. Sº/00 Cap ground MG -1356 04-05.04.83r. 12 T, Sº/00 Coast "Kokshaisk", Guard-4 Section

، محمد حصر محمد محمد محمد مورد					 E
Trewl stations	2 01-02.03.83 F. 01-03.04.83 F. 06-12.04.83 F.	<u>S:</u> MG -I356 "Kokshaisk ", 2	-4 38		5
Section 4-A	I6-17.04.83 г.	2 MG -1356 "Kokehaisk", 2	6	T,	S°/
Flemish Cap	I6-23.04.83 г. 25-29.04.83 г.	MB - 2645 "Suloy ", 27	76	T,	S°/
ground Flemish Section	₽24.04.83 r.	MB - 2645 "Suloy ", 27	6	T,	S°/
Trawl stations	0I-15.05.83 r.	MB - 2645 "Suloy", 27	7	T,	S°/00
Section 4-A	26-27.05.83 г.	MB - 2645 "Suloy ", 27	9	T,	S°/00
Section 7-A	27-28.05.83 г.	MB - 2645 Suloy", 27	8	T,	
Travl stations	I7-3I.05.83 г.	MI -8206 "Gemma", 27	42	T ₉	8°/
Trawl stations	29.05-II.06.83r.	MB - 2645 "Suloy ", 27	20	T,	S°/
Coast Guard-4 Se	II.06.83 r. ction	MB - 2645 "Suloy ", 27	5	T,	S°/
Trawl stations	12-27.06.83 г.	MB - 2645 "Suloy", 27	49	T,	S°/
SW Grand Banks Sect		MB - 2645 "Suloy ", 27	5	T,	S°/00
Trawl sta- tions	28.06-04.08.83r.	MB _ 2645 "Suloy", 27	135	T ,	S°/00
Trawl stations	14.10-01.11.83 r .	MB - 2645 "Suloy", 29	39	T,	
Trawl stations	08-18.11.83 г.	MI -0833 "Poisk", 46	I5	Τ,	
Trawl stations	31.10-21.11.83	MG -1356 "Kokshaisk", 4	56	Т,	S°/00
Flemish Ca Section	р 22-23.II.83 г.	MG -1356 "Kokshalsk" 4	16	Τ,	S°/
Trawl stations	26.II-09.I2.83r.	MI -0833 "Poisk", 46	49	T,	S°/
Trawl stations	24.II.83- -I0.0I.84 г.	MG -1356 "Kokshaisk", 4	69	T,	8°/
TOPAL			904	stat	ions

LIST of biological surveys carried out by Soviet ships in NAFO Subareas 0,2,3 in 1983

Subarea	Div.:	Nation	Month :		umber of auls
0	В	USSR	Nov.	Groundfish (Green land halibut)	71
2	GHJ	⁹⁹	Dec		75
an an an Array An Anna an Anna Anna An Anna Anna Anna	J	11	NOA	Capelin (acoustic)	
3	K	_#.	Jan	Groundfish (Green- land halibut)	33
		- ¹⁹ -	Jul	Groundfish	95
		ag. 99 an	Nov	Capelin (acoustic)	kano.
	lno	⁹¹	Jun	Capelin (acoustic)	Case
			May-Jul	Groundfish	246
				Capelin (lervac, juveniles)	120
	M		Apr-May	Groundfish	122
			Jun	Redfish (acoustic)	-
		4829 ⁶⁴⁰ 540	Apr	Ichthyoplankton	93
			Mar	cean 99 mm	50
		••• ⁹⁹ •••	May	aas ⁹⁹ aas	42

- 33 -

Appendix 4

Length, cm	2J Jan	July	. 3L May-Jul	3N Jun	: 30 : Jun	: 3M : Nay
9-II 12-I4 15-T7 18-20 21-22 24-26 27-29 30-32 33-35 36-38 39-41 42-44 45-47 48-50 51-53 54-56 57-59 60-62 63-65 66-68 69-71 72-74 75-77 78-80 81-83 84-86 87-89 90-92 93-95 96-98 99-101 102-104 105-107 108-110 111-113 114-116 117-119 120-122 123-125 126-128 129-131 Above I3I Relative amount, */****		- I I 7 19 22 16 29 47 45 57 56 77 82 65 78 60 72 64 64 48 23 16 65 3 4 3 2 - - - - - - - - - - - - -			II5 II5 24 29 36 48 77 68 82 51 43 34 38 37 39 40 28 20 I4 7 9 5 I1 5 5 4 5 32 22 2 - - I I - - - - - - - - - - - - -	65 55 98 147 167 142 73 22 13 14 18 39 50 38 18 5 2 2 5 6 5 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Mean length, cm Amount of specimens	55,45 9162	52, 39 <i>2</i> 769	5I,25 8I33	43,59 9044	37,00 2630	30,00 10989

