NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N1002

NAFO SCR Doc. 85/53

SCIENTIFIC COUNCIL MEETING - JUNE 1985

Estimation of the Stock Abundance and TAC for Beaked Redfish in Div. 3LN and 3M for 1985 by

> T. L. Nikolskaya, A. N. Savateeva, and V. L. Tretyak Polar Research Institute of Marine Fisheries and Oceanography (PINRO) 6 Knipovich Street, 183763, Murmansk, USSR

ABSTRACT

The abundance and biomass of the beaked redfish commercial stock in Divs. 3LN and 3M were assessed by VPA for the period 1968 to 1984. Natural mortality rates at different fishing ages were estimated and applied in order to realize the method. Statistically significant Ricker's relations between the parent stock biomass and the abundance of daughter year classes at the age of 5 were obtained. They served as a biological substantiation for the management of the redfish fishery in these divisions. It is advisable to limit the fishing regime by F_{max} level.

INTRODUCTION

The total allowable catch (TAC) is the most important index determining the efficiency of fishery management. Estimation of the yield per unit of recruitment ($\frac{Y_{\mu}}{R}$) in relation to fishing intensity (F) is the first stage in TAC calculation. F.I.Baranov constructed a mathematical model for such relationship (Baranov, 1918) which was modified later by Beverton and Holt (Beverton and Holt, 1957). This relationship has a clearly pronounced maximum for many species including beaked redfish in Divs. JLN and M (Fig. 1). The fishing intensity at which the maximum catch may be taken is called optimal and the yield itself - the maximum sustainable yield (MSY).

This model, however, is based on the prerequisites which leave out of account the most important peculiarities of most commercial fishes, namely, a considerable variation of natural and fishing mortality rates with age (Tretyak, 1983), variability of the year class abundance and parameters of growth functions. That is why optimal, in the above sense, level of fishery is always constant. It does not depend on variations of age composition and of other parameters relating the commercial stock, Besides, fish with a low value of metabolism parameter (K) in the von Bertalanffy equation and (or) with high natural mortality rates give the curves of the catch per unit of recruitment either without a maximum or with a slightly pronounced one. It produces an effect as if the fishing intensity for these fishes may be increased to a very high level without the least reduction of the yield. In reality the exploitation of commercial stocks of such fishes with a high intensity or with that close to F_{max} leads to undesirable consequences - to depletion of commercial and spawning stock biomass, possibly to a sharp decline of daughter year class abundance.

The sparing fishing regime at the $F_{O,1}$ level also does not take into account the current state of the stock and, consequently, does not have any biologically substantiated notable advantages over the conception of F.I.Baranov and Beverton and Holt. Its consistent utilization will provide only a certain stabilization of the fish supply in the years with a poor recruitment at the expense of biomass reserve which is formed in the years prior to fishery when recruitment was numerous.

The abstract character of some prerequisites for these models and the absence of a biological criterion providing the needed level of stock reproduction which should be assumed as a basis while estimating the optimal values of F and MSY notably limit the possibility of applying the results of the theoretical fishery analysis directly to real fishery management.

- 2 -

In this paper the biological criterion - the optimal biomass of the parent stock - is obtained which may be taken as a principle in the redfish fishery management in Divs. 3LN and 3M. TAC for 1985 was estimated with allowance for peculiarities of beaked redfish - variation of natural and fishing mortality rates with age and variability of the year class abundance.

MATERIAL AND METHODS

Natural mortality of commercial fishes results from the interaction of fish from a commercial stock with numerous interdependent and independent ecological factors. Mortality varies with age and under the influence of these factors. But, as a rule, it is set invariable in time and independent of age. In some fishes the relative error in the abundance estimates of some age groups which is introduced by the second assumption may be higher than 100% (Blinov, 1979). That is why the method of estimating the natural mortality rates at different fishing age was applied to the redfish in Divs. 3LN and 3M (Tretyak, 1983). Variation of the redfish natural mortality rate with age is represented by the convex downward one-(positive) minimum function

 $M(t) = a \left[-t - (\tau_e - \overline{\tau}_s) \ln (\tau_e - t)\right] + b,$

which turns into infinity with the age tending to maximally possible hypothetical age τ_e , which may be reached by fish under real ecological conditions, fishing being intensive, if they were not caught. In the interval from τ_r to τ_e where τ_r - age of recruitment this function is determined, continuous and has the only stationary point $\overline{\tau}_s$. With a > 0min $M(t) = M(\overline{\tau}_s)$. In virtue of the hypothesis of the minimum M(t) to correspond to the mean age of mature fish (Nikolsky, 1974), the parameter $\overline{\tau}_s$ has a concrete biological content. Parameters a and b have no biological content. For the period 1968 to 1984 the mean age of mature redfish in Divs. 3LN is equal to 11 and in Div. 3M - to 12 years. Parameters τ_e are

