NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

NAFO SCR Doc. 88/11

# Northwest Atlantic



# Fisheries Organization

Serial No. N1447

SCIENTIFIC COUNCIL MEETING - JUNE 1988

# Capelin School Surface Area Index for NAFO Div. 3L, 1982-87

Ъy

Brian S. Nakashima

Science Branch, Department of Fisheries and Oceans, P. O. Box 5667, St. John's, Newfoundland AlC 5X1

### Abstract

The aerial survey in 1987 utilized 37.0 flying hours and provided frequent coverage of the survey track. Each of the four designated transects was covered at least four times. The peak in inshore abundance as measured by total school surface area was observed on June 19 for Trinity Bay and Conception Bay. The 1987 estimate of total school surface area was the highest in the series and corresponded to the same trend observed for inshore catch rates and projected biomass from acoustic surveys.

#### Introduction

Background information on the use of surface area of capelin schools estimated from aerial photographs as an index of relative abundance was presented in previous reports (Nakashima 1985, 1986, 1987). This manuscript documents the methods and results of the aerial photographic survey conducted in 1987 along the shorelines of Conception Bay and Trinity Bay in NAFO Div. 3L (Fig. 1). The index of total school surface area is compared to other estimates of trends in abundance.

### Materials and Methods

Particulars of the aerial surveys including aircraft type, camera and film used, survey time, and altitude flown were listed in Table 1. Each year since 1982, the survey has covered four transects as often as possible during the spawning season. The four transects were the outside of Trinity Bay from the Horse Chops to Gooseberry Cove, the inside of Trinity Bay from Gooseberry Cove to Hopeall, the outside of Conception Bay from Caplin Cove to Harbour Grace Islands, and the inside of Conception Bay from Harbour Grace Islands to Portugal Cove (Fig. 1).

The best photographic conditions were in the morning when the sun angle was less than 50° and winds were light. Afternoon photography was usually restricted when the sun angle declined to 20°. Photography in the afternoon was more likely to be negatively influenced by winds and land shadowing.

In each photograph, capelin schools were identified and their outlines were traced on clear plastic sheets. The surface area of each school was measured with a compensating polar planimeter. Each measurement was corrected for altitude and expressed in  $m^2$ . Each time a transect was overflown, the mean and median school surface areas, the number of schools, and the total surface area of all schools observed along the transect were estimated. Schools less than 55 m<sup>2</sup> were not measured because they were less than the resolving power of the planimeter used.

The relative index for the year was estimated by summing the highest total school surface area observed on each of the four transects. I assumed that peak school surface area was indicative of inshore abundance for each transect for that year. The trend in the index derived from 1982-87 was compared to trends in catch rates from capelin traps and purse seines (Nakashima and Harnum 1988) and to projections of mature biomass from acoustic surveys (Anon. 1982, 1983, 1984, 1985, 1986).

### Results and Discussion

All four transects were surveyed at least four times with those in Conception Bay receiving the most frequent coverage (Tables 2a, b, c, d). Unlike 1986 (Nakashima 1987), the weather conditions in 1987 were good to excellent throughout the spawning period. Aside from down time due to weather we were unable to fly June 23-25 because of mechanical problems with the aircraft. The highest number of schools and most surface area observed on the outside of Trinity Bay occurred on June 22, however schools were larger on June 18 (Table 2a). The peak in total surface area of schools on the inside of

- 2 -

Trinity Bay was recorded on June 19 which was also the highest amount measured for any transect since the survey began in 1982 (Table 2b). I combined the photographic data from June 27 and June 28 along the inside of Trinity Bay to provide an observation at that time (Table 2b). The sizes of schools and their amounts were very low so no bias was anticipated. Large schools in Trinity Bay were mainly observed in the Bellevue Beach area. For the outside portion of Conception Bay, the highest surface area was measured on June 16, however the most number of schools was observed on June 19 (Table 2c). On June 19,365 schools and the highest total school surface area were observed on the inside transect of Conception Bay (Table 2d). Data collected on June 30 in Conception Bay (Tables 2c, d) may be biased due to turbulence along the shoreline which obscured some beach areas. From observations conducted during the aerial survey the peak occurrence of capelin inshore was June 19-22 in Trinity Bay and June 16-19 in Conception Bay. By July 3 when the aerial survey was completed, there was a noticeable decline in the number, size, and distribution of capelin schools along the four transects.

