NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N1349

NAFO SCR Doc. 87/60

SCIENTIFIC COUNCIL MEETING - JUNE 1987

Relative Year-class Strengths of Capelin (Mallotus villosus) in NAFO Div. 3L

by

J. E. Carscadden, B. S. Nakashima, and D. S. Miller Department of Fisheries and Oceans, Science Branch P.O. Box 5667, St. John's, Newfoundland, Canada A1C 5X1

Introduction

During the 1980's, indices of capelin abundance in Div. 3L have been derived by Canadian researchers from data collected during offshore acoustic surveys and from catch rate data from logbooks maintained by fishermen operating in inshore Newfoundland waters. Biomass estimates and estimates of year-class strength are usually reported from the acoustic surveys (see eg. Miller 1986 and Miller 1985 for explanation of methods). While these estimates are usually used as a basis for projections, they are not always comparable from year-to-year because of different survey coverage. For example, the coverage by the spring Canadian surveys has varied between 34,900 and 73,500 km² between 1982 and 1987. On the other hand, the catch rate data from the inshore fishery provide indices of abundance but have not been used to provide information on the strengths of year-classes in the fishery.

The purpose of this paper is to provide standardized indices of abundance by year-class derived from the offshore acoustic surveys and the inshore fishery in Div. 3L.

Methods

Offshore Acoustic Surveys

Canadian acoustic surveys for capelin have been conducted in Div. 3L since 1981. Two series of surveys have been conducted, a spring survey which started in 1982 and has been conducted annually since then, and a summer survey which began in 1981 but which was discontinued in 1985. Details of the design of the survey and collection and analysis of the data are given in Miller (1985). Miller (1986) noted one change in the analysis of the data in that a new estimate of ∞ , the attenuation coefficient, was now appropriate. All results presented here use the new attenuation coefficient. As part of the integration process, a density estimate $(gm.m^{-2})$ has been estimated for each survey block. Normally a biomass estimate is then calculated for each survey block by areal expansion. However, in this analysis, the density estimate for each block is partitioned into a density estimate for each age group by applying the age composition for that block. A survey density estimate per age group was then calculated by weighting survey block estimates by area of the survey blocks.

Inshore Catch Rates

Catch rates for the period 1981-86 are available for purse seines and trap nets (see eg. Nakashima and Harnum 1987). Two catch rate series for each gear type are available - catch per day which includes capelin that are kept as well as those that are dumped dead or released alive and landings per day, which includes only those capelin kept and landed.

An annual effort value for each gear type was derived by dividing the landings of that gear by the corresponding gear catch rate. A catch rate per age was then calculated by dividing the catch numbers at age by the appropriate effort index.

Results

Offshore Acoustic Surveys

Details of the mean densities and area by survey block and relevant age composition by survey block are given in Tables 1 and 2. The weighted densities at age for spring and summer surveys are given in Table 3 along with the estimates of abundance (billions of fish) presented in Miller (1986). In some years the surveys occurred at times when both mature and immature fish occur in the same area. Thus, in the present analysis, two-year-olds are of primary interest since they are immature at the time of the surveys and represent recruitment into the fishery. In both the spring and summer series, the 1983 year-class was much stronger as two-year-olds than any of the other year-classes while the 1981 year-class was the weakest.

The densities and abundance at age 2 were standardized (Fig. 1); both series exhibit the same trends. The standardized densities of the weaker year-classes are somewhat higher when compared to the 1983 year-class than the standardized abundances. The spring and summer surveys exhibit the same trends except for the 1982 year-class which appeared relatively stronger in the summer surveys.

- 2 -

Inshore Catch Rates

The landings, catch rates and calculated effort by gear type are given in Table 4 while the age compositions and catch at age by gear type are given in Table 5. The resulting catch rates at age are given in Table 6.

When considering only age 3, the 1983 year-class was strongest for purse seine catch rates. For trap catch rates, the 1979 year-class was strongest for landings/day while the 1982 year-class was strongest for catch/day. In the four catch rate series, there was no clear trend concerning the strong year-classes but in all series, the 1978 and 1981 year-classes were consistently the weakest.