Length composition of cod (in $^{\circ}/_{\circ\circ}$) in catches in 1983

Length, cm : 3L	(May-July)	3N
12-14 $15-17$ $18-20$ $21-23$ $24-26$ $27-29$ $30-32$ $33-35$ $33-35$ $36-38$ $39-41$ $42-44$ $45-47$ $48-50$ $51-53$ $54-56$ $57-59$ $60-62$ $63-65$ $66-68$ $69-71$ $72-74$ $75-77$ $78-80$ $81-83$ $84-86$ $87-89$ $90-92$ $93-95$	32 118 58 24 23 25 16 18 21 21 23 28 31 27 42 38 37 49 62 70 59 69 59 25 16 70 59 69 59 25 16 70 59 69 59 25 16 70 59 69 59 25 16 70 59 69 59 25 16 70 59 69 59 25 16 70 59 69 59 25 16 70 59 69 59 25 16 70 59 69 59 25 16 70 59 69 59 25 16 70 59 69 59 25 16 70 59 69 59 25 16 70 59 25 16 70 59 25 16 70 59 25 16 70 59 25 16 70 59 25 16 70 59 25 16 70 59 25 16 70 59 25 16 70 59 25 70 59 25 16 70 70 59 25 16 77 70 59 25 16 77 70 59 25 16 77 70 59 25 16 77 77 25 77 77 70 59 25 77 77 77 77 77 77 77 77 77 7	I0 II3 I22 69 24 20 29 30 48 46 38 30 31 32 34 41 40 28 38 30 31 32 34 41 40 28 38 30 30 30 31 1 5 5 3 1 1
Relative amount, 0/00	1000	1000
Mean length, cm	50 , 51	43,27
Amount of specimens	2015	I883

Length composition of thorny skate (°/...) in catches in 1983

Length, cm	: 3I	July :	30	Juno	3N J	une	- 3N	Jan Fod
	males	:fomales	male	s: femal	es mel	eb fon	males	Jona]05
$\begin{array}{c} 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 34\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ \end{array}$	- - - - - - - - - - - - - - - - - - -			- II IIIIII III3 II3346 I376820 I068244555662 I26762 I216762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I10762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I107762 I2121 I1077777777777777777777777777777777777			HH26503902254999913266 457777146HH	-2142933421100220233731722133391579048652121111111111111111111111111111111111
Relative amount, %/00	609	39I	587	413	424	576	434	566
Mean length, cm	36,28	38,28	36,07					34,63
Amount of specimens measured	556	357	922	648	1697	2306	622	811

Length composition of yellowtail flounder ($^{\circ}/_{\circ\circ}$) in catches in 1983

- 36 -

Length,	3L(Ju		متابيه حايية بتتايه		and the second		: <u>3K(Ju</u>			<u>ov)</u>
CB II,0 II,5 I2,0 I2,5 I3,0 I3,5 I4,0 I4,5 I5,0 I5,5 I6,0 I6,5		I2 32 46 70 173 100 107 56 29 22 15	متابيه حايية بتتايه	and the second s	malaa		3 3 3 10 18 21 18 42 80		nales .	fema- les 3 19 26 13 32 51 74 93 54 45 29 19 19
17,0 17,5 18,0 18,5 19,0 19,5 Relative amount, °/	10 5 *331	13 5 2 669	67 49 20 4 +	24 6 1 712	37 15 1 361	21 4 +	59 28 21 306	09 24 694	32 26	I6 I3 3
Amount of specimens measured	136	<i>2</i> 75	1014	2508	701	1 2 41	88	200	5I0 I59	490 153

Length composition of capelin (°/...) in catches in 1983

Length composition of witch flounder (in %/00) in catches in 1983

Longth, cm	July		Janu	January		May, July		February		J
	males	female	a male	a les-	males	Toma-	males	lona-	malos	·len
$\begin{array}{c} 14-15\\ 16-17\\ 18-19\\ 20-21\\ 22-25\\ 28-29\\ 302-25\\ 28-29\\ 302-35\\ 335-37\\ 39-41\\ 42-45\\ 48-555\\ 558-59\\ 1555\\ 580-63\\ 558-59\\ 624-65\\ 70-71 \end{array}$			II II2 II14492756600542860 II - II	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- 5 5 5 5 19 24 39 49 53 53 102 73 63 39 19 39 10 5 10 -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - -
Relativ	70 •/	,								
	343		44I	559	388	612	303	697	275	725
Mean ler cm		46,23	44,03	49,46	42,35	48,20	42,97	48,93	44,93	51,37
Amount o specimer measured	18 239	457	923	II68	80	I <i>2</i> 6	89	205	141	372