The school surface area index for 1987 was estimated to be 834,600 m<sup>2</sup> when summing the highest numbers from Tables 2a, b, c, and d. This estimate included the highest value of 184,307 m<sup>2</sup> on June 16 on the outside of Conception Bay and 205,846 m<sup>2</sup> on June 19 on the inside of Conception Bay assuming no movement between the two areas had occurred. Evidence from tagging studies (unpublished data) suggested that capelin move rapidly into the bay when spawning is imminent. To minimize this concern, the two school surface areas of 112,600 m<sup>2</sup> (Table 2c) and 205,846 m<sup>2</sup> (Table 2d) were summed for Conception Bay on June 19. For Trinity Bay there was no concern because the highest outside value was on June 22 which was very similar to the June 18 value and was later than the peak observed on June 19 in the inside portion. Using this conservative approach, the total school surface area index was estimated to be 762,953 m<sup>2</sup> in 1987 (Table 3).

Comparison of the school surface area index with the commercial catch rates of the trap and purse seine fisheries and the projected mature biomass estimated from acoustic surveys yielded similar trends. The mature biomass for 1987 was projected to be 2,830,000 t which was supported predominantly by a strong 1983 year-class (Anon. 1986). The catch rate for capelin traps in the

- 3 -

1987 fishery was 8.8 t/day which was about double the highest estimate in the series. The purse seine catch rate of 18.1 t/day was slightly lower than in 1986 but was one of the highest in the series. Nakashima and Harnum (1988) observed that the purse seine fishery was seriously curtailed in 1987 due to the labour dispute which was not settled until June 19. In past years purse seiners were fishing much earlier than June 19, especially in the southern areas. The aerial survey estimate of 762,953 m<sup>2</sup> of total school surface area observed along the survey track was the highest in the series and twice the previously highest estimate. Thus the trap catch rate series and school surface area index supported the advice provided in June 1986 that the mature biomass available in NAFO Div. 3L in 1987 would be very large (NAFO 1986).

The clearly defined results of the aerial survey in 1987 were due to good weather which allowed us to cover all transects often, a basic criterion for a successful survey. The evidence from the survey demonstrated that peak abundance as indicated by total school surface area occurred prior to or as the fishery began on June 19. This observation supported the findings of Nakashima and Harnum (1988) who concluded that trap fishermen in Div. 3L experienced high catches when fishing commenced on June 19 in Div. 3L.

# Acknowledgments

The survey was conducted by Aerial Mapping and Photography Ltd. in 1987. H. T. Ripley provided guidance in improving the photographic survey. K. Foote assisted in recording observations and conducting the survey. M. Y. Hynes assisted in the preparation of the manuscript.

## References

Anon. 1982. NAFO Scientific Council Reports. p. 33-35.

1983. NAFO Scientific Council Reports. p. 52-54.

1984. NAFO Scientific Council Reports. p. 58-66.

1985. NAFO Scientific Council Reports. p. 74-77.

1986. NAPO Scientific Council Reports. p. 73-75.

- 4 -

- Nakashima, B. S. 1985. The design and application of aerial surveys to estimate inshore distribution and relative abundance of capelin. NAFO SCR Doc. 85/84, Ser. No. N1058. 11 p.
- 1986. School surface area of capelin schools from aerial photographs as an index of relative abundance. NAFO SCR Doc. 86/14, Ser. No. N1126. 7p.

1987. Capelin school surface area index incorporating the 1986 aerial survey in NAFO Div. 3L. NAFO SCR Doc. 87/49, Ser. No. N1338. 6p.

Nakashima, B. S. and R. W. Harnum. 1988. The inshore capelin fishery in NAFO Div. 3L in 1987. NAFO SCR Doc. 88/9, Ser. No. N1445. 16 p.

| Year         | Aircraft                | Camera        | Lens<br>(mm) | Filter          | Film                    | Radar<br>altimeter | Survey<br>period   | Altitude<br>(m) | Flying<br>hours |
|--------------|-------------------------|---------------|--------------|-----------------|-------------------------|--------------------|--------------------|-----------------|-----------------|
| 1982         | Piper Aztec             | RC 10         | 152          | Anti-vignetting | Aerocolour<br>Neg. 2445 | No                 | June 18-<br>July 5 | 152-160         |                 |
| 1983         | Aero-Commander          | Wild<br>RC 10 | 152          | Anti-vignetting | Aerocolour<br>Neg. 2445 | Yes                | June 19-<br>July 9 | 457             | 21.8            |
| 1984         | Cessna 310              | Wild<br>RC 10 | 152<br>:     | Anti-vignetting | Aerocolour<br>Neg. 2445 | Yes                | June 17-<br>July 7 | 457             | 38.5            |
| 1 <b>985</b> | Aero-Commander<br>500 B | Wild<br>RC 10 | 152          | Anti-vignetting | Aerocolour<br>Neg. 2445 | Yes                | June 18-<br>July 3 | 290-610         | 28.6            |
| 1986         | Aero-Commander<br>500 B | Wild<br>RC 10 | 152          | Anti-vignetting | Aerocolour<br>Neg. 2445 | Yes                | June 19-<br>July 5 | 381-579         | 13.4            |
| 1987         | Piper Aztec             | Zeiss<br>RMK  | 153          | Anti-vignetting | Aerocolour<br>Neg. 2445 | Yes                | June 16-<br>July 3 | 457             | 37.0            |

Table 1. Summary of aerial surveys conducted from 1982 to 1987.

