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The problem of combining estimates of abundance from different sources

(commercial catch per unit effort, cohort analysis, research vessel surveys) is

analysed using structural and functional maximum-likelihood models. The

functional formulation requires more information than is generally available

and cannot be widely applied to fisheries data. However, many sets of

abundance data can be suitably transformed to meet the assumptions of the

structural model. The structural model is a generalization of confirmatory

factors analysis. These methods allow the history of a population to be

reconstructed from a time-series of measurements using different estimators, as

well as obtaining a better estimate of the abundance at any time. Estimates of

the precision of the various abundance estimators can also be calculated. The

method is very general and can be applied to a wide range of data. An example

for a Newfoundland Atlantic salmon population is presented.

Introduction

Fisheries scientists continually encounter the problem of measurement

error in the collection and analysis of assessment data. One of the goals of

most assessments is to determine the abundance of a given stock or part of a

stock such as the recruits. However, we cannot directly observe the true

abundance of a stock. Rather, we must rely on indirect methods such as those

described by Collie and Sissenwine (1983) for utilizing research vessel survey

data, or cohort analysis using commercial catch data (Pope 1972). Usually,
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these methods yield estimates or indices which are related to the true

abundance, but there is error in the relationships. As noted by Fournier and

Archibald (1982) and Collie and Sissenwine (1983), early methods did not

specify observational or measurement error in the relationship between the

abundance index and the true abundance.

Because observational error is likely to occur with any particular method

for describing stock abundance, we consider estimates from methods such as

cohort analysis and research vessel surveys to be indicators of abundance.

Often, several abundance indicators may be available for a given stock. 	 This

paper describes methods for combining the information on stock abundance

contained in the available indicators. We obtain estimates of the measurement

error variance associated with each indicator, the relationship of the

indicator to the true abundance, and an overall estimate of abundance using

several sources of information. This problem can be viewed as comparative

calibration (Theobald and Mallinson 1978). That is, we wish to intercalibrate

different methods of measuring abundance in cases where the true abundance is

unknown. We describe two alternative maximum-likelihood formulations of the

problem. An example of the use of the methods on a Newfoundland population of

Atlantic salmon and recommendations for their application are discussed.

Model Formulation

We consider the case in which the true abundance in year i, x i , is

measured by p "indicators" that are linearly related to the true abundance.

Possible indicators may be results from research vessel cruises, sequential

population analysis (SPA), or commercial catch per unit effort. Note that

estimates of relative abundance, such as catch per unit effort (CPUE), are

considered indicators of abundance in this terminology. The model we consider

is

yij = xj x i + eij + pi	 where i = 1, 2,	

•	

N	 (year)	 (la)
j = 1, 2,	

•	

p

or in vector notation

= Ax i + e i +	 (lb)

where	 A, e l , and j are column vectors with p components, comprising



elements y ij , Xj , e ij , and	 (j = 1	 ), respectively. Here the y ij are

the observed indicators of abundance, e ij is interpreted as-measurement error,

4.J and X3 are intercept and slope parameters to be estimated. 	 We assume that

for each i (i = 1, ... N) ei	 is distributed independently of x. with mean

zero, and that the covariance matrix of the measurement errors, T2 , is diagonal

(unless otherwise stated) with diagonal elements given by (pjj 2 , which will be

thesameforeachyear.Themeasurementerrors,e..are assumed to be

normally distributed. If the measurement errors are lognormally distributed

(Peterman 1981), then the analysis would proceed using the natural logarithm of

the indicators. However, in this case the model would be multiplicative.

It is necessary to specify the units of true abundance in model	 (1) by

scaling x i in terms of the indicators. This is accomplished by fixing one of

the X parameters equal to one 	 Preferably the units of x i should be absolute

(e.g. SPA) rather than relative (e.g. CPUE) abundance.