Length composition of witch flounder (in %/00)

in catches in 1983

Length, cm	May, J		: Jı	sō me		30 January			
	Males	Pemales	Males	· Females	Males	. Females			
$\begin{array}{c} 20-21\\ 22-23\\ 24-25\\ 26-27\\ 28-29\\ 30-31\\ 32-33\\ 34-35\\ 36-37\\ 38-39\\ 40-41\\ 42-43\\ 44-45\\ 46-47\\ 48-49\\ 50-51\\ 52-53\\ 54-55\\ 56-57\\ 58-59\\ 60-61\\ 62-63\\ \end{array}$	- - - - - - - - - - - - - - - - - - -	$ \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	- 7 2I 24 3I 48 86 103 69 44 14 17 7 3 - - -	- 7 10 10 24 28 48 103 69 72 21 41 52 10 14 14 14 3 -	 - - - - - - - - - - - - - - - - -	- - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			
Relative amount, %/00	472	528	474	526	407	593			
Mean length, cm	38,42	42,43	37,74	41,16	42,33	45,42			
Amount of specimens measured	125	140	I38	I53	344	501			

 $\phi^{(n)} \in \mathcal{B}$

Length, cm	July Males Females		Janu	3K January Malos · Females		3M May		N rch
$\begin{array}{c} \mathbf{I4-15}\\ \mathbf{I6-17}\\ \mathbf{I8-19}\\ \mathbf{20-21}\\ \mathbf{22-23}\\ \mathbf{24-25}\\ \mathbf{26-27}\\ \mathbf{28-29}\\ \mathbf{30-31}\\ \mathbf{32-33}\\ \mathbf{34-35}\\ \mathbf{36-37}\\ \mathbf{38-39}\\ \mathbf{40-41}\\ \mathbf{42-43}\\ \mathbf{44-45}\\ \mathbf{46-47}\\ \mathbf{48-49}\\ \mathbf{50-51}\\ \mathbf{52-53}\\ \mathbf{54-55}\\ \mathbf{56-57}\\ \mathbf{58-59}\\ \mathbf{602-61}\\ \mathbf{62-65}\\ \mathbf{64-65}\\ \mathbf{64-65}\\ \mathbf{64-65}\\ \mathbf{64-65}\\ \mathbf{68-69}\\ \mathbf{70-71} \end{array}$	I I 2 5 II 2I 3I 54 40 23 I2 I0 6 3 I I I - - - - - - - - - -	- I 2 I3 I8 32 54 I06 I16 68 77 56 48 45 24 23 28 23 I7 I2 7 5 2 2 I I I I 2 7 5 2 1 I I 2 - -	I4 25 25 33 21 31 65 33 15 17 10 6 - - - - - - - - - - - - - - - - - -	ISMAIC IS 4 I2 I0 23 20 48 69 90 59 78 70 37 25 I6 I4 18 2 - - - - - - - - -	- I 3 4 II 17 47 102 85 35 I4 25 38 31 17 9 3 - - - - - - - -	- I 2 6 II 21 42 86 I06 80 44 I8 I0 I4 9 II I6 222 I8 I4 85 2 - - -	: # 1 - 2 I 4 7 23 70 90 93 44 I3 I1 12 34 I7 I0 7 2 I 4 - - - - - - - - - - - - -	- - - 9 11 22 59 67 93 78 25 15 15 15 15 25 31 35 21 9 11 4 - -
Relative emount, °/	221	779	295	705	454	546	443	557
Mean length, cm	29,86	34, 64	26,37	33,68	32, 56	34,14	3I,70	35,60
Amount of specimens measured	73I	2576	144	344	2390	2873	363	453

Length composition of American plaice (*/...) in catches in 1983

	Jan, Feb	m, ¹ Males ¹ Fem.	1 0 0 0 0 0 0 0 0 0 0 0 0 0	437 563	37°24 30°82 35°46
1983	Bur, June	³ Males ⁸ Po		305 695	47 31.90
in catches in '	s January	* Males * Feno	1 NLONNO2444NWWW NLONNO2444NWWW 1 1 1004400000444N4WLULL 1 1004400000444N4WLULL 1 1004400000444N4WLULL 1	349 651	30°51 34°1
plaice (°/)		Males ² Fom.	 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	327 673	29.43 33.67
position of American	October .	Males ? Fem. ?	1 11というとのからなどのたいとまとままままでので、11111111 1 1110年でのだめであるなどでなるでまるあどのあのとましと	186 814	31.95 43.03
Length composi-	Bay, Jun, Jul	: Male	1 NNON0804950000500051111111111 1	363 637	30.22 35.M
	Length, ca		1 4 4 4 4 4 4 4 4 4 4 4 4 4	Relative amount, % /	Average length, cm

- 41 -