Table 2a. Schooling data for the outside part of Trinity Bay from Horse Chops to Gooseberry Cove, 1982-87.

|               | No. of  | Total surface          | School s:        | ize (m <sup>2</sup> ) |
|---------------|---------|------------------------|------------------|-----------------------|
| Date          | schools | area (m <sup>2</sup> ) | Mean <u>+</u> SD | Median                |
|               |         |                        |                  |                       |
| June 19, 1982 | 7       | 2963                   | 423 ± 502        | 125                   |
| June 26, 1982 | 0       | 0                      |                  |                       |
| July 3, 1982  | 1       | 522                    | 522 ±            | 522                   |
| June 23, 1983 | 7       | 11330                  | 1619 ± 1315      | 1283                  |
| June 24, 1983 | 10      | 13671                  | 1367 ± 1260      | 1088                  |
| June 25, 1983 | 7       | 11662                  | 1666 ± 2151      | 725                   |
| June 29, 1983 | 8       | 2288                   | 286 ± 228        | 195                   |
| June 30, 1983 | 13      | 18470                  | 1420 ± 1613      | 1116                  |
| July 1, 1983  | 3       | 6417                   | 2139 ± 2176      | 1172                  |
| June 18, 1984 | 9       | 3236                   | 360 ± 423        | 223                   |
| June 19, 1984 | 8       | 3962                   | 495 ± 703        | 279                   |
| June 25, 1984 | 22      | 30467                  | 1385 ± 1959      | 502                   |
| June 26, 1984 | 38      | 37219                  | 979 ± 1718       | 167                   |
| June 29, 1984 | 9       | 2790                   | 310 ± 223        | 279                   |
| July 3, 1984  | 48      | 43412                  | 904 ± 3010       | 223                   |
| July 6, 1984  | 34      | 16015                  | 471 ± 485        | 167                   |
| June 21, 1985 | 0       | 0                      |                  |                       |
| June 25, 1985 | 0       | 0                      |                  |                       |
| June 29, 1985 | 18      | 15536                  | 863 ± 983        | 316                   |
| July 1, 1985  | 32      | 48808                  | 1525 ± 1622      | . 893                 |
| July 2, 1985  | 24      | 49216                  | 2051 ± 2965      | 949                   |
| July 3, 1985  | 9       | 2498                   | 278 ± 183        | 270                   |
| June 18, 1987 | 59      | 41348                  | 701 ± 985        | 391                   |
| June 22, 1987 | 81      | 45421                  | 561 ± 780        | 279                   |
| June 28, 1987 | 15      | 5189                   | 346 ± 384        | 223                   |
| July 3, 1987  | 9       | 12220                  | $1358 \pm 3042$  | 279                   |

