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INTRODUCTION

Shellfish species occupy a very wide range of habitats and have

very original types of life cycles from benthic sedentary ocean

quahogs who may live several hundred years to pelagic schooling

squids who live only one to two years and benthic decapod crusta-

ceans either sedentary or which may crawl over several hundred miles

during their life time. In a first instance, the only common

feature among , shellfish species seems to be diversity and it seems

that custom made assessment statistical tools may be required in

most cases (Conan, 1984). There is however a strong temptation to

use standard tools of "proven efficiency" imported from finfish

population biology.

Not withstanding the diversity of shellfish species, there is

one characteristic which is shared by several species: the relative

temporal scales of sampling surveys and movement of the individuals.

Many shellfish species will have limited movements or migrations

during a sampling survey. In finfish stocks it is frequently

possible and generally assumed that the individuals redistribute

themselves over the fishing grounds during the survey. The exact

location of the sampling points is therefore of secondary

importance, and it is implicitely assumed that the results for one

sample are statistically independent from those of the next one:

1) Within a stratum all samples may share a common mathematical

expectation (mean) but the random residual terms (the errors) are



independent from one sample to the next. In order to enhance this

independance it is generally recommended to randomize the spatial

distribution of sampling points .. 2) The sampling procedure has

negligeable effects on the population. The removal of individuals

does not affect the total number of individuals present. One may

eventually sample twice in the same location. The removals made by

the first sample have no effects on the second sampld because fish

will have redistributed over the sampling area. 3) Within a stratum

the mathematical expectation in one location is the same as in

another one. There are no geographic trends.

Actually these three assumptions may never be fulfilled, even

for finfish. However due to swift reorganizations of the spatial

distribution of the individuals it is difficult to detect any struc-

tures during a survey, other than broad geographic changes in densi-

ties, stable in time, which may be dealt with by stratification.

Fisheries biologist using echosounding as a survey tool have

developped sampling techniques operating fast enough to detect

spatial structure of populations (schools of fish) and are familiar

with the problem of non independance of samples. Samples are "auto-

correlated" within a certain radius.

Many species of benthic invertebrates are sedentary, at least

over the fishing season and it is no longer possible to assume that

they redistribute over the fishing grounds. Fishermen will harvest

microareas one by one, redistributing their effort over the fishing

grounds, over the fishing season or over a series of years. If the

relative geographic distributions of fishing effort and harvested

populations are not taken in account, the sustainable production of

the-stock may be considerably overestimated. The landings appear

stable until the whole stock has been (over) exploited and the

fishery crashes. The geographic distribution of effort can be

assessed on the basis of log book data or by direct means such as

aerial surveys (Conan & Maynard, 1983; Pringle & Duggan, 1983).

assessment of spatial structure of population abundance requires a

non traditional approach. The final step of modelling the exploita-

tion of such "disaggregated" stocks has already been considered by

several authors (Sluckzanowski, 1984; Mohn et al.,1984; Murawski and

Fogarty, 1984). An important step consists in taking in account the



behavior of the fishermen who concentrate their fishing effort on a

rich area, until their costs about equal their benefits and then

move to another area.

Quite clearly an assessment of overall abundance (biomass) is

not sufficient, even if it is unbiased and very precise. It is not

sufficient either, to model the. probability distribution of the

samples in the traditional way: a regular distribution by the

positive binomial, a random distribution by the Poisson, an

aggregated distribution by the negative binomial (Elliot, 1977 for

review). One needs statistical tools specialy designed for

analyzing the spatial structure of the populations.

The problems encountered with sedentary benthic marine

invertebrates are somehow similar to those encountered in assess-

ments of forestry resources (Matern, 1960) or in the mining industry
(David, 1977). Ecologists in recent years have moved from the

traditional approach of modelling probability distributions of.

independent samples to the analysis of spatial structures and of

autocorrelations between samples of known geographic position. The

most thorough development for this approach has been in mining.

