NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

NAFO SCR Doc. 87/05

Serial No. N1273

SCIENTIFIC COUNCIL MEETING - JANUARY 1987

Problems with Bottom Photography as a Method for Estimating Biomass

of Shrimp (Pandalus borealis) off West Greenland

by

Dan M. Carlsson and Per Kanneworff Grønlands Fiskeri – og Miljøundersøglser Tagensvej 135, DK-2200 København N., Denmark

INTRODUCTION.

In the period 1977-85 regular sampling of data on shrimp abundance has been carried out in part of NAFO SA1 by means of bottom photography equipment. The different problems involved in the sampling method are reviewed and discussed, and the biomass estimates obtained are evaluated in connection with CPUE-indices from part of the commercial fishery and number and size distribution in biological samples from the photographic sampling sites.

THE PHOTOGRAPHIC METHOD.

Throughout the period of assessment of the Greenland shrimp stocks catch and effort data together with analyses of biological samples have been used to examine the distribution and state of the stocks. This assessment method is still the basis for scientific advice on management of the Greenland stocks, but in 1975 a new sampling method based on bottom photography was introduced in West Greenland to obtain further data on the density of shrimp (Kanneworff, 1978a; 1979a). The expected advantages of this method over sampling methods based on trawling gear were:

1. A fairly quick method for obtaining density indices from the large areas of shrimp distribution.

2. A more direct observation method without mesh selection problems offering density estimates in absolute terms.

3. Sampling could also be carried out in areas with rough bottom unfit for trawling.

4. Detection of smaller shrimp than those retained by trawling gear, offering possibility of an early information on changes in recruitment.

Some disadvantages and limiting factors in the use of this technique were also anticipated or experienced later:

1. Although a detection of smaller individuals than retained by the trawl would be possible, this sampling had also a minimum detectable size depending on the optical system and the type of film used.

2. The sampling would be very sensitive to suspended bottom material. This has proven to be a problem at certain sampling sites. A more or less reduced visibility close to the bottom

increases the minimum detectable size of the shrimp to an unknown level and causes severe troubles in estimating the numbers and mean weights in the affected size groups.

3. Working with a short exposure distance from the bottom. sampling would be sensitive to the movements of the ship. Thus; working with a fairly small vessel (167 GRT), the sampling was limited to good weather conditions (i.e. winds below 10 m/sec and only light swell).

4. It was not possible to determine optimal sample size (i.e. number of photographs per station) during the sampling operation. Both shrimp density and distributional pattern, as well as eventual problems connected with par. 2 and 3 above, were unknown until after development and reading of the films. 5. Photographic sampling with this technique would only detect shrimp actually situated on the bottom. If a larger proportion of the stock was swimming above the bottom, it would require knowledge about diurnal and annual vertical migrations, so that suitable correction factors could be applied. Sampling in the free water masses was not regarded as a possible way of getting information on the size of the stock, partly because of the immense volumes of water from which a reasonable amount of samples should be taken, and partly because the sampled volumewould not be sufficiently well defined.

6. For an optimal sampling procedure the degree of patchiness of the shrimp on the bottom should be known beforehand, so that a suitable sampling unit (i.e. exposure distance) and a

sufficient number of photographs per sampling site could be chosen.

7. It proved to be impossible to determine precisely the limits between the established size groups. This was due to the following:

a. A different enlargement in different part of the photographs, because technical reasons made it necessary to work with a minor camera tilt angle (10 degrees from vertical), and b. A measurement of the shrimp on the reading screen which could be correlated with e.g. the carapace length in biological sample could only be carried out very roughly.

8. The reading of the films involved some interpretaion problems. Thus a fairly long period of training for the different readers proved to be necessary to avoid personal bias.

9. Working with finer instruments from a smaller vessel in offshore areas very often leads to functional problems. Even though this equipment was built very robust some malfunctions due to rough handling were encountered from time to time. As it has not always been possible to detect certain technical failures during the sampling procedure or even during the cruise, many sites have showed to be very poorly sampled when the films were developed and read after the cruise.

HISTORICAL VIEW.

