NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

NAFO SCR Docx 88/51

Northwest Atlantic

Fisheries Organization

Serial No. N1491

SCIENTIFIC COUNCIL MEETING - JUNE 1988

Size of the Scotian Shelf Silver Hake Population in 1987

Ъy

D. E. Waldron, L. P. Fanning, M. C. Bourbonnais and M. A. Showell Marine Fish Divísion, Dept. of Fisheries and Oceans, Bedford Institute of Oceanography P. O. Box 1006, Dartmouth, Nova Scotia, Canada B2Y 4A2

Introduction

Foreign fleets were the first to develop a silver hake fishery on the Scotian Shelf commencing in 1962. Today the fleets fishing silver hake on the Scotian Shelf are primarily non-Canadian although the Canadian industry has started a program to harvest the response. Historically, the major fishing nations have been the Soviet Union and Cuba with countries such as Portugal, Japan, and Spain catching various amounts. The Soviet Union was the first nation to fish for silver hake on the Scotian Shelf, and continues to dominate the catch. During the last 5 years, the Soviet Union and Cuba have been the main countries involved in this fishery.

The silver hake fishery has been geographically restricted since 1977. It was once conducted over the entire shelf, with April to August being the time of the major fishery. Since 1977 the fishery continues to be restricted to seaward of the Small Meshed Gear Line (SMGL) (Figure 1). Further, Canada has established regulations which limit i) the minimum codend mesh size to 60 mm, ii) the amount of by-catch in the fishery and iii) the amount of fishing effort for each country. By-catches of cod, pollock, haddock, and redfish, among other species caught in this fishery, are regulated by Canada. For the 1988 fishery, by-catches were regulated at the following levels: 1% for haddock, 1% for cod in NAFO Div. 4X and 10% elsewhere, and all other species at 5% (10% prior to 1988). From 1977-1985, the fishing season has been from April 15 to November 15 each year. The season is now scheduled from April 1 to November 15 of each year.

Current Fishery

The vessels used in this fishery are large Tonnage Class (TC) 7 vessels (greater than 2000 gross registered tons) usually between 80 and 100 meters in length. The gear most often used is a large bottom trawl with an average wing spread of 29 meters and an average head rope height of 8 meters. Using these nets, vessels have been observed to catch as much as 60 tons of silver hake in one day with one tow having as much as 25 tons of silver hake.

Catches are highest during the period April to July of each year, and come primarily

from the NAFO Div. 4W. The historical catches for this fishery have ranged from 300,000 tons in 1973 to 34,000 tons in 1983. There was a steady decrease in silver hake catch from 1973 to 1981 (Figure 2, Table 1). Nominal catches from 1977 until 1983 have fluctuated between 33 and 60 thousand tons. Below are reported catches ('000 t) and the Total Allowable Catch (TAC '000 t) since 1977.

YEAR	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988
TAC	70	80	70	90	80	80	80	100	100	100	100	120ª
CATCH	37	48	51	45	43	60	36	74	76	83 ¹	62י	

Preliminary

² NAFO recommended $F_{0.1}$ TAC was 161,000 t. Canada allocated only 120,000 t as of June, 1988.

Official NAFO catch statistics for 1985 were published late in 1987. Revised catches for 1986 were also available from NAFO during 1987. These updated catches and the catches used in the 1987 assessment document are presented in Table 2. Overall catch totals are similar to those used in the last assessment. Only certain monthly catches have changed from those used previously.

The low level of catches since 1976 is due in part to the amount of silver hake Canada allocates to other nations. A more informative method of viewing the post-1976 catches is to evaluate catch success against the amount of silver hake allocated. Percentages of their total allocations caught by non-Canadian fleets have ranged from 64% to 90%. The highest years are 1979, 1982, 1984, 1985, and 1986 (Table 3).

In 1984, 1985, and 1986 the USSR started fishing in May rather than early April. The USSR commenced fishing their 1987 allocations during the last week of May. This delay in fishing is reflected in the decreased catches during the months of April and May for those years (Table 2). Despite the late start for the Soviet fleet from 1984 to 1986 they still caught their allocations, as did the Cuban fleet (Figure 3). In 1987 the Soviet fleet fell short of their allocation due to the delay in fishing. Monthly catches in 1987 were highest in June and July when 41,000 tons or 66% of the catch was taken. Catches in May to July accounted for 87% of the total yearly landings. Catches decreased this year since the Canadian allocation was increased but never caught.

Historical catches from this fishery indicate that the major fishing season was between April and August (Table 2) with peak catches from May to July. This pattern continues to the present. Reported (1970-1986) and observed (1987) catch rates (t/hr) for the USSR and Cuba from April until September are given in Table 4.

Commercial Sampling

Sampling for length and age commercial catches in 1987 was conducted by the Canadian International Observer Program (IOP) (Table 5). The IOP observed 95% or 58,349t of the

J.

62,000 t caught. More than 470,000 lengths and 2,800 otoliths were taken from the catch. Coverage levels for 1987 and previous years were above the NAFO standard.

Otoliths were aged using the ICNAF standards (Anon., 1977) by Mr. J. Hunt of the Canadian Department of Fisheries and Oceans, St. Andrews Laboratory, St. Andrews, New Brunswick.

Catch-at-age

The catch-at-age matrix used in this assessment is presented in Table 6. The matrix was calculated in the following manner. For 1987, length frequency samples for silver hake collected during the small-meshed fishery were aggregated to produce a single monthly length frequency for each country. These monthly length frequencies were weighted to the 1987 monthly catch (Table 2) using a monthly weight-length relationship. The monthly weight-length relationships were based on individual silver hake lengths and weights measured at sea during the 1987 small-meshed silver hake fishery. For each month the weighted length frequencies were multiplied by age-length keys to produce catch numbers at age. These monthly vectors were summed to give final catch numbers at age.

The catch numbers at age for 1970 to 1979 were prepared by Clay and Beanlands (1980). Catch at age for 1972-1979 were constructed from age-length keys collected during Canadian July groundfish surveys and silver hake length frequencies reported to ICNAF. The length frequencies were adjusted to catch using weight-length relationships from the Canadian July groundfish surveys. These weighted length frequencies were applied to the Canadian age-length keys to give yearly catch numbers at age. The catch numbers at age for 1970 and 1971 were calculated as above but used an aggregated age-length key from the Canadian July groundfish surveys from 1972 to 1976. Catch numbers at age for 1977 to 1979 used length frequencies collected aboard the small-meshed fleets by the IOP and weight-length relationships from the Canadian July groundfish surveys.

Catch numbers at age for 1980 to 1987 (Waldron and Fanning, 1986a; Fanning et. al., 1987) used length frequencies and weight-length relationships collected on board the small-meshed fleets by the IOP. As in previous years, these were weighted to catch and used to construct the final catch numbers at age. Research vessel weights at length were not used, as data collected by the IOP were more representative of the fishery for this parameter.

In numbers, the 1987 fishery was composed of one large (1985), and one average (1984) year class. The catch numbers at age matrix (Table 6) and percent catch numbers at age (Table 7) indicate the 1985 year class has replaced 1983 as the dominant year class in the fishery. The 1985 year class is the largest age 2 group since the 1974 year class. The 1982 and 1984 year classes continue to appear weak compared to other year classes. The 1980 and 1981 year classes in 1987 are average.