(Matheron 1968, 1969, 1971), Del finer (1976), David (1977), Clark

(1979), have described a theoretical background for a "theory of

regionalized variables" for the "geostatistics" of mining

resources. I have reviewed some of the techniques currently used in
geostatistics and checked for possible applications in fisheries
science. I applied one of these techniques "Kriging" to actual data

from an exploited scallop bank in Northumberland strait (Canada) and

compared the results with those of a traditional biomass survey.

MATERIAL AND METHODS

Data

The data was provided by Dr. Jean Worms (Marine Biology,
Research Center). It was obtained during a survey of Sea Scallop
Placopecten magellanicus on the banks of Pictou and Indian Rock in
Southern Northumberland Strait. One hundred and nineteen short tows
of Digby scallop dredge over a rectangle of 10 by 25 nautical miles
were obtained along transects crossing the banks. The tows being



very short are assumed to provide punctual information on density.
density is expressed in tons per square km (Fig. 1).

standard statistical treatment 
The standard approach assumes no autocorrelation between

The

model used for the variogram is the "spherical"A very general

samples Z(x). We shall simply compute a mean density Z 	 EZ(x) and
N

a variance 2 = (Ez2(x)
	

(EZ(x))2/N)/(N - 1). From the area

covered, A, the mean density Z and its standard deviation

S(Z) AMS — ) we may provide an estimate of the standing stock

(biomass) and of its 95% confidence limits. We assume that the

distribution of the mean Z is normal because we have more than 30

samples (central limit theorem). The biomass B is the product of

the average density Z by the constant A, its variance is therefore

s2(B) = A2 s2(E). The 95% confidence limits are + 1.96 S(B). We

also provide an histogram of the sampled estimates of densities.

Geostatistical treatment 

The first step is to analyze the autocorrelation between data

points by calculating an experimental variogram C(h) where h

represents the distance between points.

N

Y(h) = 1/(2N)
	
E [Z(xi) - Z(xi
	 h) J2

i=1

N is the	 rnumbe of couples of points separated by a. distance h.

The variogram, when plotted against h provides a first insight on

the spatial structure of the data A most common shape is a curve.

starting from a non zero value in ordinate the "nugget effect" which

represents the variability between replicate samples taken at the

same site .The nugget effect may be due to a microstructure,

measurement or location errors. The slope of the curve progres-

sively decreases towards an asymptotic value in ordinate, 	 the "sill"

which is reached when the samples become fully independent after a

value of h called the "range". Beyond the range there is no

rautocorelation effect.



Y(h) = C [3/21 h1	 1/24 ]
a	 a

Y(h) =C	 h	 a

a is the range, • C is the sill

In fisheries biology the range could represent the size of

"patches" in an aggregated distribution modelled by the negative

binomial for instance.	 In the most simple case, if the mean of the

random variable Z( ) does not vary for any point x, neither does the

variance a(Z(x)). The experimental variogram C(h) is an estimate

of the variogram Y(h) = 1/2 G 2 [Z(x + h)	 Z(x)]. If there is no

autocorrelation (no covariance) between samples (when the sill is

reached for instance) we may write:

Y(h)	 = h[a 2 (Z(x + h)] + 0.2 [Z(x)] = 2 [Z(x)] =	 [Z(x)]
2

The departure from these simple conditions will allow to draw some

inference about the spatial structure of the data. For instance in

case of a "drift", when the mean varies according to a directional
trend

E[Z(x + h)	 Z(x)]2 =

a 2 [Z(x + h)	 Z(x)]2	 variance

(E(Z(x + h)	 d Z(x)))2
	

(Bias) 2

C(h) = 1(h)	 + k[E(x + h)	 2( )]2

There will be no asymptotic value in ordinate, no "sill".

Once a "drift" has been identified it may be modelled by a sum
f monomials (functions of h of increasing degree) and filtered

out This is performed by "universal kriging", a technique that I

have not used in the present, simple, case.