In 1976 a stratified trawl survey was carried out in the west Greenland area by the Greenland Fisheries and Environment Research Institute (Horsted, 1978), and a fishable biomass for the area surveyed was estimated on basis of the 'swept area' method be to about 55000 tons. During the first two years of offshore photographic sampling the measured densities of shrimp and the calculated biomasses per unit area were used directly as stratum indices in the same stratum system as used in the trawl survey, in order to compare the two methods (Kanneworff, 1978b; 1979b). Having obtained a better knowledge of the region during the first years of operation, most of the strata used in the trawl survey were found to be too large to be treated as unit areas with uniform conditions for the shrimp population. Therefore a new stratification system was introduced in 1979 (Carlsson & Kanneworff, 1979), and this has been used as basis for all the photographic sampling since then. The sampling scheme covered the areas between $66^{0}00^{\circ}N$ and $69^{\circ}30^{\circ}N$ in water depths from 100 to 600 meters (parts of Div. OA, 1A, 1B and 1D), totalling 56406 square kilometers. The planned station grid for the surveys has been the same throughout the years, but the success of sampling has varied much from year to year with an almost complete coverage in the last three years only (Fig. 1).

The biomass estimates obtained by means of photography (Kanneworff, 1979b) were much higher than the estimate for the fishable biomass from the trawl survey, and the increasing trend in the years 1977-79 (Fig. 2) was in contrast to the rather steep decrease in CPUE-indices for the same area and period (Anon., 1980). Some doubt was therefore raised, whether the photographic figures could be used directly as density indices for the different strata.

Following an earlier attempt to use a simple mathematical model based on analysis of variance (Kanneworff, 1978a), a multiplicative shrimp distribution model was introduced (Jørgensen & Kanneworff, 1980). By means of this model biomass indices for the strata as measured by the photographic sampling were analysed for their dependency on a series of variables. When for each of the years in which this model was in use (Kanneworff, 1981; 1983; 1984; 1985; 1986), an optimal combination of variables had been determined, and estimates of those variables were found, a calculation of total biomass for all strata within the region surveyed $(66^{\circ}00^{\circ} - 69^{\circ}30^{\circ} N in depths between$ 100 and 600 m) was carried out.

After a series of years with good coverage of the planned station grid a examination of the year to year variation in shrimp density could be carried out including a major part of the sampling eites (Kanneworff, 1986). This study showed that the five size groups had clearly different distribution patterns, so that analyses of the variations in density necessarily had to be carried out separately for the groups. However, analysis runs with separate groups did not increase the goodness of fit for the models tested, and it was thus concluded, that other measures should be taken to refine this type of models for describing shrimp density variations.

A comparison of CPUE-indices from part of the commercial shrimp fishery (Carlsson, 1987) with the photographic biomass estimates from all the different models used through the years is given in Fig. 2. Apart from the 1985-model none of the models exhibit an acceptable correlation with the CPUE-figures, but all of them reflect the main trends in the CPUE, however with some distortion.

The apparent good correlation of the figures from the 1985-model was discussed by Kanneworff (1986). This model was not regarded as reliable, exhibiting too low correlation coefficients.

FURTHER ANALYSES.

During the photographic surveys trawling was performed at all stations with suitable bottom conditions with the purpose to collect biological samples of shrimp and compare the distribution in these with the distribution in the photographic material. The CPUE figures from the research vessel were not used, as they were not considered reliable due to the size of the research vessel and variations in crew. The relative compositions and the estimated mean individual weights from the two sampling methods have been compared and discussed by Kanneworff (1981; 1983). This comparison was based on a size grouping of only three, which was in use at that time, and some discrepancies from the expected pattern were noted. A larger amount of small shrimp in the photographic samples is to be expected, as well as a lower average individual weight, but the material showed no real consistency.

When comparing the distribution of size groups in the photographic and the trawl material for the period 1981-85 (Table 1), it is evident that in far the most stations there is a tendency to relatively larger animals in trawl samples. At the same time the information that there has been a development in commercial fishing gears towards trawls with higher opening (from 5-10 m in the beginning of the fishery up to 20 m in the newest models) resulting in higher catch rates (Carlsson, 1987) might explain the obvious low comparabiblity between the two sets of data (Figs. 3-8).

CONCLUSION.

Comparison of the biomass estimates and information on abundance of different size groups obtained by means of bottom photography with data on CPUE from the commercial fishery and size distributions from biological samples has shown a poor agreement between the photographic data and data from the other sources. Sampling by this method will thus be discontinued until further analysis, including a.o. a study of diurnal migration of the shrimp, might show that suitable correction factors could be applied to the photographic data.