Monthly mean weights at age were weighted by monthly catch (Table 8, Figure 4). Fanning et al. (1987) noted that fish age 4 and 5 in 1985 and 1986 were below weights calculated for the 1982 fishery. For 1987, mean weight at age for these ages continued to drop, with values of 0.223 and 0.261 seen for ages 4 and 5 respectively. From 1980 to 1986, age 2 fish showed an increasing mean weight at age. In 1987 however, the mean weight at age for this age group dropped to 0.127 from 0.159 in 1986.

The catch biomass at age is given in Table 9. The 1987 fishery was strongly supported by the 1984 and 1985 year class. The catch from the 1983 year class, which made up the bulk of the fishery in 1986, dropped sharply.

There is good agreement between the catch biomass and the reported catch per year as shown below. The difference between reported and calculated catch in 1987 (1.1%) could be the result of discrepancies between the catch reported to Canada and available NAFO statistics. As more data becomes available these estimates will be adjusted by recalculating the catch at age for 1987.

Year	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
Catch	37095	48404	51751	44525	42927	60251	35839	74280	75492	82689	61704
Biomass	36838	47581	51179	44663	41030	59883	35189	74207	77391	81482	62413
Difference	257	823	572	-138	1897	368	650	73	-1899	1207	709

Indices of Abundance

Commercial Catch and Effort

The 1986 and 1987 CPUE were calculated with monthly catch and effort data from the IOP database. With one exception, the 1970 to 1985 CPUE used catch and effort reported to NAFO. The exception was the 1985 reported effort, which varied from that licensed and reported to Canada (FLASH) by the USSR. FLASH reports 56865 t. caught, 2287 days licenced, 1761 days on ground, and 1578 days fished. The 1985 NAFO Statistical Bulletin reports 56337 t. caught, 2493 days on ground, and 2100 days days fished. Data collected by the IOP shows that the Soviet fleet fished an average of 12.97 hours per day. The observed difference between the days fished reported to FLASH and NAFO suggests the hours fished could be inflated in the NAFO statistics by as much as 6770 hours. With such a large difference in hours fished the 1985 observed catch and effort from the IOP was used as inputs to the catch rate standardization analysis.

A regression analysis to compare monthly catch rates for the USSR from NAFO and the Canadian IOP was highly significant with a correlation of 0.96, a slope of 1 and intercept of 0 (Waldron and Parnell, 1986). On this basis the IOP catch rates have been used when Soviet and Cuban catch and effort are not yet available from NAFO.

4 -

Catch Rate Standardization:

<u>Inputs</u>

Catch and effort were categorized to enhance catch rate standardization (Waldron et. al., 1986). Catch and effort from 1970 to 1976 were classified as the "old" fishing regime when vessels were generally unrestricted in the area and season of fishing. Catch and effort after 1979 were classified as the "new", more restricted, fishing regime. Using IOP observations, the catch and effort from the 1977-1979 silver hake fishery was partitioned between the old and the new regimes. During this period, Canada permitted 4 vessels from each of the two major silver hake fisheries, Cuba and USSR, to fish landward of the SMGL. Only certain vessels were licenced for this experiment. These vessels were directed by the Fleet Commanders to fish either landward or seaward of the SMGL depending upon the relative fishing success in either area. Therefore, those vessels were required to carry observers they provide an excellent method of studying the transition between the old and new fishing regimes.

<u>Analysis</u>

An initial analysis using a multiplicative model was run using the GLIM software package. This was utilized in preference to the APL workspace STANDARD because of its greater flexibility and diagnostic features. After each model was fit the leverage statistics were calculated. These statistics measure the influence of the individual observations on the parameter estimates. A total of 3 points were identified as having significantly large leverage and were in fact all the data from 1974. Because of the mixed catches reported at that time there were only 3 months when the silver hake catches could be considered a directed fishery (i.e. greater than 50% of the catch).

These 3 points were dropped from the analysis prior to fitting the final model. The last fit was done using the STANDARD software to allow calculation of the standardized catch rate and effort. Note however that there are no estimates of catch rate or effort associated with 1974.

The regression results (Table 10) indicate that there is a significant effect due to country in the model. There is also a significant effect of month due to better catch rates in April, the only month with a significant coefficient. The month effect was not significant in a similar analyses by Waldron and Parnell (1986) when only the USSR data were used. The fact that April is the only significant month corresponds with the fact that the Cubans begin fishing earlier in the year than the USSR most years. There were no significant effects due to NAFO division, data source (NAFO or IOP) or fishing regime which was similar to Waldron et al. (1986). Catch rates for 1987 and 1986 are the highest in the series (Table 11, Figure 5). Since 1982, catch rates have been highly variable from year to year but at generally high levels. While there is no apparent trend over this time period the high catch rates would normally indicate a higher population biomass than in the period prior to 1982.

Abundance Surveys

Canadian Adult Surveys

The July stratified random groundfish survey is another index of adult abundance. From 1970 to 1986 there have been three vessels used to conduct this survey. Analysis of comparative fishing experiments between pairs of vessels (Fanning, 1985) indicated that a conversion factor for the series prior to 1982 of 2.3 was required to adjust for the effect of the vessel and gear changes in the time series. By converting the historical catches the current data can be added to the series unchanged.

A NAFO recommendation from the 1987 June meeting of STACFIS was to investigate the use of the July survey in the calibration of the SPA. The 1972-1987 survey data set was re-edited using more stringent editing criteria than had been previously used. The numbers at age and mean weights at age were recalculated. The revised estimates of numbers and biomass at age from the July survey are given in Tables 12 and 13 and Figure 6. The percent at age by numbers is presented in Table 14.

In terms of either numbers at age or biomass at age the 1985 year class is the largest seen in the survey to date (Figure 6). It constitutes 74% of the total numbers and 49% of the total biomass in the survey estimates. The 1983 year class at age 3 is well above average and the 1981 year class was the largest in the series at each of ages 2 and 3 and is above average at age 5. The 1982 and 1984 year classes continue to appear weak with 1984 being the smallest at age 2 since the 1978 year class. The 1986 year class (age 1) would appear to be of average size from the July survey.

A stratified random groundfish survey was conducted in March from 1979 to 1985. However, no new data are available beyond what was presented in Waldron and Fanning (1986a). The estimated total numbers in the March surveys were:

Year	1979	1980	1981	1982	1983	1984	1985
Numbers	381469	192500	335821	998784	964176	960484	379573

Joint USSR-Canada juvenile silver hake survey

A joint USSR-Canada juvenile silver hake survey has been conducted from 1978 to the

present (Table 15). From 1978 to 1980 the survey was conducted over a 24 hour period, using a groundfish trawl. In 1981 a gear change was made, substituting an International Young Gadoid Pelagic Trawl (IYGPT) for the bottom trawl. Since 1981 the survey has been conducted on a 12-hour night-time only basis, using the IGYPT. The survey index based on the core strata (60-78) (Koeller et al., 1984) from 1978 to 1985 was recalculated in 1986 (Koeller et al., 1986) and the same method was used for the 1986 and 1987 surveys (Table below). The survey in 1987 went smoothly, unlike the 1986 survey where operational problems reduced coverage. Stations sampled during 1987 survey are shown in Figure 7.

Only the estimates from 1981 to 1987 (IGYPT.) gear are used as a series for juvenile silver hake abundance. The 1986 index as reported in the 1987 assessment was preliminary, as the final data set was not available. The 1986 index has been recalculated, and the table updated. This series indicates that the 1981, 1983, 1985, and 1986 year classes are large relative to the 1982 and 1984 year classes. The 1987 year class is 1/2 that of the 1986 and 1/3 that of the 1985 year classes.