- 3 -

set equal to 50 and 51 years, respectively. To estimate parameters a and b it is sufficient to know the average number of fish caught at each age, von Bertalanffy parameters (1_, K and t.), those of allometric growth $(a_1 \text{ and } b_1)$ and the natural mortality rate for redfish set constant at some section of the interval [T , T] . Von Bertalanffy parameters are determined by Hohendorf's method (Hohendorf, 1966), a_1 and b_1 by the least-squares method (Table 1). The intervals in the life span of fish in which natural mortality rates are obtained and set constant include age groups making up the bulk of catches. It turned out possible to calculate the total mortality rates for them. In Table 2 the total mortality rates for beaked redfish in Divs. 3LN and 3M in the intervals 12 to 16 and 11 to 15 years, respectively, are given, They are obtained as the difference of natural logarithms of the total catch to the total effort ratios in two adjacent age groups. In this case the age composition is pooled for the whole survey period and smoothed by three adjacent age groups. Fishing effort is reduced to a standard type of the ship - the Soviet large refrigerator trawler and set average for 1968 to 1984. In Divs. 3LN it is equal to 9 847, in Div. 3M - to 7 813 trawling hours, Taking into account the main relationship of the VPA

 $\frac{C_{\tau+1}}{C_{\tau}} = \frac{F_{\tau+1}}{F_{\tau}} \cdot \frac{Z_{\tau} \cdot (1 - \exp(-Z_{\tau+1}))}{Z_{\tau+1} \cdot \exp(Z_{\tau}) \cdot (1 - \exp(-Z_{\tau}))},$ where C_{τ} - the catch at age τ , and F_{τ} and Z_{τ} - fishing and natural mortality rates at this age, it is obvious that the ratios $\frac{F_{\tau+1}}{F_{\tau}}$ for certain age groups are about 1

(Table 2). This means that fishing mortality rates are approximately equal in the intervals considered (in this case accurate to 0.01). Natural mortality rates in these intervals are obtained as the difference between mean rates of the total and fishing mortalities. The latters are conventionally set equal to the least values of Z_{τ} . Natural mortality rates in the considered intervals and a and b parameters of M(t) functions are given in Table 1. Variation of natural mortality rates for beaked redfish in both areas in relation to age is shown in Fig. 2. Abundance and biomass of the beaked redfish commercial stocks under consideration are calculated for the period 1968 to 1984 by VPA. To realize the method it is sufficient to know the number of fish caught at different ages in different years of fishery (Tables 3 and 4), natural mortality rates at the age from τ_r to τ_{λ} (τ_{λ} - the latest age of fish in the commercial stock) set constant during one year of fish life and, the so-called final values of fishing mortality rates \mathbf{F}_{cst} . The age of redfish entering the fishery in both areas is set equal to 5, τ_{λ} - to 23 years.

5 -

Beginning with age τ_c the final values of fishing mortality rates in the latest passed year of fishery were determined by the formula

$$\tau_{st} = \bar{Z} - M_{\tau}$$

where \bar{Z} - arithmetic mean of the total mortality rates obtained from the pooled sample in the interval from τ_c to $\tau_{\lambda} - 2$, $M_{\tau} = \int_{\tau}^{\tau_{+1}} M(t)dt$. For fish from Divs. 3LN and 3M τ_c is set equal to 10 and 11 years, respectively, \bar{Z} - to 0.200 and 0.304. M_{τ} values are given in Tables 5 and 6. For the year classes having undergone fishery the final rates of fishing mortality at the age τ_{λ} are assumed constant and equal to $F_{\tau_{\lambda}}$ in 1984. $F_{\tau_{\rm St}}$ values at the age from $\tau_{\rm r}$ to $\tau_c - 1$ inclusively are determined in this year as arithmetic means of the corresponding F_{τ} obtained by back VPA calculation. All final values of $F_{\tau_{\rm st}}$ are given in Tables 5 and 6.