Most capelin mature at age 3 or 4 and the spawning population is usually dominated by these ages (Table 5). The relative contribution of a single year-class at age 3 or 4 is dependent on maturation rate. Maturation rates by age and year-class are not available but by summing the catch rates for ages 3 and 4 of each year-class, the problem of annual differences in maturation rates can be overcome and an index of abundance for each year-class can be constructed (Table 7). Again there are no clear indications of which year-class was strongest although it appears that the 1979, 1980 and 1982 year-classes were relatively strong compared to the 1978 and 1981 year-classes.

The standardized catch rates for all gears and ages exhibit the same trends (Fig. 2 and 3).

Discussion

The trends in standardized densities from the offshore surveys were not in complete agreement with the trends in standardized inshore catch rates. In all series, the 1983 year-class was strong and the 1981 year-class was weak. However, the inshore indices indicated that the 1980 and 1982 year-classes were relatively strong while the offshore densities indicated these year-classes were weak. The analysis of densities presented here assumes that the densities from the surveys are representative of the population as a whole. It is possible that this assumption was violated in both 1982 and 1984 (1980 and 1982 year-classes). In the spring survey of 1982, overall coverage was good (75,000 km²) but extensive concentrations of capelin were under the ice and this may have biased down the density estimates. Lilly and Carscadden (1986) reported that on the basis of capelin catches in spring groundfish surveys and capelin in cod stomachs from the same surveys, capelin were distributed in the central and eastern areas of the Grand Bank, including strata outside and

- 3 -

overlapping the 200-mile limit. The summer 1982 survey was not affected by ice but the overall coverage was relatively poor (39,000 km²) and thus, some areas of high capelin concentration may have been missed. In the spring of 1984, coverage was poor (43,000 km²) and influenced by ice. In the summer survey, coverage was good (63,000 $\rm km^2$) and the survey was not affected by ice. The relative densities were higher for this survey than for the spring survey and higher than for both the 1980 and 1981 year-classes. Survey coverage and timing are probably not the only parameters affecting the offshore indices of abundance but this comparison does suggest that these factors could be eliminated by good survey coverage and proper timing. On the basis of their examination of capelin catches in groundfish surveys and capelin in cod stomachs, Lilly and Carscadden (1986) reported that there was no consistent pattern of capelin distribution during the spring within the 200-mile zone, further emphasizing the need for good survey coverage. This has been addressed in that starting in 1986, the Canadian spring and summer surveys were combined into one extensive survey (1986 coverage = $73,000 \text{ km}^2$) at a time when ice should not be a problem. This comparison also assumes that the inshore indices of abundance are tracking relative year-class strengths accurately. Undoubtedly these indices have their own sources of variation such as market demand for different sized fish, the extent of discarding, differential annual mortality rates, and slight differences in timing of the fishery by the two gear types (purse seines catch fish in deeper water before they would have moved inshore where they would be available to traps).

References

Lilly, G. R., and J. Carscadden. 1986. Capelin in Division 3L and their occurrence in the NAFO regulatory area. NAFO SCR Doc. 86/84, Ser. No. N1206. 15p.

Miller, D. S. 1985. The use of hydroacoustic surveys to estimate capelin biomass in NAFO Divisions 2J + 3KLNO. NAFO SCR Doc. 85/105, Ser. No. N1081. 18p.

1986. Estimates of capelin (<u>Mallotus villosus</u>) biomass from hydroacoustic surveys in Divisions 3LNO in 1985 and 1986. NAFO SCR Doc. 86/79 (Rev.), Ser. No. N1200. 11p.

Nakashima, B. S., and R. W. Harnum. 1987. The 1986 inshore capelin fishery in NAFO Div. 3L. NAFO SCR Doc. 87/, Ser. No.