The Functional Case

Consider the case where the true abundances are fixed values to be

estimated. Equation (1) is termed a functional relationship in this case

(Kendall and Stuart 1973). The likelihood function is

1 	 exp	 -1/2 X (xi - A
	 -2	 -	 •	 ,	 (2)

(2 it pN/2

Note that all the xi are parameters to be estimated. However, Anderson and Rubin

(1956) have shown that this likelihood fluction does not yield valid estimates without

additional information being incorporated into the model because it does not

have a unique maximum.	 To see this consider the simple case where for one

particular j, (pjj = 0, pi = 0, and y ij = xj x i for all i 	 In other words,

where all the information is contained in one of the indicators and so its

measurement error approaches zero. The likelihood function (2) goes to

infinity as the estimate of (pjj goes to zero. Thus,	 (2) has multiple unbounded

"peaks". While this may seem a trivial case, it applies in situations where

one indicator is very much better than the others. Ideally, this should be

known in advance. Often the investigator does have a substantial amount of

information on the values of the slopes Xj and variances qv e.g. from

replicate observations. The model may still be useful for purposes of



calibrating the poorer indicators to the best estimate of abundance. However,

the measurement error of the best indicator may need to be fixed at some small

value for the analyses to proceed, i.e. more information must be included in

the model.

	

There is a second difficulty with the model as presently formulated. 	 The

property of consistency (that is as the sample size increases the estimator

converges in probability to the true value) is no longer assured if the number

of parameters to be estimated increases to infinity as the number of samples

	

increases to infinity (Neyman and Scott 1948). In the case of (1), if X j	1

for, all j , and(pij 2 = a2 for all j, the maximum likelihood estimator exists,

but underestimates the true a by —2—for any sample size. Models such as that
p-1

proposed by Ludwig and Walters (1981) must be treated carefully to avoid bias

even for large samples. Methods with this difficulty (e.g. Ludwig and Walters

1981) can thus yield misleading results.

Well-behaved likelihood functions that yield consistent estimators are

possible if there is more information available than was used in (2). There

are two possible sources of extra information: (i) information may be

available on the distribution of the xi's, and (ii) information may be

available on the parameters of T.

There are two approaches that incorporate additional information and lead

to consistent estimators in the functional case (2). First, prior information

on the measurement error variances of the indicators can be included, and the

analysis proceeds using Bayesian methods (Lindley and El-Sayyad 1968). Second,

we can use the observation of Anderson and Rubin (1956) that the sample means

and dispersion matrix are sufficient statistics in the structural model,

i.e. where the xi are considered realizations of random variables (see below)

and probability limits are of the same form in both models. That is, for more

than two indicators, the parameters in the structural case can replace their

corresponding parameters in the functional case, and the individual abundances

can then be estimated. Although the fLinctional model can be used if

empirically derived prior distributions for the error variances can be

obtained, this is rarely true for all indicators. Furthermore, the

computational burden in the functional case can be overwhelming for even short

time series of data. We shall present an alternative that sometimes overcomes

the difficulties with the functional model.

Structural Case

An alternative formulation of the problem i to consider the true



abundances as random variables such that (1) is a structural relationship

(Kendall and Stuart 1973). In this case there is additional structure imposed

on the model, i.e. the form of the probability density function of the true

abundance. This adds an additional assumption to the model. It is an

assumption that can and should, be checked for agreement with the data

collected.

In overview, if the estimation of abundance is treated as a structural

problem, then the estimation procedure is a two stage process. First, the

model parameters, j and X, are estimated and then the individual abundances,

the x.'s, are estimated utilizing these estimates of the structural parameters.

Since the true abundance does not fully account for the total variance of the

indicators of abundance, the true abundance cannot be estimated in the usual

statistical sense. A minimum variance or least-squares principle must be

invoked to obtain reasonable estimates (Anderson and Rubin 1956).

Specifically, we now assume that xi is a realization of normal,

independently distributed random variable, with mean 0. We now rewrite (1) as

(3)

Model (3) corresponds to the model used in the well-known statistical method of

factor analysis with a single unobserved factor (Lawley and Maxwell 1977).

Note that although the population mean can be estimated using the sample mean,

(3) is useful only in those cases where deviations from the population mean is

of interest. Intuitively, factor analysis hypothesizes that the covariance

between the observed variables results from some underlying common factor.