Sequential Population Analysis

An SPA was accepted by the NAFO Scientific Council in 1987 using a catch rate series which had been standardized by means of a multiplicative model regression. The same technique was employed in this assessment to calibrate an SPA with the catch rate series.

Mortality

.....

As in previous years a natural mortality of 0.4 on all ages was assumed. F at the oldest age was determined using the APL function AUTOF (Rivard, 1982) to iterate the F's on ages 3+.

Partial recruitment

The partial recruitment for ages 1 and 2 in 1987 was calculated from the ratio of F on ages 1 and 2 to average F on fully recruited ages (3 to 6) for years 1982 to 1986. This PR was input back into an SPA and the procedure repeated until there was no further change in the PR. The resulting input partial recruitment in the final year was below that used in the previous assessment but is not outside of the range of partial recruitments from other assessments.

•		Age	
Assessment	1	2	3-9
Current	0.045	0.213	1.000
Previous	0.080	0.580	1.000
1986	0.041	0.304	1.000
1985	0.035	0.350	1.000
1984	0.030	0.250	1.000
1983	0.030	. 0.250	1.000
1981-82	0.044	0.444	1.000
1979	0.150	1.000	1.000

Partial Recruitment Patterns for Silver Hake by Assessment Year

The PR used to calculate exploitable biomass was based on annual PR vectors which were also calculated as the ratio of F on ages 1 and 2 to average F on the fully recruited ages (3-9). PR's greater than 1.000, were set 1.0.

Terminal F

Two methods of age aggregated tuning were employed. The standardized catch rates were regressed on the fishable biomass. Fishable biomass was calculated with annual PR vectors derived from the F matrix. The RV 3+ numbers were regressed on SPA 3+ numbers as the second means of tuning.

The accuracy of catch at age in the period 1970-1976 had been questioned in STACFIS last year and tuning relationships including these years were compared to those with 1970-1976 excluded. There were some suggestions that the two time periods showed separate relationships between CPUE and SPA, however STACFIS elected to use the entire time series pending investigation of the early years of data. Review of documents from the late 1970's indicates that catch at age in the years 1972-1976 were constructed using the July RV age/length key applied to the yearly length frequencies. In 1970-1971 there were no survey ages available so, an average age/length key from 1972-1976 was used to generate the catch at age. Since 1977 the catch at age has been constructed in a consistent manner using age and length samples collected from the fishery. Initial SPA runs using the 1970-1987 catch at age showed even more strongly the separation of the pre- and post- 1977 data. It was therefore concluded that only 1977-1987 catch and sampling data should be used in tuning the SPA in the current assessment.

The 1982 CPUE was not used in the tuning by catch rate because it had been considered by STACFIS to be too high and not reflective of changes in abundance. Results of tuning with CPUE are given in Table 16 and the tuning plot at $F_r=0.300$ in Figure 8.

The results of tuning using the RV 3+ numbers on SPA 3+ numbers are given in Table 17 and the tuning plot at $F_r = 0.300$ in Figure 9.

Yield per recruit

. • *

The Thompson and Bell yield per recruit was calculated using the most recent partial recruitment, natural mortality of 0.4 and mean weights at age from the commercial fishery from 1977 to 1986 (Table 18). The F_{a1} level is 0.53 and the yield per recruit would be 0.062 kg. at that level of F. These are changed from the previous assessment (Fanning et. al., 1987) where F_{a1} was 0.474 and the yield per recruit was calculated as 0.063kg.

Year Class Strengths

The 1987 fishery was supported by two year classes: 1984 and 1985. The strength of the 1985 year class is consistent with the indications of this group in the juvenile and the July adult surveys. The 1983 year class was a strong year class but its contribution to the 1987 fishery was lower than expected.

Juvenile and July surveys indices suggest that the 1986 year class should also be stong in 1987. However, the catch of this group at age 1 in 1987 was only 1/7 th the size of the 1985 year class at age 1 (Table 16). The previous assessment of this population suggested the 1988 fishery would be supported by two large year classes, the 1985 and 1986. From observed data from the IOP, the 1988 fishery is very good with catch rates as high as those observed in 1986 and 1987. Year class strengths cannot be calculated at this time so the contribution of the 1985 and 1986 year classes cannot be evaluated.

The 1988 fishery will be supported by 2 strong year classes, 1985 and 1986, which both appear to be as strong as the 1983 year class. The 1983 year class will be essentially gone by 1988.

Acknowledgments

The authors wish to thank the personnel of the IOP, Fisheries Habitat and Management Branch, and Marine Fish Division who worked diligently to collect the data used throughout this document. Also, we wish to acknowledge the ageing of silver hake by Mr. J. Hunt from the St. Andrews Biological Station. Also, thanks goes to Mrs. V. Myra who assisted in the preparation of this document.

References

Anon. 1977. Report of the ad hoc working group on silver hake in Divisions 4VWX. ICNAF Redbook (1977): Appendix II: 19-23. (mimeo)

Clay, D. and D. Beanlands. 1980. Silver hake (Merluccius bilinearis) in Division 4VWX. A stock assessment and estimate of the total allowable catch (TAC) for 1981. NAFO SCR Doc. 80-VI-87. 14p. (mimeo)

Fanning, L.P. 1985. Intercalibration of research survey results obtained by different vessels. CAFSAC Res. Doc. 85-3. 43p. (mimeo)

9 -

Fanning, P.F. D.E. Waldron and C. Bourbonnais. 1987. Scotian Shelf silver hake population size in 1986. NAFO SCR Doc. 87/56. No. N1345. 26p. (mimeo)

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci.37: 2272-2275.

Koeller, P.A., J. D. Neilson and D.E. Waldron. 1984. The Canadian-USSR juvenile silver hake (Merluccius bilinearis) surveys on the Scotian Shelf: abundance indices, distribution, and comparison with independent estimates of juvenile abundance, 1978-83. NAFO SCR Doc. 84-87. 9p. (mimeo)

Koeller, P.A., P. Perley and J. D. Neilson. 1986. Canadian Juvenile Silver Hake abundance estimates from joint Canada-USSR surveys on the Scotian Shelf. NAFO SCR Doc. 86-54: 12p. (mimeo)

Rivard, D. 1982. APL programs for stock assessment (revised). Can. Tech. Rep. Fish. Aquat. Sci. No. 1091. 146p.

Waldron, D.E. and J. Parnell. 1986. Comparison of Division 4VWX silver hake catch rates from the Scotian Shelf small meshed fishery. NAFO SCR. Doc. 86/82, 8p. (mimeo)

Waldron, D.E. and L.P. Fanning. 1985. Status of the Scotian Shelf silver hake population in 1984. NAFO SCR. Doc. 85-68. 28p. (mimeo)

Waldron, D.E. and L.P. Fanning. 1986a. Assessment of the Scotian Shelf silver hake population in 1985. NAFO SCR. Doc. 86-62. 27p. (mimeo)

Waldron, D.E. and L.P. Fanning. 1986b. Calibration of Division 4VWX silver hake VPA including calculations of yield per recruit. NAFO SCR Doc. 86-88. 15p. (mimeo)

Waldron, D.E., P. Fanning and J. Parnell, 1986. Standardization of 4VWX silver hake catch rates from the Scotian Shelf small meshed fishery. NAFO SCR Doc. 86-85, 13p. (mimeo)

.