- 4 -

Date and trip	Block	Mean density (gm.m ⁻²)	Area (km²)
GADUS 52 June 1981	A B C	15.74 25.39 4.61	23,337 46,380 23,076 92,793
GADUS 64 April 1982	A B C D	2:31 16:73 1:49 3:57	9,483 19,002 20,854 26,398 75,737
GADUS 66 June 1982	A B C	1.31 3.16 7.27	8,645 13,745 <u>16,741</u> 39,131
GADUS 77 April 1983	B C D	1.25 .86 5.90	12,279 12,685 9,960 34,924
GADUS 80 June 1983	B C E	4.74 1.75 5.35	17,242 18,828 12,425 48,495
GADUS 93 April/May 1984	A B	15.87 2.68	18,080 25,220 43,300
GADUS 96 June/July 1984	A B D D	9.84 11.20 3.57 5.59	9,032 16,361 12,512 25,488 63,393
GADUS 109 May 1985	ABCORF	63.8 153.8 215.2 43.6 28.4 24.1	5,162 5,662 5,464 6,817 23,345 10,770 56,220
GADUS 111 June 1985	A B C D	27.5 22.3 10.7 3.3	10,433 18,542 19,468 24,788 73,231
GADUS 124 May 1986	A B C D	139.7 36.5 37.4 23.8	10,715 19,686 33,812 9,106 73,319
GADUS 137 May-June 1987	A B D	35.6 13.8 44.0 46.9	10,715 19,686 33,812 9,255 73,468

•••---

Table 1. Mean densities and area by survey block for spring and summer offshore acoustic surveys in NAFO Div. 3L, 1981-87.

				A	ge			
Date and Trip	Block	1	2	3	4	5	6	
GADUS 52 June 1981	A B C	29.3 49.4 0.1	54.0 14.1 3.5	15.5 28.0 79.3	0.7 6.7 14.2	0.4 1.6 2.8	0.1 0.1 0.1	
GADUS 64 April 1982	A B C D		40.7 40.7 1.4 1.9	50.0 50.0 80.9 77.0	6.8 6.8 13.6 14.7	1.9 1.9 3.4 5.2	0.5 0.5 0.7 1.2	
GADUS 66 June 1982	A B C	3.7 32.3 79.6	34.9 63.7 10.9	57.4 3.4 8.9	3.2 0.6 0.3	0.7	0.1	
GADUS 77 April 1983	B C D	0 0.9	57.8 2.4 61.4	30.4 48.6 28.1	10.4 44.5 9.0	1.2 3.8 0.5	0.1 0.8 0.1	
GADUS 80 June 1983	B C E	88.3 98.2 93.4	6.2 0.2 3.4	4.2 1.3 2.2	$ \begin{array}{c} 1.3 \\ 0.3 \\ 0.9 \end{array} $			
GADUS 93 April/May 1984	A B	0.4	73.9 14.0	16.3 50.3	$\begin{array}{c} 8.1\\31.1\end{array}$	1.2 4.5		
GADUS 96 June/July 1984	A B C D	6.2 3.6 54.7 79.0	36.3 77.8 41.8 18.8	28.5 11.6 2.4 0.5	26.5 6.3 1.0 0.8	2.4 0.6 0.1 0.2		
GADUS 109 May 1985	A B C D E F	0.1	90.0 82.8 82.4 89.3 69.5 35.7	8.2 16.8 17.0 10.3 27.6 51.3	1.1 0.2 0.6 0.3 2.1 8.7	0.5 0.2 0.1 0.1 0.7 4.2	0.1	
GADUS 111 June 1985	A B C D	0.3 0.6 9.4 7.8	74.0 83.6 85.7 61.4	23.3 15.6 4.5 29.8	$1.8 \\ 0.1 \\ 0.1 \\ 0.8$	0.6 0.0 0.2	0.1	
GADUS 124 May 1986	A B C D		26.0 23.4 26.8 6.6	62.7 73.0 63.8 72.3	10.6 3.4 9.0 20.2	0.4 0.1 0.2 0.7	0.3 0.1 0.1 0.3	
GADUS 137 May-June 1987	A B C D	0.2 0.1 0.3	0.3 64.2 69.9 9.9	11.5 13.1 10.7 25.0	7.0 20.2 17.2 58.4	10.6 2.3 1.9 6.5	0.4 0.1 <0.1 0.1	

ţ

- **-** . • **-**

•

Table 2. Age composition of capelin by survey block in acoustic surveys in NAFO Div. 3L, 1981-87.