RESULTS

Beaked redfish in Divs. 3LN

Bearing in mind that 90% of the catch include fish aged 5 to 15, arithmetic means of the fishing mortality rates (\overline{F}_{5-15}) of redfish from these age groups for the latest 10 years of fishery are obtained. Fig. 3 represents the linear stochastic relationship between the total international fishing effort for these years (f) and \overline{F}_{5-15} . The regression equation looks like follows:

 $\bar{F}_{5-15} = 0.044 \cdot f = 0.181$

The availability of a rather close and stable correlation between random values f and \overline{F}_{5-15} (correlation coefficient is equal to 0.75) and correspondence of the free term in the regression equation to its physical meaning (it is close to 0) show the validity of input parameter determination in VPA.

The fish abundance at the beginning of each considered year of fishery is given in Table 7. It is obvious that during the survey period the abundance of year classes aged 5 is subject to low fluctuations. The 1973-1978 year classes were the richest. Their abundance at that age averaged 115 mill. specimens. The 1968-1970 year classes were poor, their abundance averaging 44 mill. specimens which is lower than the average abundance of rich year classes by a factor of 2.6. In length frequencies of the catches taken by a small meshed trawl in Divs. 3LN (South Newfoundland) in 1980-1984 length groups corresponding to fish from abundant year classes of 1973 to 1978 dominate (Fig. 4). This phenomenon confirms indirectly the abundance estimates obtained by VPA. In 1985 fish from these year classes will reach the age of 7-12 years and will compose the bulk of catches. The commercial stock biomass has not almost changed since 1975 and averaged 150 thou. tons. In 1984, by our calculations, it amounted to 140 thou. tons being somewhat lower than the estimate obtained from the trawl survey results.

If we assume that redfish in Divs. 3LN are immature till the age of 11 and that beginning with this age the portion of mature fish at each age amounts to 100%, than in the first approximation we obtain the biomass of the parent stock of 12 year classes. The comparison of the parent stock biomass and the abundance of produced offspring aged 5 shows that this relation may be described by the Ricker curve of recruitment:

$$R_5 = \sigma \bar{P} e^{-\beta \bar{P}}$$

where P - mean annual biomass of the parent stock, R_5 recruitment, a and β - parameters equal to 3.161 and 0.960.10⁻², respectively. We have no reasons to consider the stock-recruitment regression line (Fig. 5) not adequate to the data available. It is confirmed indirectly by a rather close back linear relationship between \tilde{P} and $\ln \frac{R_5}{\tilde{P}}$. The correlation coefficient between these values differs significantly from 0, being stable and equal to 0.99.

- 7 -

Relating to the fact that in the 1985 commercial stock there will be 6 abundant year classes, its total abundance and biomass will come up to 520 mill. specimens and 166 thou. tons, respectively. The biomass of mature fish will also increase and reach 60 thou. tons. At the level of exploitation $F_{max} = 0.15$ the total allowable catch will be 25 thou. tons.

Beaked redfish in Div. 3M

Fish aged 8 to 15 years make up the bulk of catches (about 80%). Mean rates of fishing mortality are calculated for these age groups (\bar{F}_{8-15}) for all considered years of fishery. The linear stochastic relationship between the total international fishing effort and \bar{F}_{8-15} is shown in Fig. 6. The regression equation looks like follows:

 $\bar{\mathbf{F}}_{8-15} = 0.024 \cdot \mathbf{f} + 0.006$

A rather close and stable relation between these random values (correlation coefficient equals 0.92) and correspondence of the free term in the regression equation to its physical meaning also show the validity of input parameter determination needed for VPA.

Table 8 shows the fish abundance at the beginning of each considered year of fishery. Thus, it may be concluded that the abundance of the year classes aged 5 is not subject to great fluctuations except the 1979 year class. Its abundance, by our calculations, amounts to 153 mill. spec. thus being higher than that of poor year classes by a factor of 3. The 1971 to 1975 year classes may be attributed to rich while those of 1976 to 1978 - to poor ones. Length frequencies of the catches taken by a small meshed trawl in Div. 3M (the Flemish Cap Bank) in 1980 to 1984 (Fig. 7) confirm indirectly the abundance estimates obtained by VPA. In 1985 fish from the 1971 to 1975 year classes will attain the age of 10-14 years and will make up the bulk of catches. Since 1975 the commercial stock biomass has remained at the level of 120 thou. tons. In 1984 it amounted to 134 thou. tons, which is in a good correlation with the biomass estimate obtained from the trawl survey results.