. Nominal catches for 4VWX silver hake 1970-1987 (1987 preliminary).

	987	0	11 ³	02 19 ⁻³	0	0	o [°]	•) 0	145 ² 1	0	0	0	0	0	1329 ³	1704
	1986	0	6	16041 20	0	0	0	0	o	67	0	0	0	0	-	56571 4	32689 6
	1985	0	2	17683	0	0	0	0	٥	120	0	1338	0	0	0	563.37 (15480 8
	1984	0	10	14496	0	O	93	0	0	530	0	1714	0	0	0	57423	74266
	1983	ο	15	74 18	0	0	0	0	22	649	0	378	0	0	0	27377	35839
	1982	0	ጽ	1 1969	21	0	0	0	371	937	31 ²	21	0	0	7	47261	60251
	1981	Ģ	Q	642	0	0	0	0	541	120		2044	0	0	ħ	41243	44600
	1980	817	104	2287	0	0	0	0	0	239	0	2	0	40	0	40982	44525
뇌	1979	4639	51	1798	0	0	0	6	ŝ	219	0	0	-	0	0	45076	51760
Yea	1978	606	26	34.36	0	0	ц.	0	106	161	2	0	o	2	0	44062	48404
	1977	862	9	1847	15	684	0	0	8	19	295	0	10	0	14	33301	37095
	1976	3088	26	12572	0	67	0	106	0	78	0	0	0	0	-	81216	97184
	1975	1722	101	1724	0	106	0	108	0	54	0	0	0	ø	٢	112566	1 16394
	1974	0	Ξ	0	0	296	0	0	0	67	0	0	. 0	0	0	95371	95745
	1973	O	0	0	0	0	0	0	0	88	0	O	0	0	0	298533	298621
	1972	0	0	201	0	10	0	0	0	63	0	o	0	0	0	113774	114048
	1971	O :	0	0	0	O	0	0	0	80	0	0	0	15	-	128633	128657
	1970	0	0	0	0	0	0	0	0	129	0	0	0	0	0	168916	169045

idata

lir cular Letters and provisional reporting to NAFO.

l

ļ

Table :	2. Scot	ian Sheli	f silver	hake ret	or ted	monthly	catch	(t) (mo	nthly c	atchre⊈	or ted	in prev	ious yea	àr's as	sessment	in pare	nthesis)	_•
	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ³	1980	1981 ³	1982 ³	1983 ³	1984	1985	1986	19875,
Jan.	12	ħ	I	I	1088	2850	982	I	I	1	I	I	t	ł	I	ŧ	I	4-
Feb.	43	3555	. 43	103	261	1416	1174	2	ı	9	Ì	I	I	I	1		1	1
Mar .	4335	30821	7199	12133	7345	2808	15028	3718	ł	3	1	I	' I	1	12	I	11	4 €
۹r.	16682	19415	12129	91367	10182	13673	10344	8142	2118	2190	1558	186	2409	0669	2614	3207	(25) 5751 (4902)	, 4967
May	19880	11742	21303	72443	15766	14715	7860	5714	8761	13000	6086	15332	19482	16369	22079 (19529)	15491 (11323)(27723 (21382)	12793
June	19115	94 19	16982	41948	14369	11364	7030	3284	13591	17651	13875	13669	24786	11274	24054 ² (22000)	33319 (30483)(34810 (41594)	21611
Ju ly	34873 ·	22118	26425	42955	10676	26874	22531	11990	14449	14417	15011	13654	12607	543	22020 (26041)	17639 (25600)(13088 13572)	19247
• 6ny	4 38 1 4	21621	14610	13394	10365	23904	8895	2805	8851	2930	4025	606	641	490	3248 ² (3411)	5766 (4891)	933 (893)	3081
Sæ †.	19028	8258	11481	8656	14871	18076	6480	1046	236	506	103	41	260	156	245 (516)	54 (22)	361 (483)	~
0ct.	6132	1092	3223	5493	4981	139	7625	06 t	285	403	84	œ	7	2	, 2 (17)	I	(1)	•
Nov.	4115	613	452	1078	5256	26	3900	201	55	248	60	M	13	ω	2 (4)	-	4	ł
De c.	1016	I	ł	0506	10585	549	5335	ñ	55	~	ŀ	м	7	I	- (2)	3 (10)	(2)	1
Total	169045	128657	114048	298621	95745	116394	97184	37095	48404	51751	44525	44599	60207	35837 (74266 (74226)	75480 (75492)(82689 (82855)	51704 ³
Petro C	ted to C	anada (F	LASH Sys	tem).	Note: 0	catch w	se up da	ted and	is not	reflect	ed in 1	th is col	nm.					

² 5 tons were reported for Canada but no months were assigned, thus IOP data used to locate apropriate months.

³ Some countries did not report catches by months.

⁴ B Tons were reported for Canada but no months were assigned, thus 10P data used to locate appropriate months.

 5 Soviet catch was not reported by month, thus was prorated to the Flash data.

1

Table 3. Nominal catch and allocations (t) (in parenthesis) for 4VWX silver hake. 1987 Preliminary.

- 13 -

Country	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
Bulgaria	862 (950)	606 (1000)	4639 (6860)	817 (1200)	0 (1000)	0 (1000)	Ő	0	0	D	U
Canada	10 (15190)	26 (16700)	13 (10000)	104 (20000)	6 (20000)	38 (13000)	15 (1000)	10 (1000)	2 (1000)	9 (1000)	11 (19500)
Cdn. Reserve	•						(11808)	(13000)	(8100)	(4600) #	. .
Cuba	1847 (8910)	3436 (10300)	1 798 (8070)	2287 (11200)	642 (9500)	11969 (13500)	7418 (9500)	14496 (15200)	17683 (15200)	16041 (17700)	20219 (20200)
EEC	0	0	0	0 (100)	0	0	0	0	0	0	0
France ⁴	15	0	0 (100) ³	0 (100) ³	0 (100) ³	2 ¹ (100) ³	0 (100) ³	0 (100)	0 (100)	0 (100)	0 (100)
FRG	684	0	0	0	0	0	. 0	0	0	0	0
GDR	0	31	0	Q	0	0	0 (2000)	93 (100)	Û	0	0
Italy ⁴	38	106	5	0	541	37 ¹	2 ²	0	ס `	0	0
Japan	19	161	219	239	120	937 (2000)	649 (5000)	530 (10000) ²	120 (10000)	67 (10000)	145 (7500)
Poland	295	2	0	0	11	31	0	0	0	0	0
Portugal	0	0	0	56	2044	2 ¹ (2000)	378 (3000)	¹⁷¹⁴ (4000) ²	1338 (4000)	0	0
Romania	10	0	1	0	0	0	0	0	0.	0	0
Spain	0	~ 2	0 11 - 11	40	0	0	0 (4000)	0	0 (5000)	0	0
USA	14	0 ,	0 (2)	0	3	2	0	0	0	1	0
USSR	33301 (44950)	44062 (52000)	45076 (44940)	40982 (56600)	41243 (48400)	47261 (48400)	27377. (43400)	57423 (56600)	56337 (56600)	66571 (66600)	41329 (52700)
Others	0	0	9 (30)	0 (900)	0 (1000)	0	0 (192)	0	0	0	0
Total Catch and TAC	37095 (70000)	48404 (80000)	51760 (70000)	44525 (90000)	44600 (80000)	60251 (80000)	35839 (80000)	74266 (100000)	75480 (100000)	82689 (100000)	61704 (100000)
Sum of Catch	Divided	by TAC (%	()								
	· 53	61	74	50	54	75	45	74	75	83	62
Sum of Catch	Divided	by Sum of	' Allocati	on (disco	unted Can	• Alloc•	+ reserve	.) (%)			
	68	76	86	64	72	90	53	86	83	87	77