Each observed variable is then an indicator of this common factor and each also

contains a unique factor, e j* For the problem considered here, we assume thati
the underlying factor responsible for the covariance of the abundance

indicatorsisoletrueabundance,andtheei can be interpreted as measurementj
or observational error.

If there is more than one age class that contributes significantly to the

true abundance, then the abundance at time i will no longer be uncorrelated

with the abundance at time i+1. An approximation for many populations is to

replace the assumption that true abundances are independently distributed

random variables with the assumption that

=	 x i + C	 (4)
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where y is a new structural parameter (interpretable as a constant survival

probability) to be estimated and c are independent normal random variables

(interpretable as a recruitment).

Other models may Provide better representations for the stochastic

variations in fish abundance. For example, two time lags may be preferable

than the one used in (4), or if there is a linear trend to the data it can be

removed by assuming the true abundance has the form

x.	 a 4. +c (5)

where C is an independent normal random variable as before, and a and p are

Parameters to be estimated. This is preferable to detrending each of the

abundance indicators because fewer parameters are estimated. Similarly, it may

be necessary to assume that the technological efficiency of a fleet increases

with time (Pope and Shepherd 1983).

The structural parameter estimates can be obtained from the likelihood

function if the model is identified (see below). The actual computation may be

more complex with certain models, eg. a model assuming (5) would use a

covariance matrix E of dimensions 2p x 2p.

Estimation of Structural Parameters

For the parameters to be estimated there must be sufficient information so

that the Model is identified. That is it must be possible to deduce uniquely

the values of the structural parameters from the observed covariance between

the indicators. The conditions for identification will not be given here in

detail (see Judge et al. 1980 or Anderson and Rubin 1956). However, there are

some simple rules that are useful. If only two indicators are available, the

system is not identified unless subsidiary information is available such as an

estimate of one of the measurement error variances. Such estimates may be

obtained, for example, from replicate samples in research surveys. If three

indicators are available, the system is identified unless there are correlated

residuals. With four or more indicators, the system is overidentified and the

hypothesis of correlated residuals can be tested. In general, it is not

possible to estimate more parameters than there are unique elements in the

covariance matrix of the indicators, E. However, the model is not necessarily

identified, even if the number of unique elements in E, p(10+1), is greater than
2
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or equal to the number of parameters to be estimated.

We proceed to estimate the parameters of A and T. The covariance matrix

of the indicators is defined as the expectation Nyy 1 ) and denoted by E. It is
written in terms of the model	 parameters A and T. (Since the sample mean is a
sufficient statistic for the population mean we do not discuss its estimation.)

Given the assumptions of the model we have

E = AQ,Zk A'
	 T2
	

(6)

where ai is the variance in the true abundance (Lawley and Maxwell 1971). The
sample covariance matrix S based on N observations is defined by

S	 (1/n)	 (Li -;)( . -; )I ,	 (7)

where n = N-1 and y is the sample mean of the vector of observed indicators.
The loge likelihood function is

loge L	 -1/2 [pN log e 2n - N 1 ge 24	 r1 y)].	 (8)

Maximizing log®L is equivalent to minimizing

F = log	 I + tr(Srl)

(areskog 1973). The likelihood function is maximized over the elements of E,

i.e. the elements of A and T. The maximization of the likelihood function is
described in Lawley and Maxwell (1971) and areskog and Stirbom (1983).

Other formulations for the estimation of over-identified models are
possible, such as an ordinary least squares or generalized least squares

minimization criterion. An advantage of the maximum likelihood approach is
that standard errors for the parameter estimates can be obtained and the
assumptions of the model, e.g. independence of measurement errors, can be
tested using likelihood ratio techniques or the x2 goodness of fit statistic
(areskog and Siirbom 1983).

Often one or more of the measurement error variances can be estimated
independently of the above model. For example, the estimates of the
measurement error variance for commercial catch-effort data can often be

calculated if the different gear types and seasonal effects are combined via a



multiplicative model with lognormal error (Gavaris 1980) . Similarly, estimates

a* 2	In this case the maximum-likelihood estimate of E isandmean 0 variance

simply S, and is given by

2

A
X 2 

• 

S12/4
Ax 3 .	 siA/42-
A
411L 

• 

Su -

4'227 7 S 22 - X 2 a*2
Dif33 2 = s.33	 x3242

.42 . s-13-s 12/5;23

Barnett (1969) derives the asymptotic variances for the above estimators.

of measurement error variances are often available for research vessel survey

cruises. In either case the above likelihood function can be estimated with

one or more of these model parameters held constant (JOreskog 1973).