- 8 -

If we assume that redfish in Div. 3M are immature till the age of 12 and that beginning with 12 years the portion of mature fish at each age is 100%, than in the first approximation we also obtain the biomass of the parent stock of 12 year classes. The comparison of the parent stock biomass and the abundance of produced offspring aged 5 shows that the back relationship exists between these random values. Fig. 8 demonstrates the Ricker's stock-recruitment regression equation. Notwithstanding a low correlation coefficient between \overline{P} and $\ln \frac{R_5}{\overline{P}}$ (it equals 0.65), we have no grounds to consider the regression line inadequate to the data available.

In 1985 the total abundance will remain at the 1984 level and amount to 500 mill. specimens, the biomass will be somewhat higher than the average level for the period 1975 to 1984 and come up to 145 thou. tons. The biomass of mature fish will grow and total about 62 thou. tons. At the level of exploitation $\mathbf{F}_{\max} = 0.15$ the total allowable catch in 1985 will be 22 thou. tons.

REFERENCES

- BARANOV, F.I. 1918. On the question of the biological basis of fisheries. Izv. otdela rybovodstva i nauchno-promyslovykh issledovanij, 1(1): 21 (in Russian).
- BEVERTON, R., and S.HOLT. 1957. On the dynamics of exploited fish populations. Fishery Investigations, Series II, Volume XIX (published in Russian by Pishchevaya Promyshlennost Press in 1969).
- BLINOV, V.V. 1979. Relationship between the natural mortality rate of fish and their age. Rybnoye Khozyaystvo, 1:14-16 (in Russian).

HOHENDORF, K. 1966. Eine Diskussion der Bertalanffy-Funktionen und ihre Anwendung zur Charakterisierung des Wachstums von Fischen. Kieler Meeresforschungen, Bd.XXII, 1:70-97.

- 9 -

NIKOLSKY, G.V. 1974. Theory of the fish stock dynamics. Pishchevaya Promyshlennost Press, 447 p. (in Russian).

TRETYAK, V.L. 1983. Methods of estimating natural and fishing mortality rates of commercial fishes at different fishing ages (exemplified by Arcto-Norwegian cod). Murmansk, PINRO, 76 p. (in Russian).

Table 1. Parameters of the von Bertalanffy equation, allometric growth, natural mortality rates and a and b parameters of M(t) functions for beaked redfish in Divs. 3LN and 3M.

Divs.	[L., cm]	K	t _o years	a 1	<u> </u> b ₁	I M	a	l b	
3LN	56,3	0,06I	-2.09	0,177 IC	4 2,96	0,08	0,0227	3.5645	
ЗM	53,4	0,066	-2,57	0,750 I	,16	0,07	0,0227	3,5858	

Table 2. Running mean of catches based on pooled age composition and mean rates of total mortality for beaked redfish at different age in Divs. 3LN and 3M.

an Managarana Carpolyon	l D:	LVS. 3LN				Div. 3	M		-
Age	l C _T l thou sp. !	τį	<u>Fr +1</u> Fr	Fτ	Cr, thou	sp. Z _t	<u>Fr +1</u> Fr	Fr	Reg
II		Dade Carpon and an			4430	0.131	I.029	0.130	
I2	3222	0.202	I.026	0.150	3883	0.192	0.982	0.130	
13	2634	0.254	I.0I0	0.150	3207	0.152	I.032	0.130	
I4	2042	0.276	0.943	0.150	2754	0.217	I.04I	0.130	
15	1551	0.152	I.045	0.150	2214	0.303	0.917	0.140	
16	1319	0.264	0.946	0.150	1637	0.I22			
I7	I022	0.131			I449				
I8	888								

Table 3. Total number of beaked redfish taken by international fishery in Divs. 3LN (thou. spec.).

Table 4. Total number of beaked redfish taken by international fishery in Div. 3M (thou. spec.).