REFERENCES

- Anon., 1980. Report of Scientific Council. Special Meeting, November 1979. NAFO Scientific Council Reports 1979-1980, Part C:21-33.
- Carlsson, D.M., 1986. Data on the shrimp fishery in NAFO Subarea 1 in 1984 and 1985. NAFO SCR Doc. 86/10.
- Carlsson, D. M. & P. Kanneworff, 1987. The shrimp fishery in NAFO Subarea 1 in 1985 and 1986. NAFO SCR Doc. 87/8, Serial No. N1267.
- Carlsson, D.M. & P. Kanneworff, 1979. Areas of basic strata in West Greenland, ICNAF/NAFO Subarea 1. ICNAF Res.Doc. 79/XI/11.
- Horsted, S.A., 1978. A trawl survey of the offshore shrimp grounds in ICNAF Division 'B and an estimate of the shrimp biomass. ICNAF Sel.Pap. No. 4:23-30.
- Jørgensen, A.G. & P. Kanneworff, 1980. Biomass of shrimp (<u>Pandalus</u> <u>borealis</u>) in NAFO Subarea 1 in 1977-80 estimated by means of bottom photography. NAFO SCR Doc. 80/XI/169.
- Kanneworff, P., 1978a. Estimated density of shrimp, <u>Pandalus borealis</u>, in Greenland waters and calculation of biomass on the offshore grounds based on bottom photography. ICNAF Sel.Pap. No. 4: 61-65.
- Kanneworff, P., 1978b. Density of shrimp (<u>Pandalus borealis</u>) in 1978 in ICNAF Subarea 1 based on bottom photography. ICNAF Res.Doc. 78/XI/89.

- Kanneworff, P., 1979b. Stock biomass 1979 of shrimp (<u>Pandalus</u> <u>borealis</u>) in NAFO Subarea 1 estimated by means of bottom photography. NAFO SCR Doc. 79/XI/9.
- Kanneworff, P., 1981. Biomass of shrimp (<u>Pandalus borealis</u>) in NAFO SUBAREA 1 in 1977-81 estimated by means of bottom photography. NAFO SCR Doc. 81/XI/155.
- Kanneworff, P., 1983. Biomass of shrimp (<u>Pandalus borealis</u>) in NAFO Subarea 1 in 1977-82 estimated by means of bottom photography. NAFO SCR Doc. 83/1/1.
- Kanneworff, P., 1984. Biomass of shrimp (<u>Pandalus borealis</u>) in NAFO SA1 in 1978-83 estimated by means of bottom photography. NAFO SCR Doc. 84/I/6.
- Kanneworff, P., 1985. Biomass of shrimp (<u>Pandalus borealis</u>) in NAFO Subarea 1 in 1981-84, estimated by means of bottom photography. NAFO SCR Doc. 85/I/8.
- Kanneworff, P., 1986. Biomass of shrimp (<u>Pandalus borealis</u>) in NAFO SA1 in 1981-85 estimated by means of bottom photography. NAFO SCR Doc. 86/I/3.

Table 1. Distribution of shrimp in samples from photographic and trawl samples in the period 1981-85. The relative numbers given are permille of the largest size group.