Once the spatial structure has been analyzed and modelled we
shall proceed by taking the best linear unbiassed estimator

(B.L.U.E.) of the quantity yo which is a linear function of the

variable Z(x).

For instance:

1) yo = Z(x 0 ) the value taken by Z at a point unsampled

xo,	 . the quantity of fish at location xo

1 1 Z(x)dx	 the average value of Z(x) over the
V vo	 subarea vo of area v centered at

x = xo

2) Yo =



i.e. the density fish in a subarea: is it worth harvesting?

that yo*:

b)

i. . the weights must add up to 1

for all i's and E yo

(y*0 _ yo )2	 0a) is unbiassed: E

Since E(y *0	yo

kriging error.

In the "stationary case" where E Z(xi)

condition a entails:

N.

N.

i=1

0,

has a minimum squared error

E(y*0 - yo) 2 minimum

E(y*0 - yo) 2 is also the variance of the

y = 1 IZ(x)dx	 the average value of Z(x) over the
whole area V

i.e. • the average density of fish over the whole fishing area.

The B.L.U.E. will consist to give a weight to the different

available samples so as to obtain an estimator with minimum squared

error. For instance in case 3, for calculating an average density

from uncorrelated "random" samples, the traditional procedure would

consist in giving a weight of 1/N to each sample and summing. Now

that we know that the samples may not be independent, i.e. may be

autocorrelated, we shall allocate the adequate weight it really

deserves to each of the samples according to its position in the

spatial distribution in order to provide an adequate estimate of the

average density by summation.

Cases 1 2, and 3 can be pooled in a single problem by taking

Yo as an average value over an unspecified domain V.

V V

yo = 1 1 Z(x)dx
v

To estimate yo we consider a weighted average of the data.

N
AiZ(xi)

i=1

where y*0 is a Kriging estimate. We determine the weights Ai so

= 11(1

'Me variance of the error can be expressed in terms of the model



E(y*0

N
2 E
i=1

y0)2 .

(x ,V

	

S2(y	 yo

	

N	 N

	

E	 E	 Ai X . Y(x.3
i=1 j=1

used for the variogram.

Y (xi, V) is the average of the variogram between xi and the area V.

1(xi,v) = 1 f Y(xi	 x)dx

Y(V,V) is the average of the variogram between any two points x and

x° sweeping independently throughout the domain (area) V

7(v, v)	 1	 1
Ti2 	v

Y(x	 xe)dx dxe
V

The variance S 2 (y*	 yo) is minimized under the constraint

that E Ai = 1 by setting partial derivatives for each ai equal toi

0. We obtain a system of N equations in Ai, i=1. ..N that can be

solved for each xi the "weight" of each point	 in the system.

The minimum of the variance or kriging variance is:

r *a 2 ‘Y. yo )	 E	 Ai 7(xi,V)	 7(v,v)	 P
i=1

When the variogram is a pure nugget effect (no autocorrelation)

xi = 1/N.

If V is a point, Y(xi,V) = Y(xi® x0 ) and. T(V,V) = Y(0) = 0

In case of a drift i.e. a systematic increase or decrease in

one direction, each point has its own mean, the assumption

E[Z(x)] = cte is violated and a we must introduce more variables.

We may model the drift m(x) as:

k
m(x)
	

E alfu(x)
u=1

I have not pursued this approach in the present case.

I have used the kriging procedure to calculate average

densities inside each "block" of a high definition grid. Knowing

the area of each block and its density .I have calculated the overall

biomass. I have also used the kriging procedure for drawing contour

lines of equidensity within the fishing area and generating a three

dimensional representation of the data.

Kriging computations were run on an HP9845 B using a software

package provided by Geomin.



There is a small "nested structure" indicative of two different

scales of variation, one with a range of 1.5, one with a range of

divided in a fine mesh grid containing

RESULTS 

Standard statistics 

in figure 3. A spherical model

For 108 samples the mean density over the banks was 2.98 tons

per km 2 with a standard deviation among samples of 1.9824, and con-

fidence limits for the mean of 4. 0.37. The area of the banks was

estimated as 177.63 km2 and the standing biomass as 529.33 tons live

weight + 66.41. A frequency distribution of the densities in the

samples is provided in figure 2.