² Observed by Canadian Observers but not reported to NAF 2 Recented to Canada (FLASH System)

{ Reported to Canada (FLASH System)

France, St. Pierre, and Miquelon vessels only

4 EEC allocations

2.35 2.46 1987 0.52 I 5.31 1987 7.03 5.68 1.93 1.96 ٩_Č 3**.**33 1986 ī 4.21 3.62 I Т 5.48 1986 2.92 1.89 I 1.150.97 1985 2.27 2.49 1.17 2.78 1985 2.00 L 2.01 ۱. 2.51 2.02 I t 2.44 2.46 4.15 1.11 3.22 3.61 2.65 1984 1 2.30 1 1984 1 Ţ 1.44 2.18 1983 I 2.97 ŧ 3.04 ļ 1983 0.97 1.91 1.91 t ۱ ; 4.27 3.86 5.61 2.15 1982 2.83 L 3.61 ī ŧ 1982 2.31 0.21 ţ 2.19 1.40 1.35 1.30 1.23 1.40 1981 I 1981 1.15 1.30 1.38 1980 0.64 ŧ 1980 1.85 1.98 1.45 1979 1.77 1.39 1.71 1.73 1979 1.35 1.36 1.43 2.15 1978 1 1978 USSR CUBA 2.46 1.66 2.25 4.66 1.11 1.17 2.26 1.96 1.89 2.09 1.99 1977 2.01 1977 1.51 1976 1.17 1.61 2.17 2.58 1976 I 1.78 1.91 1.60 1.28 1975 1975 ł t ı t 2.31 1974 1.64 1974 1973 2.92 1.642.12 1.38 2.41 1973 2.16 2.44 1.43 1972 1.58 1.35 1.66 1972 1.39 2.05 1.45 1 1971 1971 1.80 2.48 1.83 2.38 1970 1970 1.53 September September August August April Month Month April June July June July May May

14

Reported (1970-1986) and observed (1987) catch rates (t/hr) for USSR and Cuban fleets from April until September.

Table 4.

- Gu
i li
amp
Š
ake
ĥ
ver
sil
am
Ъ
Lo Lo
<u>с</u>
ve:
e L
Obs
_
ona
Ë
nat
e
Int
~
98
-

ole 5.	1987 International	Observe	r Program	i silver	hake san	ıpling.					
UNTRY	SAMPLE	FEB.	MARCH	APRIL	МАҮ	JUNE	JULY	AUGUST	SEPT.	NOV.	TUTALS
									1		0001
	No. meas.	65	571	0	368	0	с	, 0	0	216	C77T ·
ahan	Otoliths taken	Ö	0	0	0	0	0	0	0	0	> (
5	Otoliths aged	0	0	0	0	0	0	0	0	0	Ð
ed	No. meas.	0	0	34146	54706	23715	813	0	0	0	113380
j 2	Otoliths taken	0	0	159	170	80	9	0	0	0 0	G14 170
	Otoliths aged	0	0	128	80	33	0	0	0	5	143
pàn	No. meas.	0	0	1134	533	0	0	1161	77	00	2905 72
	Otoliths taken	0	0	43	m	0	0	0	56 26	.	1 C 4 F
	Otoliths aged	0	0	43	e	0	0	0	0	Ð	6
SR	No. meas.	0	0	0	22424	136621	176356	20013	0	0	355414 2200
	Otoliths taken	0	0	0	219	1117	877	177	0		1911
	Otoliths aged	0	0	0	108	523	443	87	0	Ð	1011
tal	No. meas.	65	571	35280	78031	160336	177172	21174 ~	11	216 Î	472922 7792
	Otoliths taken	0	0	202	392	1197	883	177	26		1107
	Otoliths aged	0	0	171	191	556	443	87	0	5	0++ -

- 15 - 1

- 16 -

Table 6: Commercial catch numbers ('000) at age for 4VWX silver hake

 +	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
1 2 3 4	187298 748021 216246 59832	219607 410149 175005 74755	379314 460610 71536 47903	246148 1482925 96784 106675	101158 390044 150741 7095	145091 365964 52837 60806	153535 381651 72418 31295	2131 43535 78239 29551	28704 90777 89717	9667 48341 69058	6272 60576 82013	1553 19530 111209	19708 51680 66973	3333 86085 51617	99217 40265 191048
5 6 7 8 9	20695 9636 3608 1988 1114	22035 1877 5139 1333 2062	17822 7452 1160 437 607	96940 19671 15203 5475 484	9789 3245 93 109 60	38646 4803 311 363 360	5582 2669 514 105 390	6981 2004 483 564 522	42878 19442 8587 3222 2009 420	48347 29656 16964 5079 1765 1151	15293 6179 1682 344 90	14266 5548 679 132 61	34777 8925 2790 1047 127	28354 13036 4431 1150 475 69	19200 5392 1006 176 3
1+1 2+1 3+1 4+1 5+1	1249438 1061140 313119 96873 37041	911962 692355 282206 107201 32446	986841 607527 146917 75381 27478	2070305 1824157 341232 244448 137773	662334 561176 171132 20391 13296	669181 524090 158126 105289 44483	648159 494624 112973 40555 9260	164020 161889 118354 40115 10554	285756 257052 166275 76558 33680	228228 218561 170220 101162 54615	208337 202065 141489 59476 23588	191512 189959 170429 59220 20686	252257 232549 180869 113896 47666	188550 185217 99132 47515 19161	428046 328829 288564 97516 25777

1	1985	1986	1987
+			
1	38273	123882	18364
21	175423	68374	224958
31	67117	172291	97196
41	91516	68918	43628
51	22953	29477	13740
61	8958	10504	7639
71	3399	2152	580
8	644	870	272
91	364	84	339
+ -			
1+1	408647	476552	406716
2+	370374	352670	388352
3+1	194951	284296	163394
4+)	127834	112005	66198
5+1	36318	43087	22570

										_								
 1	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
1	15.00	24.08	38.44	11.89	15.27	21.68	23.69	1.30	10.04	4.24	3.01	.81	7.81	1.77	23.18	9.37	26.00	4.52
21	59.92	44.97	46.68	71.63	58,89	54.69	58.88	26.54	31.77	21.18	29.08	10.20	20.49	45.66	9.41	42.93	14.35	55.31
31	17.32	19.19	7.25	4.67	22.76	7.90	11.17	47.70	31.40	30.26	39.37	58.07	26.55	27.38	44.63	16.42	36.15	23.90
4 [4.79	8.20	4.85	5.15	1.07	9.09	4.83	18.02	15.01	20.39	17.23	20.12	26.25	15.04	16.76	22.39	14.46	10.73
51	1.66	2.42	1.81	4.68	1.48	5.78	.86	4.26	6.80	12.99	7.34	7.45	13.79	6.91	4.49	5.62	6.19	3.38
6	.77	.21	.76	. 95	.49	.72	.41	1,22	3.01	7.43	2.97	2.90	3.54	2.35	1.26	2.19	2.20	1.88
7	.29	.56	.12	.73	.01	.05	.08	.29	1.13	2.23	.81	.35	1.11	.61	.24	.83	.45	.14
81	.16	.15	.04	.26	.02	.05	.02	. 34	.70	.77	.17	.07	.42	.25	.04	.16	.18	.07
91	.09	.23	.06	,02	.01	.05	.06	.32	.15	.50	.04	.03	.05	.04	.00	.09	.02	.08