ł

- -

				Ag	e		
	Year	1	2	3	4	5	6
eighted densitie	s (gm.m ⁻²)						
pring surveys	1982		1.85	3.53	0.55	0.17	0.04
F	1983	0.02	1.31	0.77	0.34	0.03	0.01
	1984	0.03	5.15	1.87	1.02	0.15	
	1985	0.01	47.69	12.38	0.88	0.36	
	1986		12.55	33.38	4.68	0.15	0.10
	1987	0.08	17.12	4.68	11.63	1.40	0.30
	1001	7 47	2.00	r 00	1 04	0.05	0.00
ummer surveys	1981	7.43	3.96	5.08	1.04	0.25	0.02
	1982	2.86	1.15	0.48	0.03		
	1983	2.32	0.08	0.06	0.02		
	1984	2.35	3.48	0.76	0.58	0.06	
	1985	0.41	10.68	2.23	0.09	0,02	0.01
bundance (Nos. i	in billions)						
pring surveys	1982	-0.1	9.9	16.0	2.4	0.7	0.2
pring surveys	1983	<0.1	3.5	1.9	0.7	<0.1	< 0.1
	1984	0.1	21.0	6.1	3.2	0.5	<0.1
	1985	< 0.1	367.4	82.0	4.8	1.8	< 0.1
	1986	0	63.7	168.1	22.6	0.8	0.4
	1987	0.2	87.6	18.6	38.4	4.4	0.1
		512					2.2
		61.8	19.7	34.9	8.2	1.9	<0.1
Summer surveys	1981	~~~~			0 0	.0.1	<0.1
Gummer surveys	1981 1982	23.1	4.1	4.3	0.2	<0.1	ζŪ,Ι
Summer surveys			2.3	4.3 1.7	0.2	×0.1 ∡0.1	0.1
ùum¤er surveys	1982	23.1					

Table 3. Weighted densities-at-age and estimated abundances of capelin from NAFO Div. 3L spring and summer acoustic surveys, 1981-87.

- -

Table 4. Annual landings, catch rates and effort by gear type for capelin in NAFO Div. 3L (L/D = landings (t)/day, C/D = catch (t)/day).

Purse seine (PS)			Catch rate		Effort (days)	
Year		Landings (t)	L/D	C/D	٤	С
1981	PS	15,210	6.9	9.4	2204	1618
	T	7,917	2.2	2.9	3599	2730
1982	PS	17,692	13.5	16.4	1311	1079
	T	8,845	2.7	3.1	3276	2853
1983	PS	13,713	10.4	18.8	1319	729
	T	10,487	2.4	3.4	4370	3084
1984	PS	17,075	12.3	14.3	1388	1194
	T	15,205	2.6	2.9	5848	5243
1985	PS	8876	10.5	16.4	845	541
	T	15,682	2.9	4.6	5408	3409
1986	PS	20,481	14.4	19.0	1422	1078
	T	26,524	3.2	4.6	8289	5766

..