YEAR	STNO	GEAR	R E GR 1	LAT IV	E NU	ABZAS	IN	XV.		TEAR	STNO	GEAR	REL	ATIVE	HUP	BERS	- [N	×v.
 1981	6019	PHOTO	690	65 1	1000	.1000	380	6.0		: 1983	6446	PHOTO	228	1000	<u>GR)</u> 596	_ <u>GR4</u> . 88	<u>GR</u> \$ 2.4	<u>. ¥GŢ</u> 4.6
1961	9020	PHOTO	96 810	157	448 291	657 51	1000 0	a,6),8	·	1983	6454	PHOTO	554 764	651	1000	189	26 21	4.9
1961	6021	TRAWL Photo	219 52	614 86	1000	572	. 566	6.7 6.8	:		6455	TRANL PHOTO	215	138	1000	762 351	۲0 J	· 6.6
	60.22	TRAWL	7	. 46	536	1000	907	8.8		1981	6467	TRANL	. 8	146	1000	727	489	7.6
1961		TRAWL	912	627	1000	253	10 458	5.2 5.4	:			TRAWL	240	275	1000	927	915	7.6
1981	. 6024	PHOTO TRAVL	920 977	1000 688	367 734	167 590	42 1000	4.1 6.4		1483	6450	PHOTO TRAVL	265	879 94	767	246	45 951	4.9 8.0
1961	6026	PHOTO TRAVL	73 28	346 34	458 68	1000	257 1000	7.2 10.3		1983	6439	FROTO TRAWL	179 16	J48 16	1000 32	466 582-	0 1000	5.5 10.1
1981	6027	PHOTO . TRAWL	1000 636	863 409	301 1000	92 480	1) 160	3.8 5.3		198).	6460	PROTO TRAWL	748 0	110 - 39	1000	577 478	16 1000	5,4 9,9
1981	8028	PHOTO TRAWL	981 227	1040	494 1000	474 912	94 503	4.7		1983	6462	PHOTO TRAWL	0 0	57 62	1000 391	395 573	57 1000	6.5 9.3
1981	6029	PHOTO TRANL	17 48	125 686	1000 1000	658 651	145 681	6.6 7.1		1984	6713	PHOTO TRAWL	o ce	512 394	1000 1000	488 65)	43 220	6.0 6.5
1961	6030	PHOTO TRAWL	e c	0	49 56	1000 213	17 1000	8.1 11.1		1984	6734	PHOTO TRANL	0 250	0 400	1000	333 350	0 150	6.8 5.8
1981	6033	PHOTO TRAVL	1000	8) 120	240	177	9	1.9		1984	6716	PHOTO TRAFL	0 0	0 100	1000	0 167	0 0	5.7 5.8
1983	6034	PHOTO	615	582	1000	763	78	5.5		1984	6719	PHOTO TRAVL	1000	311	71	6 265) 18	1.0
1981	60)7	PHOTO	488	1000	768	138	5	•:• •:5		1984	6720	PHOTO	179	1000	935	117	24	4.8
1982	6216	PHOTO	1000	373	421	156	67 0	4-6 4.0		1984	6721	PHOTO	1000	981	370	5.3	34	1,6
1982	6218	TRAWL PHOTO	384 16	3 2 7	472	194 599	199	5.0 6.5		1984	6722	PROTO	65	236	1000	425	85	6.2
1982	6219	TRAWL PHOTO	87 1000	603 678	1000	614 54	707	7.2	•	1984	672)	TRAWL PHOTO) 75	100 100	1000	840	490 100	7,3
1987	6722	TRANL PHOTO	971 28	1000	364	193	175	4.4		1984	6724	TRANL PHOTO	340 87	745 378	1000	426	189	6.2 5.5
		TRAWL	86	268	1000	677	601	7.4			6725	TRAWL Photo	75	251	1000	381	6) 6	6.1 5.8
		TRAWL	41	99	595	898	1000	8.6		19.64	6776	TRAWL	193	530	1000	598	152	6.1
. 1993	6224	TRANL	28	148	844	1000	286 484	6.9 7.7	•			TRAWL	221	972	1000	406	1:0	5.4
1982	6225	PHOTO TRAWL	723 102	99Q 307	1000	723 903	123 676	5.3 7.5		1784	6720	TRAVL	327 -	571	1000	816	293	6.2
1982	6 2 2 7	PHOTO TRAWL	258 52	174 116	1000	545 65]	30 1000	6.0 8.5		1984	6/29	TRAWL	97	283	1000	673	276	6.8
1982	6228	PHOTO TRAVL	983 14	699 89	1000 \$75	305 678	10 1000	4.6		1984	6733	TRAWL	495	179	576	396 748	1000	5.4 8.8
1982	6229	PHOTO TRAFL	1000	991 184	769	236 897	37 753	4.4		1984	6734	PHÓTO TRAWL	5	37	1005 384	623	674	6.8 8.7
1962	6232	PHOTO TRAWL	303 76	655 1000	1000	99 134	21 56	4,9		1984	6737	PHOTO TRAVL	1000	106	20J 350	159 508	9 1000	3.8 9.5
1982	6334	PHOTO TRAWL	36	332 172	1000	528 951	36	6.2		1984	6738.	PHOTO TRAWL	1000	327 458	328 1000	62 400	0 135	3,7
1982	6235	PHOTO TRAVL	97	\$49 53	667 259	1000	179	7.2		1984	6740	PHOTO TRAVL	· 631 970	1000 940	863 1000	35 25 I	40	4.4
1982	6236	PEOTO	685	957	1000	351	39	4.9		1984	6749	PNOTO TRAVL	495 1000	1000 594	436	0 54	0 3	3.8 3.7
1982	6237	PHOTO	1000	553	489	75	5	3,9		1985	1	PNOTO TRAWL	13 88	244 396	1000	179 858	6 175	5.7 6.6
1983	6428	PHOTO		73	1000	609	73	6.9		1985	5	PHOTO TRAWL	0 3	73 55	1000	68) 618	110. 249	6.9 7.1
1983	6429	PHOTO	106	622	1000	124	27	5.5		1985	. 7	PHOTO TRAWL	0 949	1000 1000	0 16 2 0	0 و (۱	0 165	4.3 4.6
1983	6430	PHOTO	592	1000	327	47	0	4.0		1985	5	PHOTO TRAWL	(800 6)	236 470	218	31 727	0 352).4 6.8
1983	6435	PHOTO	34	288	1000	202	14	5.7		1965	9	PHOTO TRANL	29 11	29 5 2	1040 736	514 1000	51 271	6.7 7.6
1963	6437	TRAWL PHOTO	77 0	0 137	1000	208 250	62	5.7		1965	10	PHOTO TRAWL	0 0	213 9	1000 568	449	125 967	6.5 9.3
1983	6436	TRAVL PHOTO	0 500	с 0	609 1000	565	1000 •	9.1 4.7		1985	1 2	PROTO TRANL	17 0	486 1 2	1000 878	348 822	17	5.7
1983	6440	TRAWL Photo	0 500	132	1000 500	105	26 83	5.8 4,7		1985	13	PHOTO TRANT	399	1000	925 8 10	424	1 C 9 T F	5.1
1983	6442	TRAWL Photo	1000	706 1000	579 310	421	278 1	5.1 4.2		1985	14	PHOTO	1000	565	707	136	11.	. 4.2
1981	6443	PHOTO	622 530	1000	625	248	54 D	4.5		1965	19	PHOTO	35	561	1000	1400	474	7.6 5.3
		TRAVL	1000	127	52	29	14	2.6		1965	21	PHOTO	в o	135	1000	530 220	364	73 6.0
1983	6444	FHOTO TRAWL	85 89	893 473	1000	141 274	232	5.0 6.1		1985	23	TRAWL Photo	0 6 1 9	69 1000	720	799 51	1000)	8.7 4.1
1983	6445	PHOTO TRAWL	380 245	815 241	1000	482 716	47 476	5,3 7.0				TRAWL	23	412	1000	147	125	6.1
															1:	•		