A useful special case occurs when the structural model is "just

identified", i.e. contains just sufficient information to uniquely estimate

each parameter. For example, consider (3) for a three-indicator model in which

the true abundance is an independently distributed normal random variable with

Since E is symmetric only the upper triangular elements are given.

If S is equated with the above E we have 6 equations with 6 unknowns. The

estimates are

(9)

Alternatively, bootstrap confidence intervals can be constructed (Effron

1979).

Estimating Individual Abundances

If abundance estimation is treated as a structural model then the

individual true abundances are not parameters in the usual statistical sense

but rather values ascribed to unobservable random variables. In factor

analysis this problem is known as estimation of factor scores (Lawley and

Maxwell 1971). The method of estimating individual abundances will depend upon



the goals of the researcher. In some circumstances minimum variance may be the

most appropriate criteria, while in other cases lack of bias may be viewed as a

necessary prerequisite for the estimator.

If the error variance of abundance estimates, given by

where x i is the estimator, is minimized we have

(10)

(Lawley and Maxwell 1971). •This is basically a regression estimator, and is

biased.

An alternative approach that yields unbiased estimates was first suggested

by Bartlett (see Lawley and Maxwell 1971). In this estimator the sums of

squares of the standardized residuals,

Cti - A	 T-1 (xi	 Axi

is minimized. The resulting unbiased estimator for x i is

(AGT-1A	 • •

The choice of estimator depends on the particular application. If

abundance is to be used in calculations of sustainable yield from a fishery, it

seems most critical to have an unbiased estimator, sacrificing the minimum

variance property. In other cases, such as studies relating abundance to other

variables such as growth or recruitment, the achievement of minimum variance

may be more desirable.

The most generally available computer program for analyzing structural

models is LISREL VI (linear structural relationships) (areskog and Siirbom

1983). This program is available as an extra cost option on SPSSX (Statistical

Package for Social Sciences X).

Difficulties in the Analysis

The investigator must always determine what indicators are appropriate and

useful for the analysis of abundance. 	 Such judgments require both detailed

knowledge of the data set and biology of the population and also consideration
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of the ability of the method to use a given indicator effectively.

In certain cases, the problem can be approached by looking for

corroborating evidence that an indicator truly contains information on

abundance. For example, if density dependent growth is hypothesized such that

body size could be used as an indicator of abundance, the size of an individual

may be compared to indicators of cohort and standing stock abundance. Plots of

one indicator versus another are useful for assessing the quality of the

indicators. Heteroscedasticity and the presence of outliers should be

scrutinized in particular.

Other problems arise when one indicator is very much better than the

others. The measurement error variance for this indicator may be close to zero

and the minimization procedure may encounter difficulties. This is

particularly true when the number of time periods in which abundance is

measured is small (< 50). In this situation it may be necessary to fix the

value of the measurement error variance for the dominant indicator. Note that

the method is still very useful for calibrating the other, poorer indicators.

Sample size is an important problem, especially for fisheries where

relatively few years of data are available. One reason small samples may cause

difficulties is because the model assumes that the sample covariance matrix is

estimated adequately, i.e. is a good estimate of the population covariance

matrix for the indicators. With small samples this assumption may not be well

met. The most common result in this case is the parameter estimates for the

model are outside admissible parameter space, e.g. one of the variances is

estimated to be negative.

Van Oriel (1978) notes that improper solutions have three main causes:

1a) sampling fluctuations such as often occur with small sample

sizes;

2a) the data come from a model which does not meet the assumptions of

the method, such as linearity and normality;

the model is not identified (see Anderson and Rubin 1956).

She recommends procedures for overcoming these difficulties as follows:

lb) If the improper solution is due to (la), then, fix the value of

that parameter at its nearest interpretable value.

2h) Under (2a), omitting the appropriate value is often helpful.