. '

	Age						
	Year	1	2	3	4	5	6
Age compositions							
Purse seine	1981 1982 1983 1984 1985 1986	5.4 0.2	2.8 1.4 4.5 0.9 13.3 0.2	39.1 80.9 60.4 36.0 59.3 64.5	30.6 12.6 33.2 57.6 19.9 32.3	21.1 3.9 1.7 5.2 7.0 2.4	1.0 0.9 0.1 0.1 0.4 0.6
Trap	1981 1982 1983 1984 1985 1986		4.2 1.3 4.8 2.4 12.2 0.4	38.4 86.4 61.0 42.8 62.4 60.2	34.4 9.5 32.6 50.2 20.0 36.1	21.7 2.3 1.5 4.4 5.1 2.6	1.2 0.5 0.1 0.2 0.3 0.7
Catch at age (x10 ⁻³)							
Purse seine	1981 1982 1983 1984 1985 1986	35625 1165 12	18615 7240 21189 4852 47940 1181	258353 422572 283915 185439 213053 503527	202178 65959 155972 296573 71552 252406	139081 20289 8192 26973 25177 18956	6526 4813 467 738 1568 4839
Trap	1981 1982 1983 1984 1985 1986	126 13	12202 3624 16472 11991 71940 3077	111120 246487 207968 214639 369247 519603	99448 27085 111114 252096 118585 312163	62853 6699 5091 22153 30125 22600	3560 1478 252 888 1932 6245

.

Table 5. Annual age compositions and catch at age for capelin by gear type, NAFO Div. 3L, 1981-86.

* |

. 3L, 1981-86.								
				Age				
	Year	2	3	4	5			
rse seine								
ndings/day	1981 1982 1983 1984 1985 1986	8.4 5.5 16.1 3.5 56.7 0.8	117.2 322.3 215.3 133.6 252.1 354.1	91.7 50.3 118.3 213.7 84.7 177.5	63.1 15.5 6.2 19.4 29.8 13.3			

6

3.0

3.7 0.4 0.5

1.9 3.4

Table 6. Catch rates at age for capelin from purse seines and traps, NAFO Div. 3L, 1981-86.

_

Purse seine Landings/day

Catch/day	1981 1982 1983 1984 1985 1986	11.5 6.7 29.1 4.1 88.6 1.1	159.7 391.6 389.5 155.3 393.8 467.1	125.0 61.1 214.0 248.4 132.3 234.1	86.0 18.8 11.2 22.6 46.5 17.6	4.0 4.5 0.6 2.9 4.5
Trap						
Landings/day	1981	3.4	30.9	27.6	17.5	1.0
	1982	1.1	75.2	8.3	2.0	0.5
	1983	3.8	47.6	25.4	1.2	0.1
	1984	2.1	36.7	43.1	3.8	0.2
	1985	13.3	68.3	21.9	5.6	0.4
	1986	0.4	62.7	37.7	2.7	0.8
Catch/day	1981	4.7	40.7	36.4	23.0	1.3
	1982	1.3	86.4	9.5	2.3	0.5
	1983	5.3	67.4	36.0	1.7	0.1
	1984	2.3	40.9	48.1	4.2	0.2
	1985	21.1	108.3	34.8	8.8	0.6
	1985	0.5	90.1	54.1	3.9	1.1

Table 7. Catch rate at age indices for age 3 and 4 capelin combined, NAFO Div. 3L, year-classes 1978-82.

	Year-class	L/D	C/D
urse seines	1978	167.5	218.8
	1979	440.6	605.6
	1980	429.0	637.9
	1981	218.3	287.6
	1982	429.6	627.9
raps	1978	39.2	50.2
<u> </u>	1979	100.6	122.4
	1980	90.7	115.5
	1981	58.6	75.7
	1982	106.0	162.4