|         |            | No. of  | Total surface          | :             | School size       | e (m <sup>2</sup> ) |
|---------|------------|---------|------------------------|---------------|-------------------|---------------------|
| Date    | 2          | schools | area (m <sup>2</sup> ) | Mean ±        | SD                | Median              |
| June 19 | 9, 1982    | 31      | 12724                  | 411 ±         | 712               | 149                 |
| June 26 | 5, 1982    | 29      | 35607                  | 1228 +        | 2755              | 299                 |
| June 29 | 9, 1982    | 11      | 62397                  | 5672 +        | 8378              | 592                 |
| July 2  | 2, 1982    | 8       | 31365                  | 3921 +        | 9281              | 705                 |
| July 1  | 3, 1982    | 2       | 1920                   | 960 ±         | 17                | 960                 |
| June 21 | 3, 1983    | 11      | 69583                  | 6326 ±        | 6299              | 4241                |
| June 24 | 4, 1983    | 26      | 39004                  | 1500 ±        | 1880              | 753                 |
| June 2  | 5, 1983    | 30      | 174487                 | 5816 ±        | 12759             | . 781               |
| June 29 | 9, 1983    | 35      | 152557                 | 4359 ±        | 11139             | 781                 |
| June 30 | 0, 1983    | 46      | 199373                 | 4334 ±        | 6927              | 558                 |
| July :  | 1, 1983    | 25      | 189497                 | 7580 ±        | 19791             | 2288                |
| June 19 | 9, 1984    | 13      | 15624                  | 1202 ±        | 1770              | 335                 |
| June 23 | 3, 1984    | 9       | 8314                   | 924 ±         | 888               | 502                 |
| June 2  | 5, 1984    | 96      | 31526                  | 328 ±         | 505               | 117                 |
| June 20 | 6, 1984    | 96      | 40510                  | 422 ±         | 679               | 223                 |
| June 29 | 9, 1984    | 47      | 12053                  | 256 ±         | 314               | 167                 |
| July 3  | 3, 1984    | 57      | 23827                  | 418 ±         | 814               | · 167               |
| July    | 7, 1984    | 77      | 43245                  | 562 ±         | 1124              | 223                 |
| June 2  | 1, 1985    | 13      | 7041                   | 542 ±         | 706               | 270                 |
| June 2  | 5, 1985    | 35      | 22459                  | 642 ±         | 1144              | 211                 |
| June 20 | 6, 1985    | 30      | 16540                  | 551 ±         | 721               | 214                 |
| July :  | 1, 1985    | 125     | 60245                  | 482 ±         | 963               | 181                 |
| July 2  | 2, 1985    | 130     | 195659                 | 1503 ±        | 6046 <sup>a</sup> | 179                 |
| June 28 | 8, 1986    | 59      | 95898                  | 1625 ±        | 4502              | 340                 |
| June 1  | 7, 1987    | ' 45    | 167567                 | 3724 <u>+</u> | 17727             | 223                 |
| June 19 | 9, 1987    | 91      | 399026                 | 4385 ±        | 31197             | 167                 |
| June 27 | 7-28, 1987 | 37      | . 59315                | $1603 \pm$    | 5612              | 446                 |
| July 1  | 3, 1987    | 5       | 1786                   | 357 ±         | 322               | 279                 |

.

Table 2b. Schooling data for the inside part of Trinity Bay from Gooseberry Cove to Hopeall, 1982-87.

a calculation excludes capelin in traps

School size (m<sup>2</sup>) No. of Total surface Date schools area (m<sup>2</sup>) Mean ± SD Median June 29, 1982 10 6577 658 ± 366 642 July 2, 1982 2 1357 679 ± 554 679 June 23, 1983 34  $1374 \pm 2266^{a}$ 51838 530  $666 \pm 823$   $349 \pm 184$   $1083 \pm 1884$ June 24, 1983 16 10658 447 June 25, 1983 July 1, 1983 4 4408 279 5 5413 112 June 18, 1984 1 391 391 June 19, 1984 0 0  $\frac{1294 \pm 2874}{697 \pm 1091^{a}}$ June 25, 1984 49 63779 391 June 26, 1984 67 65956 279 June 30, 1984  $818 \pm 1509^{a}$ 22320 21 223 July 3, 1984 4 1786 446 ± 599 195 June 20, 1985 0 0 June 24, 1985 0 0 June 27, 1985 June 28, 1985 30 8840  $268 \pm 378^{a}$  $368 \pm 800^{a}$ 120 125 50837 132 June 29, 1985  $875 \pm 1169$ 991 ± 1616<sup>a</sup> 19253 22 291 July 1, 1985 28 28036 264 July 2, 1985 914 ± 2064<sup>a</sup> 66 69166 223 June 19, 1986 88 132455 1462 ± 2853<sup>a</sup> 279 June 16, 1987 June 19, 1987 139 184307 391 . .

112660

12164

29462

279

391

279

I

Table 2c. Schooling data for the outside of Conception Bay from Capelin Cove to Harbour Grace Islands, 1982-87.

calculation excludes capelin in traps а

June 27, 1987

June 30, 1987

. .