- 6

Fig. 1. Map of sampling stations in 1977-85. The shaded areas in the circles denote years in which sampling has been carried out, and the "exploded" parts of the circles show years in which small shrimp (groups one and two) have been dominating.

- 7 -

· 1

Fig. 2. Photographic biomass estimates from models used through the years 1977-85 and from a stratified trawl survey in 1976 compared with CPUE-indices from part of the commercial shrimp fishery. Triangles are results from the trawl survey and from photographic surveys based on the trawl survey stratification. Circles show the basic years for the different photographic models, which are shown by the thin curves. The thick curve gives the CPUE-indices.

• • •

:

. .

Fig. 3. Shrimp number per 1000 squaremeters in trawlsamples versus photosamples 1981-85. All size groups. The straight curve indicates the 1:1 ratio between the two datasets.

- 8 -

Fig. 4. Shrimp number per 1000 squaremeters in trawlsamples versus photosamples 1981-85. Size group one. The straight curve indicates the 1:1 ratio between the two datasets.

SIZE GROUP TWO

ورو . . . و

7

Fig. 5. Shrimp number per 1000 squaremeters in trawlsamples versus photosamples 1981-85. Size group two. The straight curve indicates the 1:1 ratio between the two datasets.

Î

- 9 -

Fig. 7. Shrimp number per 1000 squaremeters in trawlsamples versus photosamples 1981-85. Size group four. The straight curve indicates the 1:1 ratio between the two datasets.

SIZE GROUP FOUR

1

Fig. 8. Shrimp number per 1000 squaremeters in trawlsamples versus photosamples 1981-85. Size group five. The straight curve indicates the 1:1 ratio between the two datasets.

- 11 -