Under (3a), adding variables (indicators) may properly identify

the model.

As a diagnostic aid, we have often found it useful to construct the model for



the correlation matrix first, and when it is satisfactory, proceed to the model

for the covariance matrix, which should have the same structure. When working

with a correlation matrix, the units are standardized and it is often easier to

detect a poorly estimated value or an inappropriate model. In addition, one

knows that the variance of the unobserved abundance equals one in this case and

the estimated variance value can be compared with this as a check on the

model.

There are two types of correlations i n the error structure: measurement

error correlations between indicators at a given time and longitudinally

(i.e. over time) correlated errors. There are situations in which it is

possible that measurement error in one indicator of abundance may not be

independent of the measurement error in other indicators. For example, CPUE

calculated from a subset of the commercial vessels and the SPA from the total

commercial catch are both indicators of abundance. The measurement errors may

not be independent in these two cases unless the CPUE is from vessels that are

responsible for only a small fraction of the total catch. The degree of

correlation in the measurement error can be estimated if there are four

indicators of abundance. The hypothesis that the correlation is nonzero can

also be rigorously tested using likelihood ratio methods if the model is

over-identified.

If the residuals in the analysis are not independent over time, then the

standard errors of the estimates may be seriously underestimated (Judge et al.

1980). Such correlations may be induced by the age structured model used in

SPA. That is because an error in the estimation of catch in one year will

affect estimates of abundance for more than one year the residuals may not be

longitudinally uncorrelated. There are formal statistical tests to detect such

correlations (Siirbom 1975). An alternative means of deciding which errors are

most highly correlated in SPA is to simulate the propagation of errors through

the analysis. This can be done by fixing the catches in all years but one,

which is varied in the simulation. Both the total catch and the age

distribution of the catch in the 'test' year should be varied to determine how

errors affect the SPA results. Relevant information on the accuracy of the

data can then be appropriately included in the measurement error model. See

SOrbom (1975) for examples of such models.

It is possible to include auto-correlation structure for the true

abundance in the analyses as described above. However, this does not ensure

the errors will be uncorrelated, but violation of this assumption does not
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where the subscript 1 refers to the Terra Nova lower fishway counts, 2 refers
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necessarily invalidate the procedure (areskog and SOrbom 1983).

An Example

We shall it 	 the preceding methods and indicate uses of the

approach by an examination of empirical data on spawning escapement of Atlantic

salmon i n Newfoundland.	 The data sets consist of recreational catch and effort

data for the adjacent Gambo and Terra Nova rivers which drain into the same

inlet and counts from two fishways on Terra Nova River (Table 2). We seek an

index of spawning escapement in the Terra Nova inlet. Note that an index is

all that is possible here because we have no measure of absolute abundance,

1.e. not all salmon pass through the fishways so the fishway counts will in

general be an underestimate. Fishway counts before 1963 are available but are

not comparable to those after 1963 because of changes in the construction of

the fishways. Only data from years in which all four indicators were available

were used for parameter estimation. We use these data because they allow us to

illustrate several difficulties that can be encountered in using these

techniques.

Initially we used catch per unit effort as an index of abundance.

However, catch per unit effort was negatively correlated with the fishway

counts. This was presumably due to two factors: (i) the increase of

inexperienced fishermen in recent years during a time when abundance appeared

to increase, and (ii) the dependence of fishing effort on abundance, i.e. in

years of greater salmon abundance recreational fishermen tended to fish more.

We thus used total catch as an index of abundance.

It is clear from the data that all indicators are generally increasing

with time This is probably due to the effect of the fishway and a decrease in

commercial fishing in the inlet. Thus, the true abundance is probably not

independent over time.

We begin by examining the correlation matrix of the four indicators of

abundance
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to the Terra Nova upper fishway counts, 3 refers to the Terra Novae recreational

catch, and 4 will refer to the Gambo River recreational catch. We first

examine the three indicators for Terra Nova River. The good correlation of the

upper fishway with the other two indicators shows it perhaps has the least

measurement error. This is also indicated when the parameters are estimated

(Table 3; Model I) using (9). Subsequent analyses utilized the LISREL VI

program.