Table 8: Commercial mean weight (Kg) at age for 4VWX silver hake

		1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
1	1	.060	.040	.056	.045	.063	.067	.063	.062	.049	.061	.041	. 036	.056	.054	.063	.077	.062	.045
2	F	.126	.128	.119	.128	.129	.155	. 148	.147	.110	.154	.141	.143	.148	.130	.147	.156	.159	.127
3	1	.167	.188	.209	.216	.204	.243	. 246	.210	.174	.200	.213	.193	.223	.203	.190	.206	.201	.174
4	1	•222	.254	.240	.250	.310	.237	.273	.290	.226	.245	.280	.248	.289	.246	.249	.240	.229	.223
5	1	.303	.315	,274	.295	. 396	.477	.407	.397	.283	.285	.322	.318	.329	.303	.278	.276	.272	.261
6	1	.404	.450	.557	.439	.539	.457	.528	.516	. 329	.344	.366	.369	.399	.362	.366	.326	.300	.300
7	I	.470	.587	.483	.485	.975	1.133	.838	.667	.382	.411	.520	.672	.481	.387	.454	.417	.403	.434
8		.705	.832	1.263	.875	1.156	1.257	1.251	1.077	. 498	.520	.601	.550	.582	.653	.597	.599	. 490	.399
. 9	1	.828	.612	.886	1.174	.001	1.635	.859	1.089	.784	.553	.892	.794	.949	.809	.753	.630	.650	.406

1 1

Table 7: Commercial catch percent at age for 4VWX silver hake

Table 9: Commercial catch biomass (tons) at age for 4VWX silver hake

-

 +-	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
11	11238	8784	21242	11077	6373	9721	9673	132	1406	590	257	56	1102	180	6251	2947	7681
21	94251	52499	54813	189814	50316	56724	56484	6400	9985	7445	8541	2793	7623	11191	5919	27366	10871
3	36113	32901	14951	20905	30751	12839	17815	16430	15611	13812	17469	21463	14915	10478	36299	13826	34630
4	13283	189 8 8	11497	26669	2199	14411	8544	8573	9690	11404	10049	9556	19167	6975	17863	21964	15782
51	6271	6941	4883	28597	3876	18434	2272	2771	5502	8452	4924	4537	11445	3950	5338	6335	8018
6 I	3893	645	4151	8636	1749	2195	1409	1034	2825	5836	2262	2047	3560	1604	1973	2920	3151
71	1696	3017	560	7373	91	352	431	322	1231	2087	875	456	1342	445	457	1417	867
81	1402	1109	552	4791	125	456	131	607	1000	918	207	73	609	310	105	386	425
91	922	1262	538	568	0	589	335	568	329	637	80	48	120	56	2	229	55
1+	169068	126345	113186	298430	 95491	115722	97094	36838	47581	51179	44663	41030	 59883	35189	74207	77391	81482
2+1	157830	117561	91944	2873 54	89109	106001	87421	36706	46174	50589	44405	40974	58781	35009	67956	74444	73801
3+1	63579	65062	37132	97539	38793	49277	30937	30306	36189	43145	35865	38181	51158	23818	62037	47078	62930
4+1	27466	32161	22181	76634	8042	36437	13122	13876	20578	29333	18396	16718	36244	13340	25738	33252	28299
5+1	14183	13173	10684	49965	5842	22026	4578	5304	10888	17929	8348	7161	17077	63 65	7875	11288	12517

1	1987
+-	
11	826
21	28570
3	16912
4	9729
51	3586
61	2292
71	252
8	109
91	138
+-	
1+1	62413
2+1	61587
3+1	33017
4+1	16105
5+1	6376

- 18 -

Table 10. CPUE standardization results for the 4VWX silver hake population. Includes years

1977-1987.

Key Type 1: Data Source, NAFO or IOP

Type 2: Month

Type 3: Year

Type 4: Area

Type 5: Regime either Old or New

Type 6: Country

REGRESSION OF MULTIPLICATIVE MODEL

MULTIPLE	R	. 741
MULTIPLE	R SQUARED	.548

ANALYSIS OF VARIANCE

SOURCE OF		SUMS OF	MEAN	
VARIATION	DF	SQUARES	SQUARES	F-VALUE
	• ••			<u>`</u>
INTERCEPT	1	5.37420001	5,374E0001	
REGRESSION	20	1.683E0001	8.4165 001	5.740
TYPE 1	1	8.449E "002	S.4495 ⁻⁰⁰²	0.677
TYPE 2	5	2.279È0000	4.558 <u>5</u> ~001	3,650
TYPE 3	10	1.01020001	1.010E0000	8.092
TYPE 4	2	9.427E 001	4.7132 001	3.775
TYPE 5	1	2.872E 001	2.872E ⁻ 001	2.300
TYPE 6	1	1.207E0000	1.20720000	9,666
RESIDUALS	111	1.386E0001	1.2495-001	

REGRESSION COEFFICIENTS

CATEGORY	CODE	VARIABLE	COEFFICIENT	STD. ERROR	NO, OBS.
	 · •	INTERCEPT	1.155	0.183	132
-	4				
2	77				
4	460				
5	1				
š	Î				
U f	2	4	TO 102	0.124	54
2	<u>د</u>		TO 170	0.110	29
6	2	. 6	70 262	0,110	33
	2	3	-0.203 -0.211	0.11	30
	1	1 F	70.311	0.125	
	8	2	9.395	0.123	-0
-	3	6	0,645	0.108	5
Э	78	7	0,303	0,120	20
	79	8	0.152	0.122	21
	RÔ	9	0.461	0,152	9
	81	10	-0.339	0.153	3
	82	11	0.614	0.173	7
	83	12	-0.078	0.168	8
	84	13	0.397	0.167	8
-	85	14	0.540	0.170	9
	86	15	0.689	0.194	10
	37	16	0.675	0.196	. 9
4	450	17	0.125	0.131	10
	470	18	-0.184	0.081	31
5	2	19	-0.211	0.139	111
د	2	20	-0 222	0 104	24

Table 11. Standardized mean catch rate series for 4VWX silver hake from 1977-1987

PREDICTED CATCH RATE

STANDARDS USED

VARIABLE NUMULARS:

460 1 1

1

4

	TOTAL		CAT	CH RATE		
YEAR	CATCH	PROP.	MEAN	S.E.	EFFORT	
1977	37095	0.702	3.323	0.607	11162	
1978	48404	0.879	2.461	0.417	19669	
1979	-51751	0.827	2.821	0.544	18347	
1980	44525	0.920	2.089	0.421	21318	
1931	44599	0.833	2.359	0.478	18907	
1982	60 207	0.958	6.098	1.322	9873	
1983	35837	0.921	3.058	0.644	11720	
1984	7 426 6	0.967	4.909	1.056	15130	
1985	75480	0.529	5.620	1.390	13430	
1986	82689	0.427	6.454	1.846	12812	
1987	61704	0.926	6.362	1.814	. 9698	