						с. 4. ^с					•	- 1	1 ,-						
1984	1027	875	I536	262I	3857	6044	6204	4335	3612	2599	667I	I233	573	35I	250	I58	66	25	4
I983 !	I	I55	837	3320	603I	9792	9095	529I	3643	2523	I783	I281	684	457	356	229	154	48	Ŋ
1982 i	14	233	II37	3050	5119	7334	6387	3569	2350	1600	1187	963	6I5	454	383	264	170	20	2
i 1861	321	1194	2925	4533	5877	64I2	4855	2699	2223	1666	I235	850	454	311	237	164	108	Ι+	14
1 0861	I23	818	2708	3672	4399	3855	2827	2280	2838	2740	2409	I867	1134	853	658	174	324	133	37
1 6791	618	2118	3571	3665	3146-	3020	3364	3632	4492	3985	33I6	2508	I364	986	795	558	376	I43	68
1978 1		1104	I228	1140	1718	3690	4913	4467	4550	3611	2609	1799	936	623	437	259	165	57	49
1977 1	39	66	308	706	1581	3445	4736	4238	4662	4014	3483	2929	1671	I263	982	705	16 1	210	19
TOTE 1	- 91/T	135	462	1342	2827	5794	7025	5323	4533	3093	2016	1410	703	644	333	211	136	19	77
TQ75	2658	2735	3667	3937	4537	6449	5967	3811	2558	I623	I062	789	482	371	370	258	241	176	145
1 TQ7/	L9	1184	4825	8562	I2245	13254	10985	7008	6474	5088	3959	3093	1705	1149	806	515	315	85	14 1
1 1973	322	222I	6417	8488	9773	855I	6266	4319	4264	3302	2372	1532	614	352	205	92	64	35	2
1 1972	363	666	2107	2428	2811	3728	4676	4985	6597	7007	7072	6644	4766	3913	3533	2688	I840	684	291
17971	23	54	96	270	629	I305	I19I	I42I	I624	I428	I293	I048	19 <u>5</u>	439	399	284	230	I62	I55
1970	I08	212	204	725	64II	976	108	809	640	538	364	225	I25	89	6	87	144	I33	T4
1 7969	9	29	108	228	370	517	. 549	467	53I	457	358	251	I20	2	48	31	81 18	ц	Ч
1 T968 1	4	29	114	I83	287	440	633	279	1133	II39	1009	2692	465	339	272	I74	IOI	32	m
Age	ں ا	9	2	ŝ	6	IO	II	I2	13	14	15 I	16 I	17 17	18	6I	20	2I	22	23

Table 5. Mean rates of natural (M_T) and fishing mortalities in the interval of one year of life for beaked redfish in Divs. 3LN.

	! M	! Fishin	g mortali	ty rate	s by year	rs of fig	hery	and a constant of the second o	
Age	1/12	1968	1969 !	1970	! 1971 !	1972 !	19 7 3	1 <u>974</u>	1975
5	0.085	800.0	0.006	0.044	0.064	0.026	0.025	0.007	0.172
6	0.082	0.016	0.019	0.059	0.090	C.044	0.076	0.017	0.2II
7	0.080	0.030	0.042	0.060	0.075	0.049	0.093	0.014	0.185
8	0.079	0.055	0.059	0.09I	0.088	0.06I	0.132	0.037	0.281
9	0.077	0.063	0.072	0.089	0.080	0.077	0.158	0.033	0.203
10	0.077	0.068	0.097	0.120	0.079	0.173	0.293	0.082	0.156
II	0.077	0.060	0.063	0.099	0.090	0.136	0.263	0.187	0.079
12	0.078	0.079	0.094	0.074	0.I30	0.145	0.2I2	0.140	0.I00
13 /	0.079	0.059	0.093	0.085	0.054	0.12I	0.167	0.200	0.III
14	0.08I	0.038	0.058	0.068	0.052	0.059	0.143	0.212	0.002
15	0.083	0.025	0.048	0.036	0.165	0.094	0.082	0.194	0.073
16	0.087	0.012	0.026	0.026	0.016	0.083	0.102	0.076	0.070
17	0.09I	0.005	0.0II	0.003	0.030	0.050	0.093	0.056	0.020
18	0.096	0.016	0.019	0.005	0.066	0.093	0.129	0.132	0.037
19	0.102	0.030	0.049	0.005	0.105	0.140	0.202	0.II4	0.060
20	0.108	0.176	0.167	0.013	0.286	0.310	0.594	0.56I	0.255
21	0.II6	0.345	0.09I	0.006	0.159	0.066	0.098	0.I8I	0.054
22	0.125	0.064	I.059	0.000	0.082	0.101	0.076	0.126	0.132
23	0.135	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065