The Gambo River catches are next included as an indicator, with the

assumption that the measurement errors are independent (Table 3; Model 2). The

x 2 goodness of fit is too large, indicating that at least one of the

assumptions is wrong. An examination of the residuals of the fitted covariance

matrix, E, with the observed sample covariance matrix, S, indicates that the

measurement errors of the two catches may not be independent. The inclusion

and estimation of such a measurement error covariance yields an excellent fit

(Table 3; Model 3). One estimated measurement error variance is negative, but

this could be due to sampling error. This parameter could be set to some small

value and the model refit.

The model assumptions should now be checked. First, the abundance appears

to increase over time (Table 2), invalidating our assumption that the

stochastic process generating the true abundance is stationary. We thus assume

the true abundance is given by (5) and assume the measurement errors are

independent (Table 3; Model 4). The fit is not adequate, and an examination of

the residuals indicates that the measurement errors of the fishway counts are

not independent (Table 3; Model 5). The inclusion of a second error covariance

term marginally increases the x2 goodness of fit and is of questionable

significance.

A second assumption that is questionable is that the errors are normal.

The model was fit using log abundances and the assumption is that log abundance

increases linearly with time (Eq. 5). The resulting fit is a slight

improvement over the assumption of normal errors, and there is no evidence that

the two catch rate errors are correlated (Table 3; Models 7, 8, 9).

We have three models, 3, 6, and 9, that fit the data adequately. The

inclusion of a linear trend leads to very different conclusions about the sizes

of the measurement errors, i.e. a2 was lowest in Model 3, whereas a3 was lowest

in models 6 and 9. The assumption of normal vs. log-normal measurement errors

had only minor effects on the relative sizes of the measurement error variances

by comparison.
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Estimates of the true abundances showed increases over time for all models

(Fig. 1). Note that we can estimate the true abundance in years in which not

all the indicators are available, i.e. 1974-77. Given the adequate fit of

Model 6 it appears that relatively little can be inferred from the data other
than there has been an approximately linear increase in salmon abundance in the

inlet. Note also that the estimates obtained from Model 1 are sometimes below

those actually observed; however, this is because the estimates were scaled to

the mean abundance of the lower fishway which in general underestimates the

number of fish passing through the river. As new data become available, yearly
abundance estimators can be made using the measurement error variances

calculated in Model 6. Since we do not know if future abundance will continue

to increase, we would recommend not including the linear trend in a new yeariy
abundance estimate.

Conclusions

The structural equation modelling method described above is a very general
approach. It may be used to combine the information in a variety of indicators

in a coherent and repeatable way. Obviously, the method is not restricted to

abundance estimation, but can be used to estimate any quantity where more than
one type of measurement is available.

Some of the assumptions of the method, particularly linearity and

normality, must be carefully assessed for a given application. Similarly,
sampling problems may often arise. Even in these cases, however, the method

may serve as a guide to particular problems with the data or model (Van Driel
1978). An advantage of this method is that alternative hypotheses for
measurement error structure and the distribution of the true abundances can be

rigorously tested to determine if they are consistent with the available data.
Often more than one set of hypotheses are consistent with the data as in our
example. It is necessary for rational management to be aware of the range of
abundance estimates that are based on viable alternative hypotheses about the
measurement error structure.

Information on the measurement errors inherent in a particular type of
measurement are essential for further data analyses. For example, if abundance
is related to other variables such as recruitment (which may have its own

measurement model), then estimates of the measurement error variances are
required to obtain unbiased parameter estimates for the stock recruitment
relationship (Kendall and Stuart 1973; Ludwig and Walters 1981).
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The method can be used to reconstruct the history of the population from

information on the indicators for periods when less information was available.

In other words the various indicators can be calibrated over a period when all

were measured, and then, assuming the relationships are stationary in time the

true abundance in other periods can be inferred from the model. Such a method

may be particularly useful for time series data containing gaps in the record.

Finally, these methods can extend to far more complicated problems, where

the measurement error models described above are parts of a model relating

several unobservable variables (areskog 1973). For fisheries data such

models have been used to describe the interactions of catches in multispecies

fisheries and to describe the mechanism underlying recruitment variability

(Rosenberg 1984).