AVERAGE C.V. FOR THE MEAN: .219

Table 12: July research vessel survey catch numbers (*000) at age for 4VWX silver hake

ا، •	1970	1971	1972	1973	1974	1975	1976.	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
11	0	0	55508	137524	59388	37637	44719	7399	26774	87163	14635	32888	191940	114006	189724	93810	560759
21	Ð	0	88950	256530	194085	32856	109508	28469	24159	14B115	22101	86211	300011	108443	68526	154974	77027
34	0	0	13204	17604	27680	5210	14186	20861	16045	71479	28955	135005	84949	40348	212335	36114	77052
4 1	0	0	7123	14518	3438	2983	11332	4283	8731	19637	8303	57102	62934	,18715	36788	82184	19332
5 1	0	0	3070	13478	3402	1504	4011	1461	6764	11578	4260	16742	14775	9562	11317	- 26409	15110
5 I	0	0	1769	6231	3871	872	1955	1371	2861	· 5571	3130	5187	7966	3133	7537 -	4193	4699
7	0	0	274	2171	713	253	448	867	1178	3064	1511	2829	4846	831	2934	2645	1609
8 1	0	0	642	1339	409	398	145	338	455	9 75	874	856	6512	415	1077	893	692
91	0	. 0	115	120	0	37	195 ₍	288	920	253	370	499	317	° 364	564	. 119	293
1+1	0	.0	170655	449514	292938	81749	186500	65336	87888	347836	84139		674250	295817	530802	407341	756573
2+1	0	0	115147	311990	233599	44112	141781	57937	61113	260573	69504	304430	482310	181811	341078	307531	195814
3+1	0	0	26197	55460	39514	11256	32274	29468	36954	112557	47403	218219	182299	73368	272552	152557	118787
4+1	0	. 0	12993	3785 6	11833	6047	18087	8 607	20909	41078	18448	83214	97350	33020	60217	116443	41735
5+1	0	0	5870	23338	8395	3064	6755	4324	12178	21441	10145	26112	34416	14305	23429	34259	22403

1987

4+1 32856 13184 5+1; i

2+1, 342182 78248

3+1;

1 ł t

1

ì 1 í, - 22 -

Table 13: July research vessel survey catch biomass (tons) at age for 4VWX silver hake

 +	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981 -	1982	1983	1984	1985	1986	1987
1	0	0	3108	6189	3741	2522	2817	459	1312	5317	600	1184	10749	6156	11953	7685	37515	6795
21	0	0	10585	32836	25037	5093	16207	4185	2658	22810	3116	12328	44402	14098	10073	24176	10306	34320
3 İ	0	0	2760	3803	5647	1266	3490	4381	2792	14296	6167	26056	18944	8191	40344	7439	15210	8841
4 1	0	0	1710	3629	1066	707	3094	1242	1973	4811	2325	14161	18188	4604	9160	19724	4974	4648
51	0	0	841	3976	1347	719	1633	580	1914	3300	1372	5324	4861	2897	3146	7289	4653	1744
61	0	0	. 985	2735	2086	398	1032	707	941	1916	1146	1914	3178	1134	2759	1367	1777	1318
71	0	0	132	1053	695	287	376	578	450	1259	786	1901	2331	322	1332	1103	709	406
8 f	0	0	810	1171	473	500	181	364	227	507	525	471	3790	271	643	535	577	264
91	0	0	102	140	0	60	168	313	721	140	330	396	301	294	425	75	182	161
1+1	0	0	21034	55532	40093	11550	28998	12809	12988	54356	16367	63735	106743	37967	 79834	 69394	 75904	58499
2+1	0	0	17925	49344	36352	9028	26180	12350	11676	49039	15767	62551	95994	31811	67882	61708	38389	51704
3+1	0	0	7340	16508	11315	3936	9973	8165	9019	26229	12651	50223	51593	17713	57808	37532	28083	17384
4+1	0	0	4581	12705	5668	2670	6484	3785	6227	11933	6483	24167	32649	9522	17465	30093	12873	8542
5+1	0	0	2871	9076	4602	1963	3390	2543	4254	7122	4159 [.]	10006	14461	4919	8304	10369	7899	3894

!			Table	14: J	uly res	earch v	essel s	urvey p	ercent	catch n	unbers	at age	for 4VW	X silve	r hake			
ļ	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
11	00.00	00.00	32.53	30.59	20.27	46.04	23.98	11.32	30.46	25.06	17.39	9.75	28.47	38.54	35.74	24.50	74.12	30.23
21,	00.00	00.00	52.12	57.07	66.24	40.19	58.72	43.57	27.49	42.58	26.27	25.56	44.50	36.65	12.91	38.05	10.18	53.82
3 1	00.00	00.00	7.74	3.92	9.45	6.37	7.61	31.93	18.26	20.55	34.41	40.02	12.60	13.64	40.00	8.87	10.18	9.26
4	00.00	00.00	4.17	3.23	1.17	3.65	6.0B	6.55	9.93	5.65	9.87	16.93	9.33	6.33	6.93	20.18	2.56	4.01
5 I,	00.00	00.00	1.80	3.00	1.16	1.84	2.15	2.24	7.70	3.33	5.06	4.96	2.19	3.23	2.13	6.48	2.00	1.35
6	00.00	00.00	1.04	1.39	1.32	1.07	1.05	2.10	3.26	1.60	3.72	1.54	1.18	1.06	1.42	1.03	.62	. 91
7 İ,	00.00	00.00	.16	.48	.24	.31	.24	1.33	1.34	.88	1.80	.84	.72	.28	.55	.65	.21	.21
8 İ.	00.00	00.00	.38	.30	.14	.49	.08	.52	.52	. 28	1.04	.25	.97	.14	.20	.22	.09	.12
91	00.00	00.00	.07	.03	.00	.05	.10	. 44	1.05	.07	.44	.15	.05	.12	.11	.03	.04	.09

Year Class Stratified Mean catch/tow Standard Error of Mean Number of Sets	1981 579.0 0.11 77	1982 8.8 0.14 61	1983 232.2 0.11 64	1984 43.4 0.16 71	1985 284.8 0.22 82	1986 198.0 (231.9) ¹ 0.19 74	1987 102.0 0.11 105
July R/V age 1 numbers (10 ⁻⁶)	192	114	190	100	561	148	
Commercial catch	19.7	3.3	99.2	38.3	123.9	18.3	

Table 15:	Stratified	mean cat	ch/tow fo	or the	joint	Canada-	USSR	juvenile	silver	hake surv	vey.
Strat	a 60-78 onl	y.			-			-			-

Age 1 numbers (10^{-6})

¹Preliminary value used in 1987 assessment.