A representation of the experimental variogram Y(h) is provided

Y(h ) Co + C(1.5 th I/a - 0.5( Ih1/ ) 3 ) with parameter values:

nugget value	 = 1.0094

sill - nugget	 C = 3.0244

range a = 2.6:

fitted the data quite well The presence of a well defined sill at

4.0338 indicates that within the banks surveyed there was no

detectable drift and in first approximation we may retain the

"intrinsic hypothesis" with constant mean:

ECZ(x + h)	 Z(x)J

a 2 [Z(x + h) - Z(x)] = 2Y(h)

There is no correlation between the samples beyond a distance of 2.6

nautical miles (the range ) . The variance of the population of

sample points beyond the "zone of influence" of a sample is a2

a distinct "nugget effect." which reveals a small scale

structure, may be a microstructure smaller than the dredge haul or a

measurement error of the actual length of tow.
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1066 cells, 890 of which were defined i.e. taken in account for

kriging. Each cell had a surface of 1.1147 km2 . An average density.

was calculated by the kriging program for each defined cell. The

overall surface of the kriged area, including samples with zero

densities and unsampled locations was 992.10 km 2 . The arithmetic

mean of the average cell densities was 0.5886 tons per km 2 . The

overall biomass was therefore estimated as 583.95 tons live weight.

Isocontours of density estimates

-Isocontours were drawn around the kriging estimates of average

densities in the cells, in two dimensions (figure 4) and in three

dimensions (figure 5). The dual structure of the fishing bank

appears very neatly. This is already evident in the plot of raw

data (Fig. 1). The isocontour structure indicates the presence of

distinct nodes in the spatial distribution within each of the two

banks. These nodes could not be easily identified in the raw data

(Fig.

DISCUSSION 

The basic principal in geostatistics is that the Best Linear

Unbiased Estimator of any linear function yo of variable Z(x)

sampled is not obtained by giving equal weights to all observations

as is implicitely done in standard statistics. The e problem of

autocorrelation between samples at close distance in space is solved

by attributing unequal weights to each of these.

yo = E )A.Z(xi)
i=1

The weights Xi are determined so that y*0 is unbiassed:

I usually when
N

 E Xi = 1 and has minimum squared
i=1

error: E(y*o m y ) 2 minimum.

It is only under particular conditions (no covariance between

samples) that average value of the variable studied over the

geographic domain will be an arithmetic mean i.e. Xi = 1/N i=1..N.
In most cases the arithmetic mean is a biased estimate. Actually
the kriging theory was developed after it was discovered that in

E(y*
	

Yo)
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mining the standard statistical prediction of the ore content of a

block (i.e. a subarea) was usually an overestimate. The same
observation has also been made in forestry (Narboni, 1979).

fisheries we seldom have the possibility to compare estimates with

actual values, however the same bias may very well be expected if

the samples are spatially autocorrelated.

The geostatistical approach allows by to pass the constrain of
"random" sampling used in standard statistics to avoid autocorre

 

lation between samples.	 geostatistics•it can be demonstrated

that random sampling is not the best approach. If we exploit the

spatial correlation instead of avoiding them the theory shows that

an unbiased result can be obtained whatever sampling strategy is

used, random, stratified random or regular. In terms of precision

of the estimates the variance of the averaged estimates turn out to

be greater for random sampling than for stratified random sampling,

but the smallest variance is for a regular sampling.

The weakest point in the kriging methodology is probably the

modelling of the variogram and of the drift. The computations are

based on models fitted to the data and not to the data itself. If

the models chosen are inadequate the predictions may be inadequate.