Acon		Children and the second s	Fishing	mortalit	y rates	by years	s of fishe	ry		
*****	1976	1 1977	! I978	! 1979	<u>1980</u>	1981	! 1982 !	1983 !	1984	!
5	0.003	0.000	0.025	0.04I	0.027	0.068	0.079	0.052	0.035	
6	0.014	0.002	0.04I	0.053	0.027	0.099	0.I47	0.109	0.052	
7	0.033	0.007	0.053	0.057	0.035	0.075	0.156	0.145	0.057	
8	0.074	0.017	0.104	0.I40	0.065	0.135	0.158	0.208	0.100	
9	0.140	0.038	0.II5	0.164	0.109	0.175	0.233	0.157	0.119	
IO	0.318	0.151	0.160	0,192	0.232	0.317	0.267	0.274	0,123	
II	0.436	0.237	0.145	0.171	0.223	0.315	0.185	0.I4I	0.123	
I2	0.463	0.353	0.I8I	0.234	0.383	0.454	0.238	0.190	0.I22	
13	0.515	0.298	0.198	0.175	0.538	0.473	0.168	0.159	0.121	÷
I 4	0.537	0.416	L.15I	0.153	0.335	0.501	0.142	0.I22	0.II9	
15	0.168	0.449	0.293	0.126	0.340	0.348	0.202	0.II3	0.II7	
16	0.096	0.169	0.166	0.227	0.154	0.277	0.082	0.145	0.113	
17	0.047	0.094	0.038	0.145	0.235	0.129	0.042	0.036	0.109	
18	0.036	0.2II	0.072	0.138	0.347	0.668	0.045	0.044	0.104	
19	0.095	0.III	0.I20	0.166	0.202	I.355	0.168	0.012	0.098	
20	0.038	0.340	0.199	0.54I	0.862	2.592	0.719	0.126	0.092	
21	0.III	0.213	0.085	0.043	0.200	0.536	0,.175	0.355	0.084	
22	0.106	0.099	0.155	0.085	0.078	0.65I	0.067	0.313	0.075	
23	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	

		! Fishing	mortal	ity rate	s by year	s of fig	ahery		
Age	Mr	1968	1969	! 1970 !	1971 !	1972 !	1973	1974 1	1975 !
5	0.080	0.000	0.000	0.000	0.000	0.006	0.007	0.002	0.046
6	0.077	0.000	0.000	0.003	0.000	0.015	0.044	0.027	0.068
7	0.075	0.003	0.002	0.003	0.00I	0.029	0.II0	0.II2	0.096
8	0.073	0.005	0.005	0.016	0.005	0.036	0.137	0.183	0.I09
9	0.07I	0.009	0.0II	0.032	0.015	0.053	0.175	0.258	0.I22
IO	0.070	0.017	0.018	0.033	0.039	0.IUI	0.196	0.325	0.182
II	0.069	0.030	0.023	0.03I	0.060	0.165	0.212	0.353	0.205
12	0.069	0.044	0.024	0.037	0.062	0.227	0.195	0.332	0.172
13	0.070	0.088	0.033	0.036	0.084	0.379	0.266	0.425	0.167
I4	0.07I	0.II9	0.041	0.038	0.093	0.517	0.285	0.492	0.154
15	0.073	0.134	0.044	0.036	0.IO4	0.726	0.284	0.550	€.154
16	0.076	0.II5	0.039	0.030	0.123	0.918	0.287	0.617	0.I72
17	0.079	0.131	0.021	0.022	0.087	I.0I2	0.164	0.512	0.156
18	0.083	0.204	0.023	0.013	0.088	1.139	0.152	0.447	0.172
19	0.088	0.087	0.036	0.033	0.087	I.620	0.130	0.528	0.22I
20	0.094	0.II7	0.0II	0.074	0.I24	I.092	0.124	0.48I	0.279
21	0.IOI	0.290	0.014	0.060	0.254	2.624	0.054	0.685	0,383
22	0.109	0.676	0.019	0.123	0.081	2.74I	0.321	0.085	0.939
23	0.II8	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186

Table 6. Rates of natural (M_{T}) and fishing mortalities of beaked redfish in Div. 3M in the interval of one year of life.