- 9 -

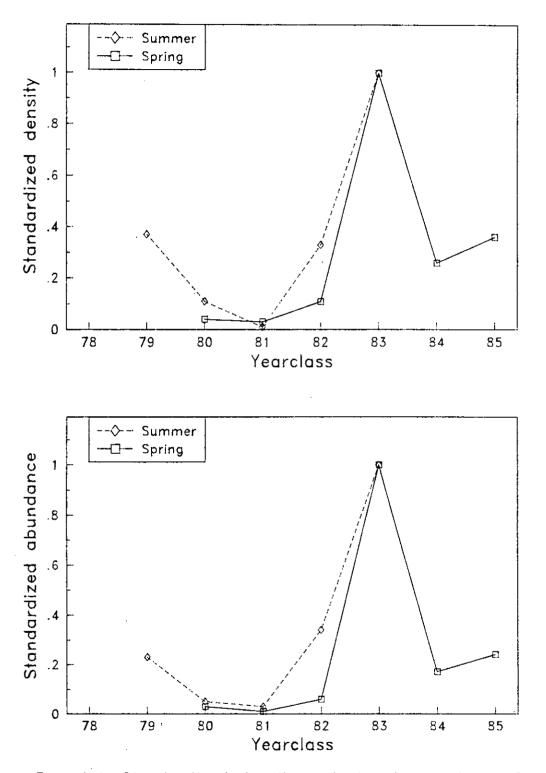


Figure 1. Standardized density and abundance at age 2, for 1979-85 yearclasses of capelin from spring and summer acoustic cruises in NAFO division 3L

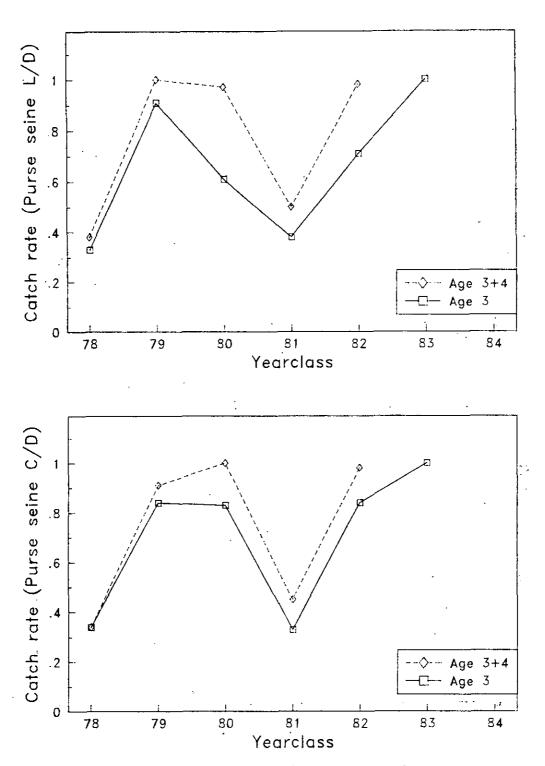


Figure 2. Standardized catch rates at age from purse seines, for NAFO division 3L capelin, 1978-83 yearclasses

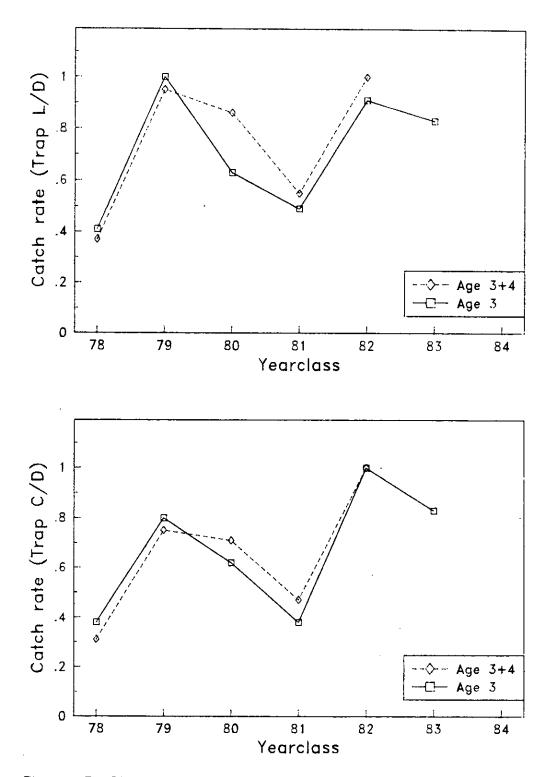


Figure 3. Standardized catch rates at age from trap nets for, NAFO division 3L capelin, 1978-83 yearclasses