If the desired relationship is linear, then the complete data set on all

variances and the dependent variable of interest can be analyzed using

extensions of the methods described here, i.e. the analysis of covariance

structures (JOreskog and Siirbom 1983). If, however, the relationship is

nonlinear, then the estimates of the true abundance and the associated

measurement error variance estimate can be utilized in alternative procedures,

e.g. Chandler (1972).

Although we have found factor analysis to be a useful adjunct to standard

methods of population analysis; however, its usefulness should not be

overestimated. Potential users should heed the warning of Lawley and Maxwell

(1971, p. 38) that factor analysis "is useful only as an approximation to

reality	 . [and] . . . should not be taken too seriously."
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Table 1.

Notation:

e..ij error in indicator j at time i

N	 number of observation

N-1

number of indicators

sample covariance matrix

x i	true abundance at time i

4	 vector of indicators at time i

p	 slope of true abundance on year; see (5)

A	 vector of parameters

covariance matrix of measurement errors

E	 dispersion matrix of,x

4	 variance in the true abundance used in the structural model

x2	 "chi square" goodness of fit



. Data used i n the example.

Year
Terra Nova

1 over fi shway
Terra Nova

upper fi shway
Terra Nova	 Gambo

catch	 catch

407
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983

588
972

1089
1051
1224
857	 437
957	 532

562
283
830
383
633
524
485
437
647
633
892

754

385
136
415
437.
599
733

170
341

337	 169
226	 210
339	 259
331	 245
523	 239
461	 314
413	 204
478	 149
33.5	 287
248	 257
508	 300
431	 359
863	 1059
634	 616
552	 245
534	 467
772	 747
489	 379
529	 447



19-

Table 3. Maximum likelihood estimation of abundance model for data from the
Terra Nova and Gambo Rivers in Newfoundland. The subscript 1 refers to Terra
Nova lower fishway counts, 2 refers to Terra Nova upper fishway counts, 3
refers to Terra Nova catches, and 4 refers to Gambo River catches. x 2 is the
goodness of fit, d is the degrees of freedom, and p is the probability that the
fit is acceptable. Other symbols are given in Table 1. Models 1, 2, and 3
assume that the true abundance is a i.i.d. normal random variable and that
measurement errors are normal. Models 5 and 6 assume that the true abundance
is given by Eq. 5, and measurement errors are normal. Models 7, 8, and 9
assume that the true log abundance is given by Eq. 5 and measurement errors are
log normally distributed.

Model

1	 1	 1	 1	 1	 1	 1	 1	 1
1.08	 0.97	 1.13	 1.09	 1.13	 1.46	 2.46	 2.6	 2.57

x3
	 0.53	 0.55	 0.53	 1.18	 1.31	 1.39	 2.23	 2.48	 2.51

X4	 -	 0.46	 0.39	 1.18	 1.31	 1.41	 2.38	 2.67	 2.74
al	 36	 100	 116	 169	 162	 180	 0.167	 0.179	 0.79

'12	 16	 66	 -)30	 128	 133	 132	 0.272	 0.29	 0.29
a3	 34	 103	 110	 47	 44	 85	 0.10	 0.1	 0.09

(14	 144	 152	 100	 98	 122	 0.33	 0.32	 0.32

(112	 	 127	 138	 -	 0.19	 0.19
(134	 -	 111	 -	 -	 75	 -	 -	 0.06
a*	 35	 167	 158	 60	 55	 10	 0.71	 0.063	 0.066
P	 -	 -	 12.38	 13.6	 11.4	 0.016	 0.015	 0.015
x2	 12.3	 0.32	 19.1	 6.87	 4.46	 14.87	 5.18	 5.15
d	 0	 2	 1	 5	 4	 3	 5	 4	 3
p	 0.002	 0.57	 0.002	 0.143	 0.216	 0.011	 0.27	 0.161
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Figure 1. Estimated true abundance for the Terra Nova River salmon data using

and 6 (--- ). Estimated abundance is scaled by the mean of the lower

the minimum variance estimator (10) and the parameter estimates from model 1
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