An empirical robustness survey of the kriging predictions as a func-

tion of deviations in the parameter values in the model and of the

model itself would be required for fisheries assessments.

the case study the conditions were particularly simple:

absence of a detectable drift, good coverage of the fishing ground

by the sampling survey, good fit of the spherical model to the

experimental variogram. In further development the spatial analysis

may require much more complex techniques:

1) a. directional computation of the variogram to detect anisotropies

in the orientation of covariance between samples. If the underlying

structures are oriented preferentially in a geographic direction, in

fisheries the "clumps" or "aggregates" of fish, the covariance

between points will extend over a wider range in that direction.

2) . The fitting of a "drift" function to filter out the trends. Such

drifts can be expected in fisheries over gradients of depth,

temperature or sediment quality for instance.



3) The assessment of fisheries in which the sampling gear is of

mixed type. Geostatistics cope with a similar problem by a

technique called "Cokriging".

These techniques involve matrix manipulations for solving sets

of linear equations and require a good software back-up. Such

software is available on microcomputers such as Hewlett Packard

models 9000 series 200, 300, 500 and on HP9845(*).

The tools developed for the mining industry need to be adapted

for fisheries assessments. in mining, emphasis seems to be set on

estimates of the grade of unexploited blocks (subareas) in order to

determine whether they are worth exploiting or not In fisheries •

assessments of sedentary species this could be an interesting..

approach, however the usual goal is a standing biomass estimate for

a given area or subarea and confidence limits on this estimate.

Such computations can be obtained directly by kriging (estimator and

standard deviation) but were not yet available in the software I

used I obtained an approximate value for biomass by taking the

arithmetic mean of kriged estimates of densities within a high

resolution grid of 890 cells, therefore neglecting possible

covariance effects between cells. In respect of kriging theory this

estimate is likely to be biased. It compares fairly well with the

simple estimate obtained by standard statistics (584 vs 529 tons).

Very little, if any work has been conducted on spatial

autocorrelation and structure of populations harvested by fisheries

except in echo sounding surveys and it is not possible as yet to

conclude whether geostatistical techniques such as kriging or

contouring after spline (Dubrule, 1984) smoothing of sampled data

will provide considerable improvement over more standard and simple

techniques of biomass estimates. However geostatistics is an
approach worth investigating since it provides a theoretical back
ground for efficiently using data from non random sampling (true

random samples are very seldom available in fisheries surveys, and

never in log book data).

*The software used in the present case was obtained from Geomin
Computer Services Corporation, 408 Kapilano 100, West Vancouver,
B.C, V7T 1A2, Canada. (604) 922-9367.
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Geostatistics also provide outputs not generally available from

standard statistics such as charts of densities, charts of error of

estimates (allowing subsequent improvement in sampling), unbiased

direct estimates of standing stock over a whole area as well as

predictions over yet unexploited subareas.
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Frequency distribution of non zero densities of
scalloR live weight encountered in the samples
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PROJECT	 :SCALLOP DISTRIBUTION - PICTOU NB

DATE	 -JULY 23 1985

VARIOGRAM OF SCA_gm
HOLE NAME: SORT

Fig. 	 - Experimental variogram Y = 1/(2N) E(Z(x) o Z(x	 h))21
The variogram is well represented by a spherical model.
There is a well marked sill (plateau) indicating that
no auto-correlation is found among samples distant by
more than 3 miles (the range). The "nugget" value indi-
cates that there is a variance among replicates due
either to a microstructure smaller than a dredge tow or
to a measurement error such as length of tow. Units in
ordinate, parameters C and Co should be multiplied by
10 - for reading.

cl;
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Fig. - Two dimensional representation of isodensity contours
for scallop biomass on Indian Rock and Pictou Banks.
The nuTbers on the contours represent density units
of 10 	 tons of live weight per square km.

- Three dimensional reptesentatiOn of isodensity contours
lot scallop biomass .on Indian RoCk and Pictou Banks.
The numbers On the contours represent. density units of
,107 live weight pet square km.'

Fig.
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