Table 16 a. Population numbers for 4VWX silver hake with M=0.4 and Ft = 0.20 $\,$

	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
i i	1702326	1708957	3786598	1438376	1369358	1488758	867564	696173	763173	919541	583283	783736	1600360	982478
21	1759310	989493	967938	2231055	765506	835892	880432	457663	464926	488261	608528	385887	524091	1056733
31	533600	584754	337024	284166	344278	205221	269713	287013	271517	238472	288142	358851	242818	309454
4	194522	185555	251706	168298	113107	111077	95112	122647	129584	110232	104471	127357	151468	109013
51	52379	82461	64868	130098	29673	70063	26622	38718	58440	52562	36886	41343	54491	48938
6 I	24106	18626	37581	29177	12882	12059	16575	13349	20322	23623	11942	12561	16311	9436
71	12853	8485	10966	19185	4307	6027	4258	8955	7329	6796	2768	3131	4016	3913
81	13514	5721	1669	6411	1315	2811	3768	2439	5611	2355	663	541	1552	535
91	2944	7452	2762	768	210	793	1591	- 2454	1181	2157	226	173	256	228
1+1	4295553	3591504	5461112	4307536	2640637	2732702	2165655	1629411	1722083	1843999	1636909	1713579	2595362	2520728
2+1	2593228	1882547	1674514	2869159	1271278	1243944	1298091	933238	958910	924458	1053626	929844	995003	1538250
3+1	833918	893054	706576	638104	505773	408052	417659	475574	493984	436197	445098	543956	470912	481517
4+1	300318	308301	369552	353938	161495	202831	147946	188562	222467	197725	156956	185105	228094	172063
5+1	105796	122745	117846	185640	48387	91754	52834	65915	92883	87492	52485	57748	76626	63051

ļ	1984	1985	1986	1987
+-				
11	1857929	1608105	6645120	2486080
21	655864	1164893	1046848	4353680
3	638577	406975	639124	646267
4 1	165764	274925	218617	290087
51	50296	54127	111089	91359
61	22336	18407	18037	50793
7	2815	10636	5253	3856
8 I	1701	1084	4409	1809
9 1	9	997	222	2254
+-				
1+1	3395292	3540150	8688719	7926185
2+1	1537362	1932045	2043599	5440105
3+1	881498	767152	996751	1086424
4+1	242921	360177	357627	440158
5+I	77157	85251	139010	150070

-	25	5 -
-	23) -

Ļ

ļ

l

_↓ ≟↓

l

l

Table 16 b. Population biomass (T) for 4VWX silver hake with M=0.4 and Ft = 0.20

_

 	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
11	102140	68358	212049	64727	86270	99747	54657	43163	37395	56092	23915	28214	89460	53054	117050	123824
21	221673	126655	115185	285575	98750	129563	130304	67276	51142	75192	85802	55182	77303	137375	96412	181723
31	89111	109934	70438	61380	70233	49869	66349	60273	47244	47694	61374	69258	54075	62819	121330	83837
41	43184	47131	60409	42075	35063	26325	25966	35568	29286	27007	29252	31585	43835	26817	41275	65982
5 I	15871	25975	17774	3837 9	11750	33420	10835	15371	16539	14980	11877	13147	17933	14828	13982	14939
61	9739	8382	20933	12809	6944	5511	8751	6888	6686	8126	4371	4635	6507	3416	8175	6001
71	6041	4981	5296	9305	4199	6829	3569	5973	2800	2793	1439	2104	1931	1514	1278	4435
81	9527	4760	2109	5610	1520	3534	4739	2626	2794	1224	398	297	903	349	1015	649
91	2438	4561	2447	902	0	1297	1367	2672	926	1193	202	137	243	185	7	628
141	499722	*00726	506640	530761	314700	357005										
111	707504	900/30	J00090	JZ0/61	319/23	326032	308336	239810	194812	234302	218631	204560	292190	300358	400524	482019
211	39/384	3323/8	294991	436034	228460	256348	2518/9	196648	157416	178210	194716	176345	202730	247304	283474	358195
3+1	1/2211	205723	1/9406	170459	12970 9	126785	121575	129371	106274	103018	108914	121163	125427	109929	187062	176472
4+!	86799	95789	108968	109079	59477	76916	55226	69099	59030	55324	47540	51905	71351	47110	65733	92635
5+1	43615	48658	48559	67004	24413	50591	29260	33531	29744	28317	18288	20321	27517	20293	24457	26653

I	1986	1987
+-		
11	411997	111874
21	166449	552917
31	128464	112450
41	50063	64689
5 I	30216	23845
61	5411	15238
71	2117	1674
8	2160	722
91	145	915
+-		
1+1	797023	884324
2+1	385025	772450
3+1	218576	219533
4+1	90112	107082
5+1	40049	42393

Table 16 C. Fishing mortality at age for the 4VWX silver hake population.

 -++-	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
1 2 3 4 5 6 7 8 9	.143 .701 .656 .458 .634 .634 .644 .409 .195 .598	.168 .677 .443 .651 .386 .130 1.226 .328 .402	.129 .826 .294 .260 .399 .272 .137 .376 .306	.231 1.469 .521 1.336 1.912 1.513 2.280 3.017 1.321	.094 .916 .731 .079 .500 .360 .027 .106 .418	.125 .731 .369 1.028 1.042 .641 .065 .169 .770	.240 .721 .388 .499 .290 .216 .157 .034 .348	.004 .122 .395 .341 .245 .200 .068 .325 .295	.047 .268 .501 .502 .506 .695 .735 .556 .551	.013 .127 .425 .595 1.082 1.744 1.928 1.943 .987	.013 .128 .416 .527 .677 .939 1.233 .944 .640	.002 .063 .463 .449 .530 .740 .302 .347 .545	.015 .127 .401 .730 1.353 1.028 1.616 1.516 .878	.004 .104 .224 .374 .384 .809 .433 3.715 .448	.067 .077 .443 .719 .605 .342 .555 .134 .527	.029 .200 .221 .506 .699 .854 .481 1.184 .570	.023 .082 .390 .473 .383 1.143 .666 .271 .597	.009 .065 .200 .200 .200 .200 .200 .200 .200

silver hake

IGE	WEIGHT-AT-AGE	PARTIAL RECRUITMENT
1	.055	.045
2	- 142	.301
3	199	1.000
4	.251	1.000
5	. 302	1.000
6	.362	1.000
7	. 475	1.000
8	.597	1.000
9	.755	1.000

NATUR	AL MORTALI	[TY	RATE :	0.4			
F0.1	COMPUTED	AS	.5072	AT	Y/R	OF	.0617
FNAX	COMPUTED	AS	3.0104	AT	Y/R	0F	.0759

YIELD PER RECRUIT ANALYSIS

	FISHING MORTALITY	CATCH (NUMBER)	YIELD (KG)	AVG. WEIGHT (KG)	YIELD PER Unit Effort
	.1000	.104	. 026	. 252	2.157
	.2000	.177	.042	.235	1.711
	.3000	.231	.051	.221	1.400
	.4000	.271	.057	.211	1.176
	.5000	.304	.061	.202	1.010
F0.1	5072	.306	.062	.202	1.000
	.6000	. 330	.064	195	. 883
	.7000	.352	.067	.189	.783
	.8000	.371	.068	. 184	.703
	.9000	.388	.070	.180	.637
•	1.0000	.402	.071	.176	.582
	1.1000	415	.072	.173	.536
•	1.2000	.426	.072	.170	.496
	1.3000	.437	.073	.167	.462
	1.4000	.447	.074	.165	. 432
	1.5000	.455	.074	.162	.405
FMAX	- 3.0104	.541	.076	.140	.207

Bathymetric map of the Scotian Shelf and the Bay of Fundy showing the Small Mesh Gear Line (SMGL)

Figure 1

- 27 -

Figure 3. TAC, ellocations and catches for 4VWX aliver hake.

- 28 -

Figure 4: Mean weight at age in the catch of 4VWX silver hake from 1970-1987.

Year

l

Figure 5 : Standardized catch rate for 4VWX silver hake, 1970-1987.

- 30 -

Figure 6. July RV survey estimates of numbers and blomass of 4VWX sliver hake.

· 1

ł

l

- 31 -