Aga			Fishing	mortalit	y rates	by year	s of fis	hery	
enstanonettatori	1976	I977	<u>1978</u>	! 1979	<u>! 1980</u>	! 1981	1982	! 1983 ! 19	84
5	0.000	0.000	0.015	0.008	0.002	0.005	0.000	0.000 0.00	7
6	0.003	0.002	0.016	0.030	0.0II	0,019	0.004	0.003 0.01	7
7	0.013	0.006	0.020	0.057	0.043	0.043	0.019	0.016 0.03	8
8	0.04I	0.021	0.026	0.068	0.067	0.082	0,050	0.064 0.05	7
9	0.093	0.054	0.056	0.082	0.096	0.126	0.109	0.116 0.08	16
10	0.196	0.137	0.150	0.II5	0.I20	0.172	0.198	0.268 0.I ⁴	-2
II	0.266	0.2IC	C.255	0.172	0.131	0.I89	0.223	0.343 0.23	5
I2	0.244	0.219	0.268	0.260	0.146	0.154	0.178	0.251 0.23	\$5
13	0.273	0.301	0.330	0.402	0.287	0.180	0.169	0.240 0.23	\$4
I 4	0.270	0.354	0.345	0.458	0.392	0.235	0.165	0.238 0.23	\$3
15	0.252	0.468	0.352	0,520	0.474	0.265	0.226	0.242 0.23	SI
I 6	0.272	0.593	0.404	0.573	0.534	0.262	0.294	0.348 0.22	28
17	0.199	0.511	0.328	0.523	0.476	0.205	0.266	0.304 0.22	25
18	0.186	0.557	0.315	0.585	0.625	0.200	0.284	0.282 0.22	2I
I9	0.203	0.665	0.33I	0.719	0.858	0.306	0.353	0.329 0.2	[6
20	0.167	0.728	0.320	0.79I	I.I41	0.465	0.574	0.326 0.2	01
2I	0.207	0.627	0.325	0.916	I.462	0.775	I.II6	0.682 0.2	33
22	0.141	0.499	0.120	0.460	0.888	0.633	0.919	I.032 0.I	95
23	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186 0.1	36

Age	1		Ye	ar					
	I 1968	! I969 !	1970	! 1971 !	I9 7 2	1 1973	! 1974	1975	1 1976 1
5	59281	63228	60 7 52	54615	39872	39388	45028	51218	58658
6	50779	54033	57715	53422	4705I	35683	35275	41072	3959I
7	5540 7	46017	48858	50127	44599	41498	30473	31944	3063I
8	5285 0	49616	40727	42488	42926	39184	34892	27732	24509
9	53055	46242	43222	34353	35971	37313	31724	31071	19350
IO	77118	46108	39835	366II	29356	3085I	29503	2843I	23494
11	60938	66676	38742	32720	31331	22857	21302	25174	22513
12	48385	53152	57945	32506	27695	25324	I6276	I6357	21528
13	52669	41294	44703	49707	26375	22145	I8929	I308I	13677
I4	50609	45882	34756	37957	43524	21589	I7309	I4327	10818
15	56333	44944	39919	29930	33218	37840	17253	I29I2	I2052
I 6	81057	50589	39427	3543I	23352	27826	32095	I 3082	II049
17	98237	73410	45184	3555I	29888	19327	23438	27273	III82
I8	71379	8920I	66268	4 III 8	31510	25953	16073	20233	24404
19	25903	26903	33498	25253	I4734	I0997	8738	5392	7466
20	I3455	2269I	23139	30106	20529	II572	8116	704I	45 87
21	2286	I0I27	I7229	20506	20302	13513	5733	4155	4900
22	9105	I44I	8232	15247	15571	I693I	10912	4258	3506
23	4667	7536	44I	7265	I239I	12425	I385I	8487	3293

M-1-1 - M	A9						÷		
TADIO 7.	Abundance	0ĩ.	beaked	redfish	at	diffe	rent	age	า่ท
	73					_ <u></u>		~O7	-
	DIVS. JUN	Dy	years o	f fishe:	CV ((thou_	SDAC	2.).	¹

Age !				Year						
	1977	1978	1 1979	! 1980	! I98I	! 1982	I983	1	I984]
5	83807	9 7 0 7 4	I25393	109278	120661	I28865	107652	1	82803	,
6	53700	76950	87003	JI0587	97726	I03569	I09402		93904	
7	35957	49382	68068	76008	99193	81586	82383		90335	
8	27370	32962	43228	59324	67765	84944	644II		65759	
9	21040	24859	27439	34742	51377	54703	6703I		48323	
10	15571	18759	20509	21554	28852	39916	40IIO		53040	
II	I5835	I2402	I4800	¹ I5679	15827	I946I	28298		28229	· · · ·
12	I3476	II568	9929	II549	II6I5	I069I	I4976		22755	
13	I2526	8752	8917	7261	7273	6818	7789		II443	
I4	7555	8594	6633	6914	3918	4189	5325		6137	
15	7120	4597	6813	5247	456I	2188	3350		4347	
16	9375	4181	3155	5530	3436	2963	I646		2753	
17	9198	7259	3247	2304	4345	2387	250I	÷.	1305	
18	9738	7644	6378	2563	I662	3488	2090		2202	
19	9018	3020	2723	2127	693	326	I277		765	a and
20	6132	7288	2420	2083	I569	I6I	249	1.1	II39	
2I	3962	3916	5362	I264	789	I05	70		197	
22 `	39 05	2852	3205	4574	921	411	78		44	
23	2783	3123	2155	2597	3734	424	339		50	· · ·