143

21

37

4

- 8 -

|         |         |    | No. of  | Total surface          | School size            | (m <sup>2</sup> ) |
|---------|---------|----|---------|------------------------|------------------------|-------------------|
| Date    | 2       |    | schools | area (m <sup>2</sup> ) | Mean ± SD              | Median            |
| June 26 | 5, 1982 | AM | 33      | 19408                  | 571 ± 907 <sup>a</sup> | 135               |
| June 26 | 5, 1982 | PM | 20      | 36513                  | $1826 \pm 1914$        | 2089              |
| June 27 | 7, 1982 |    | 48      | 151214                 | $3134 \pm 6015^{a}$    | 527               |
| June 29 | 9, 1982 |    | 27      | 30275                  | 1121 ± 1707            | 418               |
| July 4  | 4, 1982 |    | 3       | 13042                  | $4347 \pm 4951$        | 1409              |
| July 5  | 5, 1982 |    | 7       | 5127                   | 732 ± 582              | 592               |
| June 23 | 3, 1983 |    | 53      | 97595                  | $1787 \pm 2754^{a}$    | 558               |
| June 24 | 4, 1983 |    | 30      | 56860                  | $1819 \pm 2965^{a}$    | 558               |
| June 25 | 5, 1983 |    | 29      | 79961                  | $2677 \pm 3725^{a}$    | 781               |
| June 30 | 0, 1983 |    | 7       | 8091                   | 1156 ± 1181            | 558               |
| July 1  | 1, 1983 |    | 1       | 2009                   | 2009                   |                   |
| June 18 | 3, 1984 |    | 0       | 0                      |                        |                   |
| June 23 | 3, 1984 |    | 8       | 17689                  | $2085 \pm 2556^{a}$    | 949               |
| June 25 | 5, 1984 |    | 70      | 63891                  | 879 ± 1789             | 223               |
| June 26 | 6, 1984 |    | 33      | 23603                  | $703 \pm 1708^{a}$     | 223               |
| June 30 | 0, 1984 |    | 29      | 16852                  | $508 \pm 467^{a}$      | 335               |
| July 3  | 3, 1984 |    | 18      | 9040                   | 329 ± 254 <sup>a</sup> | 223               |
| July S  | 5, 1984 |    | 0       | 0                      |                        |                   |
| June 20 | 0, 1985 |    | 0       | 0                      |                        |                   |
| June 24 | 4, 1985 |    | 2       | 1600                   | 800 ± 834              | 800               |
| June 26 | 6, 1985 | •  | 17      | 10124                  | 596 ± 1145             | 314               |
| June 27 | 7, 1985 |    | 76      | 16552                  | $214 \pm 426$          | 78                |
| June 28 | 8, 1985 |    | 120     | 33858                  | 274 ± 938 .            | 67                |
| July 1  | 1, 1985 |    | 16      | 43228                  | $2702 \pm 5140$        | 308               |
| July 2  | 2, 1985 |    | 17      | . 13436                | 676 ± 1872"            | 191               |
| June 19 | 9, 1986 |    | 39      | 31574                  | $786 \pm 1105^{a}$     | 357               |
| June 20 | ), 1986 |    | 4       | 3515                   | 698 ± 769              | 363               |
| June 22 | 2, 1986 |    | 86      | 30930                  | $343 \pm 616^{a}$      | 131               |
| July 2  | 2, 1986 |    | 10      | 5019                   | 502 ± 600              | 358               |
| June 17 | 7, 1987 |    | 196     | 53066                  | $263 \pm 350^{a}$      | 167               |
| June 19 | 9, 1987 |    | 365     | 205846                 | 556 ± 1482             | 167               |
| June 21 | 1, 1987 |    | 179     | 74128                  | 393 ± 699              | 167               |
| June 27 | 7, 1987 |    | 138     | 94747                  | 681 ± 2389             | 167               |
| June 28 | 3, 1987 |    | 63      | 68969                  | 1036 ± 2402            | 167               |
| June 30 | D, 1987 |    | 41      | 51336                  | 1226 ± 2892ª           | 391               |
| July 3  | 3, 1987 |    | 47      | 34863                  | 742 ± 1400             | 279               |

Table 2d. Schooling data for the inside of Conception Bay from Harbour Grace Islands to Portugal Cove, 1982-87.

a calculation excludes capelin in traps

|      | Catch (t).  | /day | Matura      | 0-b                    |  |
|------|-------------|------|-------------|------------------------|--|
| Year | Purse seine | Trap | biomass (t) | area (m <sup>2</sup> ) |  |
| 1982 | 16.4        | 3.1  | ≥346,000    | 223,150                |  |
| 1983 | 18.8        | 3.4  | 648,000     | 367,280                |  |
| 1984 | 14.3        | 2.9  | 384,000     | 216,500                |  |
| 1985 | 16.4        | 4.6  | 596,000     | 357,270                |  |
| 1986 | 19.0        | 4.6  | 1,300,000   | 283,150                |  |
| 1987 | 18.1        | 8.8  | 2,830,000   | 762,953                |  |

Table 3. Comparison of three indices for estimating trends in relative spawning biomass. The catch/day index was based on capelin trap and purse seine data from logbook surveys (Nakashima and Harnum 1988), the mature biomass index originated from NAFO Scientific Council Reports (Anon. 1982-86), and the school surface area index came from this study.

ļ