Are			Year	and a three starts and a second start and a second start and a second start and a second start and a second sta					
*****	I968	<u> 1969 </u>	I970	<u>! 1971 </u>	19 7 2	<u>1 1973 1</u>	1974	1975 !	1976
5	76554	89422	89448	75704	58555	50094	49034	60553	73818
6	56099	70642	82517	8254I	69858	53717	45922	45I8I	53396
7	45902	51922	65383	76206	76396	63717	4758I	41367	390 92
8	37577	42476	48082	60459	70622	68854	52943	39477	34854
9	32154	34740	39270	43999	55936	63313	55794	40966	32892
IO	27772	29678	31994	3543I	40372	49408	49521	40I44	33777
II	22438	25452	27179	28874	31766	34037	37871	3336 7	31202
12	18852	20330	23213	24589	25387	25134	25698	24823	25377
13	13767	I6844	18528	20879	21573	I8889	I9299	17206	19512
14	I0600	II 75 2	15191	16660	17901	`I3768	13505	1 17 62	135 7 0
I5	8246	8765	10511	13626	14145	9938	9649	7692	9390
16	7363	6706	7801	9423	II420	6361	6956	5173	6129
17	3942	608I	5976	7013	7725	4226	4422	3478	4037
I8	1919	3196	5503	5404	5942	2595	3315	2450	2750
19	34II	I440	2874	5000	4554	1751	2051	1951	I899
20	1688	2864	I273	2546	4198	825	1408	1108	I432
2I	429	1367	2578	I0 7 5	2047	I28I	663	792	763
22	68	290	I2I8	2193	754	I34	I098	302	488
23	18	3I	255	966	1814	43	87	904	106

							1.1		
Table	8. Abup	dance of	beaked	redfish	at diff	erent	age	in	
	Div.	3M by	years of	fishery	(thou.	spec.) •		
			an an taon an t						1

Age	ļ			Year					
	1 1977	1 1978	! 1979 !	I980	! 1981	! 1982	1983	! 1984 !	
5	80281	8259I	8636I	7 2950	63422	50198	58440	153188	
6	68118	7408I	75105	79110	67218	58268	4632I	53927	
7	49312	62954	67520	67506	72474	61085	53733	42747	
8	35806	45465	5724I	59184	60002	64417	5558I	49036	
9	31110	32597	41180	49689	51451	51403	56952	4846I	
IO	27906	27459	28709	35323	42033	42237	42946	47234	
II	25890	2268I	2204I	2385I	29218	33007	32303	30615	
12	22331	19590	16412	17325	19533	22583	24648	21392	
13	18552	I6749	13979	II806	13971	I5626	17634	I7900	
I4	I 3849	12806	II22 7	8715	8263	I0883	12306	I2935	
15	9650	9053	8451	6614	5484	6087	8594	903I	
16	6787	5616	5919	4672	3829	3912	4514	627I	
17	4327	3477	3475	3092	2539	2 73 I	2702	2953	
18	3058	2399	2313	1904	1776	1911	1934	I84I	
I9	2101	I612	I6I2	I186	938	1337	I324	1342	
20	1420	989	I06 0	719	460	632	860	872	
21	LI03,	624	654	437	209	263	325	565	
22	56I	532	407	236	9I	87	78	I48	
23	380	305	424	230	87	43	31	24	

Fig. 2. Variation of beaked redfish natural mortality rates with age in Divs. 3LN (Curve 1) and in Div. 3M (Curve 2).

Fig. 3. Relationship between the mean rate of fishing mortality for beaked redfish aged 5 to 15 in Divs. 3LN and the total international fishing effort.

Fig. 4. Length composition of beaked redfish from trawl catches taken in the South Newfoundland in spring-summer 1980 to 1984.

2)

n

Fig. 5. Relationship between the abundance of beaked redfish year classes aged 5 in Divs. 3LN and the mean annual biomass of mature fish.

Fig. 6. Relationship between the mean rate of fishing mortality for beaked redfish aged 8 to 15 in Div. 3M and the total international fishing effort.

- 19 -

n à c:

5

Fig. 7. Length composition of beaked redfish from trawl catches taken in the Flemish Cap area in springsummer 1980 to 1984.

Fig. 8. Relationship between the abundance of beaked redfish year classes aged 5 in Div. 3M and the mean annual biomass of mature fish.

🗯 🦻 h